1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
|
#!/usr/bin/env python3
from builtins import range
import os
import re
import sys
import glob
import json
import math
import bisect
import random
import signal
if sys.version_info[0]>2:
import _pickle as cPickle
else:
import cPickle
import difflib
import argparse
import functools
import itertools
import subprocess
import collections
import multiprocessing
import FWCore.PythonUtilities.LumiList as LumiList
import Utilities.General.cmssw_das_client as cmssw_das_client
import Alignment.MillePedeAlignmentAlgorithm.mpslib.tools as mps_tools
################################################################################
def main(argv = None):
"""
Main routine. Not called, if this module is loaded via `import`.
Arguments:
- `argv`: Command line arguments passed to the script.
"""
if argv == None:
argv = sys.argv[1:]
file_list_creator = FileListCreator(argv)
file_list_creator.create()
################################################################################
class FileListCreator(object):
"""Create file lists for alignment and validation for a given dataset.
"""
def __init__(self, argv):
"""Constructor taking the command line arguments.
Arguments:
- `args`: command line arguments
"""
self._first_dataset_ini = True
self._parser = self._define_parser()
self._args = self._parser.parse_args(argv)
if not mps_tools.check_proxy():
print_msg(
"Please create proxy via 'voms-proxy-init -voms cms -rfc'.")
sys.exit(1)
self._dataset_regex = re.compile(r"^/([^/]+)/([^/]+)/([^/]+)$")
self._validate_input()
if self._args.test_mode:
import Configuration.PyReleaseValidation.relval_steps as rvs
import Configuration.PyReleaseValidation.relval_production as rvp
self._args.datasets = [rvs.steps[rvp.workflows[1000][1][0]]["INPUT"].dataSet]
self._validate_input() # ensure that this change is valid
self._datasets = sorted([dataset
for pattern in self._args.datasets
for dataset in get_datasets(pattern)
if re.search(self._args.dataset_filter, dataset)])
if len(self._datasets) == 0:
print_msg("Found no dataset matching the pattern(s):")
for d in self._args.datasets: print_msg("\t"+d)
sys.exit(1)
self._formatted_dataset = merge_strings(
[re.sub(self._dataset_regex, r"\1_\2_\3", dataset)
for dataset in self._datasets])
self._output_dir = os.path.join(self._args.output_dir,
self._formatted_dataset)
self._output_dir = os.path.abspath(self._output_dir)
self._cache = _DasCache(self._output_dir)
self._prepare_iov_datastructures()
self._prepare_run_datastructures()
try:
os.makedirs(self._output_dir)
except OSError as e:
if e.args == (17, "File exists"):
if self._args.force:
pass # do nothing, just clear the existing output
elif self._args.use_cache:
self._cache.load() # load cache before clearing the output
else:
print_msg("Directory '{}' already exists from previous runs"
" of the script. Use '--use-cache' if you want to"
" use the cached DAS-query results Or use "
"'--force' to remove it."
.format(self._output_dir))
sys.exit(1)
files = glob.glob(os.path.join(self._output_dir, "*"))
for f in files: os.remove(f)
else:
raise
def create(self):
"""Creates file list. To be called by user of the class."""
self._request_dataset_information()
self._create_file_lists()
self._print_eventcounts()
self._write_file_lists()
_event_count_log = "event_count_info.log"
def _define_parser(self):
"""Definition of command line argument parser."""
parser = argparse.ArgumentParser(
description = "Create file lists for alignment",
epilog = ("The tool will create a directory containing all file "
"lists and a log file with all relevant event counts "
"('{}').".format(FileListCreator._event_count_log)))
parser.add_argument("-i", "--input", dest = "datasets", required = True,
metavar = "DATASET", action = "append",
help = ("CMS dataset name; supports wildcards; "
"use multiple times for multiple datasets"))
parser.add_argument("--dataset-filter", default = "",
help = "regex to match within in the datasets matched,"
"in case the wildcard isn't flexible enough")
parser.add_argument("-j", "--json", dest = "json", metavar = "PATH",
help = "path to JSON file (optional)")
parser.add_argument("-f", "--fraction", dest = "fraction",
type = float, default = 1,
help = "max. fraction of files used for alignment")
parser.add_argument("--iov", dest = "iovs", metavar = "RUN", type = int,
action = "append", default = [],
help = ("define IOV by specifying first run; for "
"multiple IOVs use this option multiple "
"times; files from runs before the lowest "
"IOV are discarded (default: 1)"))
parser.add_argument("--miniiov", dest="miniiovs", metavar="RUN", type=int,
action="append", default=[],
help=("in addition to the standard IOVs, break up hippy jobs "
"at these points, so that jobs from before and after "
"these runs are not in the same job"))
parser.add_argument("-r", "--random", action = "store_true",
default = False, help = "select files randomly")
parser.add_argument("-n", "--events-for-alignment", "--maxevents",
dest = "events", type = int, metavar = "NUMBER",
help = ("number of events needed for alignment; the"
" remaining events in the dataset are used "
"for validation; if n<=0, all events are "
"used for validation"))
parser.add_argument("--all-events", action = "store_true",
help = "Use all events for alignment")
parser.add_argument("--tracks-for-alignment", dest = "tracks",
type = int, metavar = "NUMBER",
help = "number of tracks needed for alignment")
parser.add_argument("--track-rate", dest = "rate", type = float,
metavar = "NUMBER",
help = "number of tracks per event")
parser.add_argument("--run-by-run", dest = "run_by_run",
action = "store_true", default = False,
help = "create validation file list for each run")
parser.add_argument("--minimum-events-in-iov",
dest = "minimum_events_in_iov", metavar = "NUMBER",
type = int, default = 100000,
help = ("minimum number of events for alignment per"
" IOV; this option has a higher priority "
"than '-f/--fraction' "
"(default: %(default)s)"))
parser.add_argument("--minimum-events-validation",
dest = "minimum_events_validation",
metavar = "NUMBER", type = int, default = 1,
help = ("minimum number of events for validation; "
"applies to IOVs; in case of --run-by-run "
"it applies to runs runs "
"(default: %(default)s)"))
parser.add_argument("--use-cache", dest = "use_cache",
action = "store_true", default = False,
help = "use DAS-query results of previous run")
parser.add_argument("-o", "--output-dir", dest = "output_dir",
metavar = "PATH", default = os.getcwd(),
help = "output base directory (default: %(default)s)")
parser.add_argument("--create-ini", dest = "create_ini",
action = "store_true", default = False,
help = ("create dataset ini file based on the "
"created file lists"))
parser.add_argument("--force", action = "store_true", default = False,
help = ("remove output directory from previous "
"runs, if existing"))
parser.add_argument("--hippy-events-per-job", type = int, default = 1,
help = ("approximate number of events in each job for HipPy"))
parser.add_argument("--test-mode", dest = "test_mode",
action = "store_true", default = False,
help = argparse.SUPPRESS) # hidden option
return parser
def _validate_input(self):
"""Validate command line arguments."""
if self._args.events is None:
if self._args.all_events:
self._args.events = float("inf")
print_msg("Using all tracks for alignment")
elif (self._args.tracks is None) and (self._args.rate is None):
msg = ("either -n/--events-for-alignment, --all-events, or both of "
"--tracks-for-alignment and --track-rate are required")
self._parser.error(msg)
elif (((self._args.tracks is not None) and (self._args.rate is None)) or
((self._args.rate is not None)and (self._args.tracks is None))):
msg = ("--tracks-for-alignment and --track-rate must be used "
"together")
self._parser.error(msg)
else:
self._args.events = int(math.ceil(self._args.tracks /
self._args.rate))
print_msg("Requested {0:d} tracks with {1:.2f} tracks/event "
"-> {2:d} events for alignment."
.format(self._args.tracks, self._args.rate,
self._args.events))
else:
if (self._args.tracks is not None) or (self._args.rate is not None) or self._args.all_events:
msg = ("-n/--events-for-alignment must not be used with "
"--tracks-for-alignment, --track-rate, or --all-events")
self._parser.error(msg)
print_msg("Requested {0:d} events for alignment."
.format(self._args.events))
for dataset in self._args.datasets:
if not re.match(self._dataset_regex, dataset):
print_msg("Dataset pattern '"+dataset+"' is not in CMS format.")
sys.exit(1)
nonzero_events_per_iov = (self._args.minimum_events_in_iov > 0)
if nonzero_events_per_iov and self._args.fraction <= 0:
print_msg("Setting minimum number of events per IOV for alignment "
"to 0 because a non-positive fraction of alignment events"
" is chosen: {}".format(self._args.fraction))
nonzero_events_per_iov = False
self._args.minimum_events_in_iov = 0
if nonzero_events_per_iov and self._args.events <= 0:
print_msg("Setting minimum number of events per IOV for alignment "
"to 0 because a non-positive number of alignment events"
" is chosen: {}".format(self._args.events))
nonzero_events_per_iov = False
self._args.minimum_events_in_iov = 0
def _prepare_iov_datastructures(self):
"""Create the needed objects for IOV handling."""
self._iovs = sorted(set(self._args.iovs))
if len(self._iovs) == 0: self._iovs.append(1)
self._iov_info_alignment = {iov: {"events": 0, "files": []}
for iov in self._iovs}
self._iov_info_validation = {iov: {"events": 0, "files": []}
for iov in self._iovs}
self._miniiovs = sorted(set(self._iovs) | set(self._args.miniiovs))
def _get_iovs(self, runs, useminiiovs=False):
"""
Return the IOV start for `run`. Returns 'None' if the run is before any
defined IOV.
Arguments:
- `runs`: run numbers
"""
iovlist = self._miniiovs if useminiiovs else self._iovs
iovs = []
for run in runs:
iov_index = bisect.bisect(iovlist, run)
if iov_index > 0: iovs.append(iovlist[iov_index-1])
return iovs
def _prepare_run_datastructures(self):
"""Create the needed objects for run-by-run validation file lists."""
self._run_info = {}
def _add_file_info(self, container, keys, fileinfo):
"""Add file with `file_name` to `container` using `key`.
Arguments:
- `container`: dictionary holding information on files and event counts
- `keys`: keys to which the info should be added; will be created if not
existing
- `file_name`: name of a dataset file
"""
for key in keys:
if key not in container:
container[key] = {"events": 0,
"files": []}
container[key]["events"] += fileinfo.nevents / len(keys)
if fileinfo not in container[key]["files"]:
container[key]["files"].append(fileinfo)
def _remove_file_info(self, container, keys, fileinfo):
"""Remove file with `file_name` to `container` using `key`.
Arguments:
- `container`: dictionary holding information on files and event counts
- `keys`: keys from which the info should be removed
- `file_name`: name of a dataset file
- `event_count`: number of events in `file_name`
"""
for key in keys:
if key not in container: continue
try:
index = container[key]["files"].index(fileinfo)
except ValueError: # file not found
return
del container[key]["files"][index]
container[key]["events"] -= fileinfo.nevents / len(keys)
def _request_dataset_information(self):
"""Retrieve general dataset information and create file list."""
if not self._cache.empty:
print_msg("Using cached information.")
(self._events_in_dataset,
self._files,
self._file_info,
self._max_run) = self._cache.get()
self.rereco = any(len(fileinfo.runs)>1 for fileinfo in self._file_info)
if self._args.random: random.shuffle(self._files)
return
# workaround to deal with KeyboardInterrupts in the worker processes:
# - ignore interrupt signals in workers (see initializer)
# - use a timeout of size sys.maxsize to avoid a bug in multiprocessing
number_of_processes = multiprocessing.cpu_count() - 1
number_of_processes = (number_of_processes
if number_of_processes > 0
else 1)
pool = multiprocessing.Pool(
processes = number_of_processes,
initializer = lambda: signal.signal(signal.SIGINT, signal.SIG_IGN))
print_msg("Requesting information for the following dataset(s):")
for d in self._datasets: print_msg("\t"+d)
print_msg("This may take a while...")
result = pool.map_async(get_events_per_dataset, self._datasets).get(3600)
self._events_in_dataset = sum(result)
result = pool.map_async(get_max_run, self._datasets).get(3600)
self._max_run = max(result)
result = sum(pool.map_async(get_file_info, self._datasets).get(3600), [])
files = pool.map_async(_make_file_info, result).get(3600)
self._file_info = sorted(fileinfo for fileinfo in files)
self.rereco = any(len(fileinfo.runs)>1 for fileinfo in self._file_info)
if self._args.test_mode:
self._file_info = self._file_info[-200:] # take only last chunk of files
self._files = [fileinfo.name for fileinfo in self._file_info]
# write information to cache
self._cache.set(self._events_in_dataset, self._files, self._file_info,
self._max_run)
self._cache.dump()
if self._args.random:
random.shuffle(self._file_info)
self._files = [fileinfo.name for fileinfo in self._file_info]
def _create_file_lists(self):
"""Create file lists for alignment and validation."""
# collect files for alignment until minimal requirements are fulfilled
self._files_alignment = []
self._files_validation = []
self._events_for_alignment = 0
self._events_for_validation = 0
max_range = (0
if self._args.events <= 0
else int(math.ceil(len(self._files)*self._args.fraction)))
use_for_alignment = True
for i, fileinfo in enumerate(self._file_info):
enough_events = self._events_for_alignment >= self._args.events
fraction_exceeded = i >= max_range
if enough_events or fraction_exceeded: use_for_alignment = False
dataset, f, number_of_events, runs = fileinfo
iovs = self._get_iovs(runs)
if use_for_alignment:
if iovs:
self._events_for_alignment += number_of_events
self._files_alignment.append(fileinfo)
self._add_file_info(self._iov_info_alignment, iovs, fileinfo)
else:
max_range += 1 # not used -> discard in fraction calculation
else:
if iovs:
self._events_for_validation += number_of_events
self._files_validation.append(fileinfo)
self._add_file_info(self._iov_info_validation, iovs, fileinfo)
if self._args.run_by_run:
self._add_file_info(self._run_info, runs, fileinfo)
self._fulfill_iov_eventcount()
self._split_hippy_jobs()
def _fulfill_iov_eventcount(self):
"""
Try to fulfill the requirement on the minimum number of events per IOV
in the alignment file list by picking files from the validation list.
"""
for iov in self._iovs:
if self._iov_info_alignment[iov]["events"] >= self._args.minimum_events_in_iov: continue
for fileinfo in self._files_validation[:]:
dataset, f, number_of_events, runs = fileinfo
iovs = self._get_iovs(runs)
if iov in iovs:
self._files_alignment.append(fileinfo)
self._events_for_alignment += number_of_events
self._add_file_info(self._iov_info_alignment, iovs, fileinfo)
self._events_for_validation -= number_of_events
self._remove_file_info(self._iov_info_validation, iovs, fileinfo)
if self._args.run_by_run:
self._remove_file_info(self._run_info, runs, fileinfo)
self._files_validation.remove(fileinfo)
if (self._iov_info_alignment[iov]["events"]
>= self._args.minimum_events_in_iov):
break # break the file loop if already enough events
def _split_hippy_jobs(self):
hippyjobs = {}
for dataset, miniiov in itertools.product(self._datasets, self._miniiovs):
jobsforminiiov = []
hippyjobs[dataset,miniiov] = jobsforminiiov
eventsinthisjob = float("inf")
for fileinfo in self._files_alignment:
if fileinfo.dataset != dataset: continue
miniiovs = set(self._get_iovs(fileinfo.runs, useminiiovs=True))
if miniiov not in miniiovs: continue
if len(miniiovs) > 1:
hippyjobs[dataset,miniiov] = []
if eventsinthisjob >= self._args.hippy_events_per_job:
currentjob = []
jobsforminiiov.append(currentjob)
eventsinthisjob = 0
currentjob.append(fileinfo)
currentjob.sort()
eventsinthisjob += fileinfo.nevents
self._hippy_jobs = {
(dataset, iov): sum((hippyjobs[dataset, miniiov]
for miniiov in self._miniiovs
if iov == max(_ for _ in self._iovs if _ <= miniiov)), []
)
for dataset, iov in itertools.product(self._datasets, self._iovs)
}
def _print_eventcounts(self):
"""Print the event counts per file list and per IOV."""
log = os.path.join(self._output_dir, FileListCreator._event_count_log)
print_msg("Using {0:d} events for alignment ({1:.2f}%)."
.format(self._events_for_alignment,
100.0*
self._events_for_alignment/self._events_in_dataset),
log_file = log)
for iov in sorted(self._iov_info_alignment):
print_msg(("Approximate events" if self.rereco else "Events") + " for alignment in IOV since {0:f}: {1:f}"
.format(iov, self._iov_info_alignment[iov]["events"]),
log_file = log)
print_msg("Using {0:d} events for validation ({1:.2f}%)."
.format(self._events_for_validation,
100.0*
self._events_for_validation/self._events_in_dataset),
log_file = log)
for iov in sorted(self._iov_info_validation):
msg = ("Approximate events" if self.rereco else "Events") + " for validation in IOV since {0:f}: {1:f}".format(
iov, self._iov_info_validation[iov]["events"])
if (self._iov_info_validation[iov]["events"]
< self._args.minimum_events_validation):
msg += " (not enough events -> no dataset file will be created)"
print_msg(msg, log_file = log)
for run in sorted(self._run_info):
msg = ("Approximate events" if self.rereco else "Events") + " for validation in run {0:f}: {1:f}".format(
run, self._run_info[run]["events"])
if (self._run_info[run]["events"]
< self._args.minimum_events_validation):
msg += " (not enough events -> no dataset file will be created)"
print_msg(msg, log_file = log)
unused_events = (self._events_in_dataset
- self._events_for_validation
- self._events_for_alignment)
if unused_events > 0 != self._events_in_dataset:
print_msg("Unused events: {0:d} ({1:.2f}%)"
.format(unused_events,
100.0*unused_events/self._events_in_dataset),
log_file = log)
def _create_dataset_ini_section(self, name, collection, json_file = None):
"""Write dataset ini snippet.
Arguments:
- `name`: name of the dataset section
- `collection`: track collection of this dataset
- `json_file`: JSON file to be used for this dataset (optional)
"""
if json_file:
splitted = name.split("_since")
file_list = "_since".join(splitted[:-1]
if len(splitted) > 1
else splitted)
else:
file_list = name
output = "[dataset:{}]\n".format(name)
output += "collection = {}\n".format(collection)
output += "inputFileList = ${{datasetdir}}/{}.txt\n".format(file_list)
output += "json = ${{datasetdir}}/{}\n".format(json_file) if json_file else ""
if collection in ("ALCARECOTkAlCosmicsCTF0T",
"ALCARECOTkAlCosmicsInCollisions"):
if self._first_dataset_ini:
print_msg("\tDetermined cosmics dataset, i.e. please replace "
"'DUMMY_DECO_MODE_FLAG' and 'DUMMY_ZERO_TESLA_FLAG' "
"with the correct values.")
self._first_dataset_ini = False
output += "cosmicsDecoMode = DUMMY_DECO_MODE_FLAG\n"
output += "cosmicsZeroTesla = DUMMY_ZERO_TESLA_FLAG\n"
output += "\n"
return output
def _create_json_file(self, name, first, last = None):
"""
Create JSON file with `name` covering runs from `first` to `last`. If a
global JSON is provided, the resulting file is the intersection of the
file created here and the global one.
Returns the name of the created JSON file.
Arguments:
- `name`: name of the creted JSON file
- `first`: first run covered by the JSON file
- `last`: last run covered by the JSON file
"""
if last is None: last = self._max_run
name += "_JSON.txt"
print_msg("Creating JSON file: "+name)
json_file = LumiList.LumiList(runs = range(first, last+1))
if self._args.json:
global_json = LumiList.LumiList(filename = self._args.json)
json_file = json_file & global_json
json_file.writeJSON(os.path.join(self._output_dir, name))
return name
def _get_track_collection(self, edm_file):
"""Extract track collection from given `edm_file`.
Arguments:
- `edm_file`: CMSSW dataset file
"""
# use global redirector to allow also files not yet at your site:
cmd = ["edmDumpEventContent", r"root://cms-xrd-global.cern.ch/"+edm_file]
try:
event_content = subprocess.check_output(cmd).split("\n")
except subprocess.CalledProcessError as e:
splitted = edm_file.split("/")
try:
alcareco = splitted[splitted.index("ALCARECO")+1].split("-")[0]
alcareco = alcareco.replace("TkAlCosmics0T", "TkAlCosmicsCTF0T")
alcareco = "ALCARECO" + alcareco
print_msg("\tDetermined track collection as '{}'.".format(alcareco))
return alcareco
except ValueError:
if "RECO" in splitted:
print_msg("\tDetermined track collection as 'generalTracks'.")
return "generalTracks"
else:
print_msg("\tCould not determine track collection "
"automatically.")
print_msg("\tPlease replace 'DUMMY_TRACK_COLLECTION' with "
"the correct value.")
return "DUMMY_TRACK_COLLECTION"
track_collections = []
for line in event_content:
splitted = line.split()
if len(splitted) > 0 and splitted[0] == r"vector<reco::Track>":
track_collections.append(splitted[1].strip().strip('"'))
if len(track_collections) == 0:
print_msg("No track collection found in file '{}'.".format(edm_file))
sys.exit(1)
elif len(track_collections) == 1:
print_msg("\tDetermined track collection as "
"'{}'.".format(track_collections[0]))
return track_collections[0]
else:
alcareco_tracks = filter(lambda x: x.startswith("ALCARECO"),
track_collections)
if len(alcareco_tracks) == 0 and "generalTracks" in track_collections:
print_msg("\tDetermined track collection as 'generalTracks'.")
return "generalTracks"
elif len(alcareco_tracks) == 1:
print_msg("\tDetermined track collection as "
"'{}'.".format(alcareco_tracks[0]))
return alcareco_tracks[0]
print_msg("\tCould not unambiguously determine track collection in "
"file '{}':".format(edm_file))
print_msg("\tPlease replace 'DUMMY_TRACK_COLLECTION' with "
"the correct value from the following list.")
for collection in track_collections:
print_msg("\t - "+collection)
return "DUMMY_TRACK_COLLECTION"
def _write_file_lists(self):
"""Write file lists to disk."""
self._create_dataset_txt(self._formatted_dataset, self._files_alignment)
self._create_hippy_txt(self._formatted_dataset, sum(self._hippy_jobs.values(), []))
self._create_dataset_cff(
"_".join(["Alignment", self._formatted_dataset]),
self._files_alignment)
self._create_dataset_cff(
"_".join(["Validation", self._formatted_dataset]),
self._files_validation)
if self._args.create_ini:
dataset_ini_general = "[general]\n"
dataset_ini_general += "datasetdir = {}\n".format(self._output_dir)
dataset_ini_general += ("json = {}\n\n".format(self._args.json)
if self._args.json
else "\n")
ini_path = self._formatted_dataset + ".ini"
print_msg("Creating dataset ini file: " + ini_path)
ini_path = os.path.join(self._output_dir, ini_path)
collection = self._get_track_collection(self._files[0])
with open(ini_path, "w") as f:
f.write(dataset_ini_general)
f.write(self._create_dataset_ini_section(
self._formatted_dataset, collection))
iov_wise_ini = dataset_ini_general
for i,iov in enumerate(sorted(self._iovs)):
iov_str = "since{0:d}".format(iov)
iov_str = "_".join([self._formatted_dataset, iov_str])
if self.rereco:
if i == len(self._iovs) - 1:
last = None
else:
last = sorted(self._iovs)[i+1] - 1
local_json = self._create_json_file(iov_str, iov, last)
else:
local_json = None
if self._args.create_ini:
iov_wise_ini += self._create_dataset_ini_section(iov_str,
collection,
local_json)
self._create_dataset_txt(iov_str,
self._iov_info_alignment[iov]["files"])
self._create_hippy_txt(iov_str, sum((self._hippy_jobs[dataset,iov] for dataset in self._datasets), []))
self._create_dataset_cff(
"_".join(["Alignment", iov_str]),
self._iov_info_alignment[iov]["files"],
json_file=local_json)
if (self._iov_info_validation[iov]["events"]
< self._args.minimum_events_validation):
continue
self._create_dataset_cff(
"_".join(["Validation", iov_str]),
self._iov_info_validation[iov]["files"],
json_file=local_json)
if self._args.create_ini and iov_wise_ini != dataset_ini_general:
ini_path = self._formatted_dataset + "_IOVs.ini"
print_msg("Creating dataset ini file: " + ini_path)
ini_path = os.path.join(self._output_dir, ini_path)
with open(ini_path, "w") as f: f.write(iov_wise_ini)
for run in sorted(self._run_info):
if args.rereco: continue #need to implement more jsons
if (self._run_info[run]["events"]
< self._args.minimum_events_validation):
continue
self._create_dataset_cff(
"_".join(["Validation", self._formatted_dataset, str(run)]),
self._run_info[run]["files"])
def _create_dataset_txt(self, name, file_list):
"""Write alignment file list to disk.
Arguments:
- `name`: name of the file list
- `file_list`: list of files to write to `name`
"""
name += ".txt"
print_msg("Creating dataset file list: "+name)
with open(os.path.join(self._output_dir, name), "w") as f:
f.write("\n".join(fileinfo.name for fileinfo in file_list))
def _create_hippy_txt(self, name, job_list):
name += "_hippy.txt"
print_msg("Creating dataset file list for HipPy: "+name)
with open(os.path.join(self._output_dir, name), "w") as f:
f.write("\n".join(",".join("'"+fileinfo.name+"'" for fileinfo in job) for job in job_list)+"\n")
def _create_dataset_cff(self, name, file_list, json_file = None):
"""
Create configuration fragment to define a dataset.
Arguments:
- `name`: name of the configuration fragment
- `file_list`: list of files to write to `name`
- `json_file`: JSON file to be used for this dataset (optional)
"""
if json_file is None: json_file = self._args.json # might still be None
if json_file is not None:
json_file = os.path.join(self._output_dir, json_file)
name = "_".join(["Dataset",name, "cff.py"])
print_msg("Creating dataset configuration fragment: "+name)
file_list_str = ""
for sub_list in get_chunks(file_list, 255):
file_list_str += ("readFiles.extend([\n'"+
"',\n'".join(fileinfo.name for fileinfo in sub_list)+
"'\n])\n")
fragment = FileListCreator._dataset_template.format(
lumi_def = ("import FWCore.PythonUtilities.LumiList as LumiList\n\n"
"lumiSecs = cms.untracked.VLuminosityBlockRange()\n"
"goodLumiSecs = LumiList.LumiList(filename = "
"'{0:s}').getCMSSWString().split(',')"
.format(json_file)
if json_file else ""),
lumi_arg = ("lumisToProcess = lumiSecs,\n "
if json_file else ""),
lumi_extend = "lumiSecs.extend(goodLumiSecs)" if json_file else "",
files = file_list_str)
with open(os.path.join(self._output_dir, name), "w") as f:
f.write(fragment)
_dataset_template = """\
import FWCore.ParameterSet.Config as cms
{lumi_def:s}
readFiles = cms.untracked.vstring()
source = cms.Source("PoolSource",
{lumi_arg:s}fileNames = readFiles)
{files:s}{lumi_extend:s}
maxEvents = cms.untracked.PSet(input = cms.untracked.int32(-1))
"""
class _DasCache(object):
"""Helper class to cache information from DAS requests."""
def __init__(self, file_list_id):
"""Constructor of the cache.
Arguments:
- `file_list_id`: ID of the cached file lists
"""
self._file_list_id = file_list_id
self._cache_file_name = os.path.join(file_list_id, ".das_cache.pkl")
self.reset()
def reset(self):
"""Reset the cache contents and the 'empty' flag."""
self._empty = True
self._events_in_dataset = 0
self._files = []
self._file_info = []
self._max_run = None
def set(self, total_events, file_list, file_info, max_run):
"""Set the content of the cache.
Arguments:
- `total_events`: total number of events in dataset
- `file_list`: list of files in dataset
- `file_info`: dictionary with numbers of events per file
- `max_run`: highest run number contained in the dataset
"""
self._events_in_dataset = total_events
self._files = file_list
self._file_info = file_info
self._max_run = max_run
self._empty = False
def get(self):
"""
Get the content of the cache as tuple:
result = (total number of events in dataset,
list of files in dataset,
dictionary with numbers of events and runs per file)
"""
return self._events_in_dataset, self._files, self._file_info, self._max_run
def load(self):
"""Loads the cached contents."""
if not self.empty:
print_msg("Overriding file information with cached information.")
try:
with open(self._cache_file_name, "rb") as f:
tmp_dict = cPickle.load(f)
self.__dict__.update(tmp_dict)
except IOError as e:
if e.args == (2, "No such file or directory"):
msg = "Failed to load cache for '{}'.".format(self._file_list_id)
if not self.empty:
msg += " Keeping the previous file information."
print_msg(msg)
else:
raise
def dump(self):
"""Dumps the contents to the cache file."""
if self.empty:
print_msg("Cache is empty. Not writing to file.")
return
with open(self._cache_file_name, "wb") as f:
cPickle.dump(self.__dict__, f, 2)
@property
def empty(self):
"""
Flag indicating whether the cache is empty or has been filled (possibly
with nothing).
"""
return self._empty
################################################################################
def das_client(query, check_key = None):
"""
Submit `query` to DAS client and handle possible errors.
Further treatment of the output might be necessary.
Arguments:
- `query`: DAS query
- `check_key`: optional key to be checked for; retriggers query if needed
"""
error = True
das_data = {'status': 'error'}
for i in range(5): # maximum of 5 tries
try:
das_data = cmssw_das_client.get_data(query, limit = 0)
except IOError as e:
if e.errno == 14: #https://stackoverflow.com/q/36397853/5228524
continue
except ValueError as e:
if str(e) == "No JSON object could be decoded":
das_data['reason'] = str(e)
continue
if das_data["status"] == "ok":
if das_data["nresults"] == 0 or check_key is None:
error = False
break
result_count = 0
for d in find_key(das_data["data"], [check_key]):
result_count += len(d)
if result_count == 0:
das_data["status"] = "error"
das_data["reason"] = ("DAS did not return required data.")
continue
else:
error = False
break
if das_data["status"] == "error":
print_msg("DAS query '{}' failed 5 times. "
"The last time for the the following reason:".format(query))
print(das_data.get("reason", "ERROR:UNKNOWN"))
sys.exit(1)
return das_data["data"]
def find_key(collection, key_chain):
"""Searches for `key` in `collection` and returns first corresponding value.
Arguments:
- `collection`: list of dictionaries
- `key_chain`: chain of keys to be searched for
"""
result = None
for i,key in enumerate(key_chain):
for item in collection:
if key in item:
if i == len(key_chain) - 1:
result = item[key]
else:
try:
result = find_key(item[key], key_chain[i+1:])
except LookupError:
pass # continue with next `item` in `collection`
else:
pass # continue with next `item` in `collection`
if result is not None: return result
raise LookupError(key_chain, collection) # put
def print_msg(text, line_break = True, log_file = None):
"""Formatted printing of `text`.
Arguments:
- `text`: string to be printed
"""
msg = " >>> " + str(text)
if line_break:
print(msg)
else:
print(msg, end=' ')
sys.stdout.flush()
if log_file:
with open(log_file, "a") as f: f.write(msg+"\n")
return msg
def get_runs(file_name):
"""
Try to guess the run number from `file_name`. If run could not be
determined, gets the run numbers from DAS (slow!)
Arguments:
- `file_name`: name of the considered file
"""
try:
return [int("".join(file_name.split("/")[-4:-2]))]
except ValueError:
query = "run file="+file_name+" system=dbs3"
return [int(_) for _ in find_key(das_client(query), ["run", "run_number"])]
def get_max_run(dataset_name):
"""Retrieve the maximum run number in `dataset_name`.
Arguments:
- `dataset_name`: name of the dataset
"""
data = das_client("run dataset={0:s} system=dbs3".format(dataset_name))
runs = [f["run"][0]["run_number"] for f in data]
return max(runs)
def get_files(dataset_name):
"""Retrieve list of files in `dataset_name`.
Arguments:
- `dataset_name`: name of the dataset
"""
data = das_client(("file dataset={0:s} system=dbs3 detail=True | "+
"grep file.name, file.nevents > 0").format(dataset_name),
"file")
return [find_key(f["file"], ["name"]) for f in data]
def get_datasets(dataset_pattern):
"""Retrieve list of dataset matching `dataset_pattern`.
Arguments:
- `dataset_pattern`: pattern of dataset names
"""
data = das_client("dataset dataset={0:s} system=dbs3 detail=True"
"| grep dataset.name".format(dataset_pattern), "dataset")
return sorted(set([find_key(f["dataset"], ["name"]) for f in data]))
def get_events_per_dataset(dataset_name):
"""Retrieve the number of a events in `dataset_name`.
Arguments:
- `dataset_name`: name of a dataset
"""
return _get_events("dataset", dataset_name)
def get_events_per_file(file_name):
"""Retrieve the number of a events in `file_name`.
Arguments:
- `file_name`: name of a dataset file
"""
return _get_events("file", file_name)
def _get_events(entity, name):
"""Retrieve the number of events from `entity` called `name`.
Arguments:
- `entity`: type of entity
- `name`: name of entity
"""
data = das_client("{0:s}={1:s} system=dbs3 detail=True | grep {0:s}.nevents"
.format(entity, name), entity)
return int(find_key(data, [entity, "nevents"]))
def _get_properties(name, entity, properties, filters = None, sub_entity = None,
aggregators = None):
"""Retrieve `properties` from `entity` called `name`.
Arguments:
- `name`: name of entity
- `entity`: type of entity
- `properties`: list of property names
- `filters`: list of filters on properties
- `sub_entity`: type of entity from which to extract the properties;
defaults to `entity`
- `aggregators`: additional aggregators/filters to amend to query
"""
if sub_entity is None: sub_entity = entity
if filters is None: filters = []
props = ["{0:s}.{1:s}".format(sub_entity,prop.split()[0])
for prop in properties]
conditions = ["{0:s}.{1:s}".format(sub_entity, filt)
for filt in filters]
add_ons = "" if aggregators is None else " | "+" | ".join(aggregators)
data = das_client("{0:s} {1:s}={2:s} system=dbs3 detail=True | grep {3:s}{4:s}"
.format(sub_entity, entity, name,
", ".join(props+conditions), add_ons), sub_entity)
return [[find_key(f[sub_entity], [prop]) for prop in properties] for f in data]
def get_file_info(dataset):
result = _get_properties(name=dataset,
properties = ["name", "nevents"],
filters = ["nevents > 0"],
entity = "dataset",
sub_entity = "file")
return [(dataset, name, nevents) for name, nevents in result]
FileInfo = collections.namedtuple("FileInfo", "dataset name nevents runs")
def _make_file_info(dataset_name_nevents):
return FileInfo(*dataset_name_nevents, runs=get_runs(dataset_name_nevents[1]))
def get_chunks(long_list, chunk_size):
"""
Generates list of sub-lists of `long_list` with a maximum size of
`chunk_size`.
Arguments:
- `long_list`: original list
- `chunk_size`: maximum size of created sub-lists
"""
for i in range(0, len(long_list), chunk_size):
yield long_list[i:i+chunk_size]
def merge_strings(strings):
"""Merge strings in `strings` into a common string.
Arguments:
- `strings`: list of strings
"""
if type(strings) == str:
return strings
elif len(strings) == 0:
return ""
elif len(strings) == 1:
return strings[0]
elif len(strings) == 2:
first = strings[0]
second = strings[1]
else:
first = merge_strings(strings[:-1])
second = strings[-1]
merged_string = ""
blocks = difflib.SequenceMatcher(None, first, second).get_matching_blocks()
last_i, last_j, last_n = 0, 0, 0
for i, j, n in blocks:
merged_string += first[last_i+last_n:i]
merged_string += second[last_j+last_n:j]
merged_string += first[i:i+n]
last_i, last_j, last_n = i, j, n
return str(merged_string)
################################################################################
if __name__ == "__main__":
try:
main()
except KeyboardInterrupt:
pass
|