1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
|
import os
import shutil
import argparse
import yaml
import condorTemplates
import pythonTemplates
import helpers
import subprocess
def parseDataset(name, dataset):
parsed = {}
parsed["name"] = name
parsed["trackSelection"] = dataset["trackSelection"]
if "fileList" in dataset: # in this case, a fileList is provided, so it's not necessary to create one (or multiple in case of multiple IOVs)
parsed["dataFrom"] = "fileList"
parsed["fileList"] = dataset["fileList"]
else: # in this case, fileLists have to be created using dasgoclient
parsed["dataFrom"] = "das"
parsed["dataset"] = dataset["dataset"]
parsed["json"] = None
if "json" in dataset:
parsed["json"] = dataset["json"]
parsed["lastRun"] = None
if "lastRun" in dataset:
parsed["lastRun"] = dataset["lastRun"]
parsed["redo"] = False
if "redo" in dataset:
parsed["redo"] = dataset["redo"]
parsed["globalTag"] = dataset["globalTag"]
if "conditions" in dataset:
parsed["conditions"] = helpers.parseConditions(dataset["conditions"])
else:
parsed["conditions"] = []
parsed["isCosmics"] = False
if "isCosmics" in dataset:
parsed["isCosmics"] = dataset["isCosmics"]
parsed["maxEvents"] = -1
if "maxEvents" in dataset:
parsed["maxEvents"] = dataset["maxEvents"]
parsed["maxFileSize"] = 350000 # 350MB
if "maxFileSize" in dataset:
parsed["maxFileSize"] = dataset["maxFileSize"]
parsed["targetPath"] = dataset["targetPath"]
parsed["iovName"] = {}
parsed["iovs"] = dataset["iovs"]
parsed["finished"] = {}
for iov in dataset["iovs"]:
parsed["finished"][iov] = False
parsed["iovName"][iov] = "{name}_iov{iov}".format(name=name, iov=iov)
# check if there are already files in the target path with the target name
# wont use the file list for later, as the number of files has to determined
# in a later job anyway for cases where the skim wasnt already performed
finished = helpers.findFiles(parsed["targetPath"], "{iovname}_{number}.root".format(iovname=parsed["iovName"][iov], number="{number}") )
if len(finished) != 0:
if dataset["redo"]: # the existing files for this iov will be removed later
pass
else: # this iov does not have to be skimmed again, we are done
print("Found existing skim output files for dataset {} and redo=False, so the skim will not be performed".format(parsed["iovName"][iov]))
parsed["finished"][iov] = True
return parsed
def parseBaseline(name, baseline):
parsed = {}
parsed["name"] = name
parsed["complete"] = False
if "complete" in baseline:
parsed["complete"] = baseline["complete"]
if parsed["complete"]: # no further arguments needed as no reprocessing is performed
return parsed
parsed["globalTag"] = baseline["globalTag"]
if "conditions" in baseline:
parsed["conditions"] = helpers.parseConditions(baseline["conditions"])
else:
parsed["conditions"] = []
parsed["maxEvents"] = -1
if "maxEvents" in baseline:
parsed["maxEvents"] = baseline["maxEvents"]
parsed["dataset"] = baseline["dataset"]
return parsed
def parseMeasurement(name, measurement):
parsed = {}
parsed["name"] = name
parsed["globalTag"] = measurement["globalTag"]
if "conditions" in measurement:
parsed["conditions"] = helpers.parseConditions(measurement["conditions"])
else:
parsed["conditions"] = []
parsed["maxIterations"] = 15
if "maxIterations" in measurement:
parsed["maxIterations"] = measurement["maxIterations"]
parsed["maxEvents"] = -1
if "maxEvents" in measurement:
parsed["maxEvents"] = measurement["maxEvents"]
parsed["baseline"] = measurement["baseline"]
parsed["dataset"] = measurement["dataset"]
return parsed
def createConditions(base, dataset, measurement = None):
# combine conditions defined in dataset (and measurement) and remove double counting
allConditions = []
allConditions += dataset["conditions"]
if measurement is not None:
allConditions += measurement["conditions"]
allConditions = list({v['record']:v for v in allConditions}.values())
for iov in dataset["iovs"]:
if measurement is not None:
if "baseline" in measurement:
baseName = "measurement_{}_iov{}".format(measurement["name"], iov) # in this case it's a measurement and we might have several dataset IOVs
else:
baseName = "measurement_{}".format(measurement["name"]) # in this case it's a baseline and we have only one IOV; the IOV will not be in the name
else:
baseName = "dataset_{}".format(dataset["iovName"][iov]) # in this case we have only a dataset
fileName =baseName + "_cff.py"
with open(os.path.join(base,"src/Alignment/APEEstimation/python/conditions", fileName), "w") as condFile:
condFile.write(pythonTemplates.conditionsFileHeader)
for condition in allConditions:
condFile.write( pythonTemplates.conditionsTemplate.format(record=condition["record"], source=condition["source"], tag=condition["tag"]) )
def createFileList(dataset, workingArea):
json = ""
if dataset["json"] is not None:
json = "--json {}".format(dataset["json"])
iovs = ""
for iov in dataset["iovs"]:
iovs += "--iov {} ".format(iov)
if dataset["lastRun"] is not None:
# every file for successive runs will be put into this iov, which will not be used
iovs += "--iov {}".format(int(dataset["lastRun"])+1)
datasetName = dataset["dataset"].replace("/", "_")[1:]
# check if dataset is MC or data:
import Utilities.General.cmssw_das_client as cmssw_das_client
# this checks if the only run in this data set is 1, which is only true for MC
if subprocess.check_output("dasgoclient --query='run dataset={}' --limit=99999".format(dataset["dataset"], limit = 0), shell=True).decode().strip() == "1":
# for MC, we cannot use the script that is used for data, so we have to create the filelist ourselves
# but this is easy because no json need be applied and only one IOV is used as only one run exists
files = subprocess.check_output("dasgoclient --query='file dataset={}' --limit=99999".format(dataset["dataset"], limit = 0), shell=True).decode().strip()
rawList = ""
for fi in files.split("\n"):
rawList += "'{}',\n".format(fi)
helpers.ensurePathExists(os.path.join(workingArea,datasetName))
with open(os.path.join(workingArea,datasetName, "Dataset_Alignment_{}_since1_cff.py".format(datasetName,"{}")), "w") as fileList:
from pythonTemplates import fileListTemplate
fileList.write(fileListTemplate.format(files=rawList))
else:
# this script is in Alignment/CommonAlignment/scripts
# For data, the file lists split into IOVs can be produced with this script
os.system("tkal_create_file_lists.py {json} -i {dataset} {iovs} -n 9999999 -f 1 -o {workingArea} --force".format(json=json, iovs=iovs, dataset=dataset["dataset"], workingArea=workingArea))
dataset["fileList"] = os.path.join(workingArea,datasetName, "Dataset_Alignment_{}_since{}_cff.py".format(datasetName,"{}"))
def main():
parser = argparse.ArgumentParser(description="Automatically run APE measurements")
parser.add_argument("-c", "--config", action="store", dest="config", default="config.yaml",
help="Config file that configures measurement")
parser.add_argument("--dryRun", action="store_true", dest="dryRun", default=False,
help="Only creates the DAGman files but does not start jobs.")
args = parser.parse_args()
with open(args.config, "r") as configFile:
try:
config_loaded = yaml.safe_load(configFile)
except yaml.YAMLError as exc:
print(exc)
if not "workingArea" in config_loaded:
workingArea = os.getcwd()
else:
workingArea = config_loaded["workingArea"]
base = os.environ['CMSSW_BASE']
# parse config
parsed_datasets = {}
parsed_baselines = {}
parsed_measurements = {}
datasets = config_loaded["datasets"]
for dataset in datasets:
parsed = parseDataset(dataset, datasets[dataset])
parsed_datasets[dataset] = parsed
#checks if all IOVs are finished. If True for every IOV, no skim will be needed and no fileList need be generated
all_finished = [parsed["finished"][iov] for iov in parsed["iovs"]]
if parsed["dataFrom"] == "das" and (False in all_finished):
createFileList(parsed, workingArea)
if "baselines" in config_loaded:
baselines = config_loaded["baselines"]
for baseline in baselines:
# ~ print(baseline)
parsed = parseBaseline(baseline, baselines[baseline])
parsed_baselines[baseline] = parsed
else:
baselines = {} # it is legitimate to not have baselines if only datasets are defined
if "measurements" in config_loaded:
measurements = config_loaded["measurements"]
for measurement in measurements:
# ~ print(measurement)
parsed = parseMeasurement(measurement, measurements[measurement])
parsed_measurements[measurement] = parsed
else:
measurements = {} # it is legitimate to not have measurements if one only wants to do baselines or datasets
# check for validity
# (-> plots need baselines or measurements)
# -> measurements need baselines
# -> measurements and baselines need datasets
# -> baselines need MC datasets with exactly 1 IOV
for name, measurement in parsed_measurements.items():
if not measurement["baseline"] in parsed_baselines:
print("Measurement {} has baseline {} defined, which is not in the configuration.".format(measurement["name"], measurement["baseline"]))
if not measurement["dataset"] in parsed_datasets:
print("Measurement {} has dataset {} defined, which is not in the configuration.".format(measurement["name"], measurement["dataset"]))
for name, baseline in parsed_baselines.items():
if baseline["complete"]:
continue # no checks to be performed, this measurement is already completed and will not be rerun. it only exists to be referenced by a measurement
if not baseline["dataset"] in parsed_datasets:
print("Baseline {} has dataset {} defined, which is not in the configuration.".format(baseline["name"], baseline["dataset"]))
continue
if not (len(parsed_datasets[baseline["dataset"]]["iovs"]) == 1):
print("Dataset {} for baseline {} needs exactly one IOV".format(baseline["dataset"], name))
# create files that run jobs
# -> Skimming (if needed) including renaming and transfer for each IOV of each dataset
master_dag_name = os.path.join(workingArea, "main_dag.dag")
with open(master_dag_name, "w") as master_dag:
master_dag.write("# main submission script\n")
master_dag.write("# dataset jobs\n")
for name, dataset in parsed_datasets.items():
createConditions(base, dataset)
for iov in dataset["iovs"]:
if not dataset["finished"][iov]:
skimSubName = os.path.join(workingArea,"skim_{}.sub".format(dataset["iovName"][iov]))
with open(skimSubName, "w") as skimSubScript:
skim_args = "fileList={fileList} outputName={outputName} trackSelection={trackSelection} globalTag={globalTag} maxEvents={maxEvents} maxFileSize={maxFileSize}".format(
fileList=dataset["fileList"].format(iov),
outputName=dataset["iovName"][iov],
trackSelection=dataset["trackSelection"],
globalTag=dataset["globalTag"],
maxEvents=dataset["maxEvents"],
maxFileSize=dataset["maxFileSize"])
skimSubScript.write(condorTemplates.skimSubTemplate.format(workingArea=workingArea, base=base, args=skim_args, target=dataset["targetPath"], name=dataset["iovName"][iov]))
with open(master_dag_name, "a") as master_dag:
master_dag.write("JOB {} {}\n".format("skim_{}".format(dataset["iovName"][iov]), skimSubName))
with open(master_dag_name, "a") as master_dag:
master_dag.write("\n# baseline subdags and conditions\n")
# -> Baselines
# -> Handled by prep job
for name, baseline in parsed_baselines.items():
if baseline["complete"]:
continue
dataset = parsed_datasets[baseline["dataset"]]
iov = dataset["iovs"][0]
createConditions(base, dataset,baseline)
helpers.ensurePathExists(os.path.join(workingArea, name))
# baseline preparation job
prep_job_name = os.path.join(workingArea, name, "prep.sub")
sub_dag_name = os.path.join(workingArea, name, "baseline.dag")
sub_dag_job = "baseline_{}".format(name)
with open(prep_job_name, "w") as prep_job:
prep_job.write(
condorTemplates.prepSubTemplate.format(base=base,
workingArea=workingArea,
globalTag=baseline["globalTag"],
measName=name,
isCosmics=dataset["isCosmics"],
maxIterations=0,
baselineName=name,
dataDir=dataset["targetPath"],
fileName=dataset["iovName"][iov],
maxEvents=baseline["maxEvents"],
isBaseline=True)
)
with open(master_dag_name, "a") as master_dag:
master_dag.write("JOB prep_{} {}\n".format(name, prep_job_name))
iov = dataset["iovs"][0] # only 1 IOV for baseline measurements
if not dataset["finished"][iov]: # if dataset is already finished, there will be no job to wait for
master_dag.write("PARENT {} CHILD prep_{}\n".format("skim_{}".format(dataset["iovName"][iov]),name))
master_dag.write("SUBDAG EXTERNAL {} {}\n".format(sub_dag_job, sub_dag_name))
master_dag.write("PARENT prep_{} CHILD {}\n".format(name, sub_dag_job))
# create subdag file, only 1 for baseline because only 1 IOV
with open(sub_dag_name, "w") as sub_dag:
sub_dag.write("# Will be filled later\n")
with open(master_dag_name, "a") as master_dag:
master_dag.write("\n# measurement subdags and conditions\n")
# -> Measurements
# -> Handled by prep job
for name, measurement in parsed_measurements.items():
dataset = parsed_datasets[measurement["dataset"]]
baseline = parsed_baselines[measurement["baseline"]]
baseline_dag_name = "baseline_{}".format(baseline["name"])
createConditions(base, parsed_datasets[measurement["dataset"]],measurement)
for iov in dataset["iovs"]:
meas_name = "{}_iov{}".format(name, iov)
helpers.ensurePathExists(os.path.join(workingArea, meas_name))
helpers.newIterFolder(workingArea, meas_name, "apeObjects")
prep_job_name = os.path.join(workingArea, meas_name, "prep.sub")
sub_dag_name = os.path.join(workingArea, meas_name, "measurement.dag")
sub_dag_job = "measurement_{}".format(meas_name)
with open(prep_job_name, "w") as prep_job:
prep_job.write(
condorTemplates.prepSubTemplate.format(base=base,
workingArea=workingArea,
globalTag=measurement["globalTag"],
measName=meas_name,
isCosmics=dataset["isCosmics"],
maxIterations=measurement["maxIterations"],
baselineName=baseline["name"],
dataDir=dataset["targetPath"],
fileName=dataset["iovName"][iov],
maxEvents=measurement["maxEvents"],
isBaseline=False)
)
with open(master_dag_name, "a") as master_dag:
master_dag.write("JOB prep_{} {}\n".format(meas_name, prep_job_name))
if not dataset["finished"][iov]: # if dataset is already finished, there will be no job to wait for
master_dag.write("PARENT {} CHILD prep_{}\n".format("skim_{}".format(dataset["iovName"][iov]),meas_name))
master_dag.write("SUBDAG EXTERNAL {} {}\n".format(sub_dag_job, sub_dag_name))
master_dag.write("PARENT prep_{} CHILD {}\n".format(meas_name, sub_dag_job))
if not baseline["complete"]: # if this has to be run, then we have to wait for it to finish first before starting the measurement
master_dag.write("PARENT {} CHILD {}\n".format(baseline_dag_name, sub_dag_job))
with open(sub_dag_name, "w") as sub_dag:
sub_dag.write("# Will be filled later\n")
if not args.dryRun:
subprocess.call("condor_submit_dag {}".format(master_dag_name), shell=True)
if __name__ == "__main__":
main()
|