Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
#include <memory>

// Framework
#include "FWCore/Utilities/interface/Exception.h"
#include "FWCore/MessageLogger/interface/MessageLogger.h"

#include "CondFormats/Alignment/interface/Alignments.h"
#include "CondFormats/Alignment/interface/AlignmentErrorsExtended.h"
#include "DataFormats/GeometryCommonDetAlgo/interface/AlignmentPositionError.h"
#include "Geometry/CommonDetUnit/interface/GeomDet.h"

#include "Alignment/CommonAlignment/interface/AlignableComposite.h"

//__________________________________________________________________________________________________
AlignableComposite::AlignableComposite(const GeomDet* geomDet)
    : Alignable(geomDet->geographicalId().rawId(), geomDet->surface()), theStructureType(align::AlignableDet) {
  compConstraintType_ = Alignable::CompConstraintType::POSITION;
}

//__________________________________________________________________________________________________
AlignableComposite::AlignableComposite(align::ID id, StructureType type, const RotationType& rot)
    : Alignable(id, rot), theStructureType(type) {
  compConstraintType_ = Alignable::CompConstraintType::POSITION;
}

//__________________________________________________________________________________________________
AlignableComposite::~AlignableComposite() {
  for (unsigned int i = 0; i < theComponents.size(); ++i)
    delete theComponents[i];
}

//__________________________________________________________________________________________________
void AlignableComposite::update(const GeomDet* geomDet) {
  if (!geomDet) {
    throw cms::Exception("Alignment") << "@SUB=AlignableComposite::update\n"
                                      << "Trying to update with GeomDet* pointing to 'nullptr'.";
  }

  Alignable::update(geomDet->geographicalId().rawId(), geomDet->surface());
}

//__________________________________________________________________________________________________
void AlignableComposite::update(align::ID id, StructureType type, const RotationType& rot) {
  if (theStructureType != type) {
    throw cms::Exception("Alignment") << "@SUB=AlignableComposite::update\n"
                                      << "Current alignable type does not match type of the update.";
  }
  // composite's position is already updated by components, i.e. it needs to be kept
  Alignable::update(id, AlignableSurface{this->globalPosition(), rot});
}

//__________________________________________________________________________________________________
void AlignableComposite::addComponent(Alignable* ali) {
  const auto& newComps = ali->deepComponents();

  theDeepComponents.insert(theDeepComponents.end(), newComps.begin(), newComps.end());

  Scalar k = static_cast<Scalar>(newComps.size()) / theDeepComponents.size();

  theSurface.move((ali->globalPosition() - globalPosition()) * k);

  ali->setMother(this);
  theComponents.push_back(ali);
}

//__________________________________________________________________________________________________
void AlignableComposite::recursiveComponents(Alignables& result) const {
  const auto& components = this->components();
  if (this->alignableObjectId() == align::AlignableDet &&
      components.size() <= 1) {  // Non-glued AlignableDets (still) contain themselves
    return;                      // (would be better to implement AlignableDet::recursiveComponents!)
  }
  for (const auto& iter : components) {
    result.push_back(iter);  // could use std::copy(..), but here we build a real hierarchy
    iter->recursiveComponents(result);
  }
}

//__________________________________________________________________________________________________
void AlignableComposite::move(const GlobalVector& displacement) {
  // Move components
  for (const auto& i : this->components())
    i->move(displacement);

  // Move surface
  this->addDisplacement(displacement);
  theSurface.move(displacement);
}

//__________________________________________________________________________________________________
void AlignableComposite::moveComponentsLocal(const LocalVector& localDisplacement) {
  this->move(this->surface().toGlobal(localDisplacement));
}

//__________________________________________________________________________________________________
void AlignableComposite::moveComponentLocal(const int i, const LocalVector& localDisplacement) {
  if (i >= size())
    throw cms::Exception("LogicError") << "AlignableComposite index (" << i << ") out of range";

  const auto& comp = this->components();
  comp[i]->move(this->surface().toGlobal(localDisplacement));
}

//__________________________________________________________________________________________________
/// Rotation intepreted such, that the orientation of the rotation
/// axis is w.r.t. to the global coordinate system. This, however, does NOT
/// mean the center of the rotation. This is simply taken as the center of
/// the Alignable-object
void AlignableComposite::rotateInGlobalFrame(const RotationType& rotation) {
  const auto& comp = this->components();

  PositionType myPosition = this->globalPosition();

  for (const auto& i : comp) {
    // It is much simpler to calculate the local position given in coordinates
    // of the GLOBAL frame and then just apply the rotation matrix given in the
    // GLOBAL frame as well. ONLY this is somewhat tricky... as Teddy's frames
    // don't like this kind of mixing...

    // Rotations are defined for "Basic3DVector" types, without any FrameTAG,
    // because Rotations usually switch between different frames. You get
    // this by using the method .basicVector()

    // localPosition = globalPosition (Component) - globalPosition(Composite)
    // moveVector = rotated localPosition  - original localposition
    // LocalVector localPositionVector = (**i).globalPosition()-myPosition;

    // Local Position given in coordinates of the GLOBAL Frame
    const GlobalVector localPositionVector = i->globalPosition() - myPosition;
    const GlobalVector::BasicVectorType& lpvgf = localPositionVector.basicVector();

    // rotate with GLOBAL rotation matrix  and subtract => moveVector in
    // global Coordinates
    // apparently... you have to use the inverse of the rotation here
    // (rotate the VECTOR rather than the frame)
    GlobalVector moveVector(rotation.multiplyInverse(lpvgf) - lpvgf);

    i->move(moveVector);
    i->rotateInGlobalFrame(rotation);
  }

  this->addRotation(rotation);

  theSurface.rotate(rotation);
}

//__________________________________________________________________________________________________
void AlignableComposite::setAlignmentPositionError(const AlignmentPositionError& ape, bool propagateDown) {
  // Since no geomDet is attached, alignable composites do not have an APE
  // The APE is, therefore, just propagated down
  if (!propagateDown)
    return;

  for (const auto& i : this->components()) {
    i->setAlignmentPositionError(ape, propagateDown);
  }
}

//__________________________________________________________________________________________________
void AlignableComposite::addAlignmentPositionError(const AlignmentPositionError& ape, bool propagateDown) {
  // Since no geomDet is attached, alignable composites do not have an APE
  // The APE is, therefore, just propagated down
  if (!propagateDown)
    return;

  for (const auto& i : this->components()) {
    i->addAlignmentPositionError(ape, propagateDown);
  }
}

//__________________________________________________________________________________________________
/// Adds the AlignmentPositionError (in x,y,z coordinates) that would result
/// on the various components from a possible Rotation of a composite the
/// rotation matrix is in interpreted in GLOBAL coordinates
void AlignableComposite::addAlignmentPositionErrorFromRotation(const RotationType& rotation, bool propagateDown) {
  if (!propagateDown)
    return;

  PositionType myPosition = this->globalPosition();

  for (const auto& i : this->components()) {
    // It is just similar to to the "movement" that results to the components
    // when the composite is rotated.
    // Local Position given in coordinates of the GLOBAL Frame
    const GlobalVector localPositionVector = i->globalPosition() - myPosition;
    const GlobalVector::BasicVectorType& lpvgf = localPositionVector.basicVector();

    // rotate with GLOBAL rotation matrix  and subtract => moveVector in global coordinates
    // apparently... you have to use the inverse of the rotation here
    // (rotate the VECTOR rather than the frame)
    GlobalVector moveVector(rotation.multiplyInverse(lpvgf) - lpvgf);

    AlignmentPositionError ape(moveVector.x(), moveVector.y(), moveVector.z());
    i->addAlignmentPositionError(ape, propagateDown);
    i->addAlignmentPositionErrorFromRotation(rotation, propagateDown);
  }
}

//__________________________________________________________________________________________________
/// Adds the AlignmentPositionError (in x,y,z coordinates) that would result
/// on the various components from a possible Rotation of a composite the
/// rotation matrix is in interpreted in LOCAL  coordinates of the composite
void AlignableComposite::addAlignmentPositionErrorFromLocalRotation(const RotationType& rot, bool propagateDown) {
  // if (!propagateDown) return; // No! Cannot yet jump out since
  // addAlignmentPositionErrorFromRotation(..) below might be overwritten in derived
  // classes to do something on 'this' (and in fact does so in AlignableDet).

  RotationType globalRot = globalRotation().multiplyInverse(rot * globalRotation());
  this->addAlignmentPositionErrorFromRotation(globalRot, propagateDown);
}

//__________________________________________________________________________________________________
void AlignableComposite::setSurfaceDeformation(const SurfaceDeformation* deformation, bool propagateDown) {
  // Only DetUnits have surface deformations.
  // The parameters are, therefore, just propagated down.
  if (!propagateDown)
    return;

  for (const auto& i : this->components()) {
    i->setSurfaceDeformation(deformation, propagateDown);
  }
}

//__________________________________________________________________________________________________
void AlignableComposite::addSurfaceDeformation(const SurfaceDeformation* deformation, bool propagateDown) {
  // Only DetUnits have surface deformations.
  // The parameters are, therefore, just propagated down.
  if (!propagateDown)
    return;

  for (const auto& i : this->components()) {
    i->addSurfaceDeformation(deformation, propagateDown);
  }
}

//__________________________________________________________________________________________________
void AlignableComposite::dump(void) const {
  // A simple printout method. Could be specialized in the implementation classes.

  const auto& comp = this->components();

  // Dump this
  edm::LogInfo("AlignableDump") << " Alignable of type " << this->alignableObjectId() << " has " << comp.size()
                                << " components" << std::endl
                                << " position = " << this->globalPosition() << ", orientation:" << std::endl
                                << this->globalRotation();

  // Dump components
  for (const auto& i : comp)
    i->dump();
}

//__________________________________________________________________________________________________
Alignments* AlignableComposite::alignments(void) const {
  // Recursively call alignments, until we get to an AlignableDetUnit

  Alignments* m_alignments = new Alignments();

  // Add components recursively
  for (const auto& i : this->components()) {
    std::unique_ptr<Alignments> tmpAlignments{i->alignments()};
    std::copy(tmpAlignments->m_align.begin(), tmpAlignments->m_align.end(), std::back_inserter(m_alignments->m_align));
  }

  return m_alignments;
}

//__________________________________________________________________________________________________
AlignmentErrorsExtended* AlignableComposite::alignmentErrors(void) const {
  // Recursively call alignmentsErrors, until we get to an AlignableDetUnit

  AlignmentErrorsExtended* m_alignmentErrors = new AlignmentErrorsExtended();

  // Add components recursively
  for (const auto& i : this->components()) {
    std::unique_ptr<AlignmentErrorsExtended> tmpAlignmentErrorsExtended{i->alignmentErrors()};
    std::copy(tmpAlignmentErrorsExtended->m_alignError.begin(),
              tmpAlignmentErrorsExtended->m_alignError.end(),
              std::back_inserter(m_alignmentErrors->m_alignError));
  }

  return m_alignmentErrors;
}

//__________________________________________________________________________________________________
int AlignableComposite::surfaceDeformationIdPairs(std::vector<std::pair<int, SurfaceDeformation*> >& result) const {
  int count = 0;

  // Add components recursively
  for (const auto& i : this->components()) {
    count += i->surfaceDeformationIdPairs(result);
  }

  return count;
}