1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
|
#include <memory>
#include <cctype>
#include "CLHEP/Random/DRand48Engine.h"
#include "CLHEP/Random/RandGauss.h"
#include "CLHEP/Random/Randomize.h"
#include "DataFormats/GeometryCommonDetAlgo/interface/AlignmentPositionError.h"
#include "FWCore/AbstractServices/interface/RandomNumberGenerator.h"
#include "FWCore/ServiceRegistry/interface/Service.h"
#include "FWCore/MessageLogger/interface/MessageLogger.h"
#include "FWCore/ParameterSet/interface/ParameterSet.h"
#include "Alignment/CommonAlignment/interface/AlignableComposite.h"
#include "Alignment/CommonAlignment/interface/AlignableModifier.h"
#include "Geometry/CommonTopologies/interface/SurfaceDeformationFactory.h"
#include "Geometry/CommonTopologies/interface/SurfaceDeformation.h"
//__________________________________________________________________________________________________
AlignableModifier::AlignableModifier(void)
: distribution_(""),
random_(false),
gaussian_(false),
setError_(false),
setRotations_(false),
setTranslations_(false),
seed_(0),
scaleError_(0.),
scale_(0.),
phiX_(0.),
phiY_(0.),
phiZ_(0.),
phiXlocal_(0.),
phiYlocal_(0.),
phiZlocal_(0.),
dX_(0.),
dY_(0.),
dZ_(0.),
dXlocal_(0.),
dYlocal_(0.),
dZlocal_(0.),
twist_(0.),
shear_(0.) {
theDRand48Engine = new CLHEP::DRand48Engine();
}
//__________________________________________________________________________________________________
AlignableModifier::~AlignableModifier() { delete theDRand48Engine; }
//__________________________________________________________________________________________________
void AlignableModifier::init_(void) {
// Initialize all known parameters (according to ORCA's MisalignmentScenario.cc)
distribution_ = ""; // Switch for distributions ("fixed","flat","gaussian")
setError_ = false; // Apply alignment errors
setRotations_ = true; // Apply rotations
setTranslations_ = true; // Apply translations
scale_ = 1.; // Scale to apply to all movements
scaleError_ = 1.; // Scale to apply to alignment errors
phiX_ = 0.; // Rotation angle around X [rad]
phiY_ = 0.; // Rotation angle around Y [rad]
phiZ_ = 0.; // Rotation angle around Z [rad]
phiXlocal_ = 0.; // Local rotation angle around X [rad]
phiYlocal_ = 0.; // Local rotation angle around Y [rad]
phiZlocal_ = 0.; // Local rotation angle around Z [rad]
dX_ = 0.; // X displacement [cm]
dY_ = 0.; // Y displacement [cm]
dZ_ = 0.; // Z displacement [cm]
dXlocal_ = 0.; // Local X displacement [cm]
dYlocal_ = 0.; // Local Y displacement [cm]
dZlocal_ = 0.; // Local Z displacement [cm]
deformation_.first.clear(); // SurfaceDeformation: type
deformation_.second.clear(); //SurfaceDeformation: parameter vector
twist_ = 0.; // Twist angle [rad]
shear_ = 0.; // Shear angle [rad]
// These are set through 'distribution'
random_ = true; // Use random distributions
gaussian_ = true; // Use gaussian distribution (otherwise flat)
}
//__________________________________________________________________________________________________
// Return true if given parameter name should be propagated down
bool AlignableModifier::isPropagated(const std::string& parameterName) const {
if (parameterName == "distribution" || parameterName == "setError" || parameterName == "scaleError" ||
parameterName == "setRotations" || parameterName == "setTranslations" || parameterName == "scale")
return true;
return false;
}
//__________________________________________________________________________________________________
/// All known parameters and defaults are defined here! Returns true if modification actually applied.
bool AlignableModifier::modify(Alignable* alignable, const edm::ParameterSet& pSet) {
// Initialize parameters
this->init_();
int rotX_ = 0, rotY_ = 0, rotZ_ = 0; // To check correct backward compatibility
// Reset counter
m_modified = 0;
// Retrieve parameters
std::ostringstream error;
std::vector<std::string> parameterNames = pSet.getParameterNames();
for (std::vector<std::string>::iterator iParam = parameterNames.begin(); iParam != parameterNames.end(); ++iParam) {
if ((*iParam) == "distribution")
distribution_ = pSet.getParameter<std::string>(*iParam);
else if ((*iParam) == "setError")
setError_ = pSet.getParameter<bool>(*iParam);
else if ((*iParam) == "setRotations")
setRotations_ = pSet.getParameter<bool>(*iParam);
else if ((*iParam) == "setTranslations")
setTranslations_ = pSet.getParameter<bool>(*iParam);
else if ((*iParam) == "scale")
scale_ = pSet.getParameter<double>(*iParam);
else if ((*iParam) == "scaleError")
scaleError_ = pSet.getParameter<double>(*iParam);
else if ((*iParam) == "phiX")
phiX_ = pSet.getParameter<double>(*iParam);
else if ((*iParam) == "phiY")
phiY_ = pSet.getParameter<double>(*iParam);
else if ((*iParam) == "phiZ")
phiZ_ = pSet.getParameter<double>(*iParam);
else if ((*iParam) == "dX")
dX_ = pSet.getParameter<double>(*iParam);
else if ((*iParam) == "dY")
dY_ = pSet.getParameter<double>(*iParam);
else if ((*iParam) == "dZ")
dZ_ = pSet.getParameter<double>(*iParam);
else if ((*iParam) == "dXlocal")
dXlocal_ = pSet.getParameter<double>(*iParam);
else if ((*iParam) == "dYlocal")
dYlocal_ = pSet.getParameter<double>(*iParam);
else if ((*iParam) == "dZlocal")
dZlocal_ = pSet.getParameter<double>(*iParam);
else if ((*iParam) == "twist")
twist_ = pSet.getParameter<double>(*iParam);
else if ((*iParam) == "shear")
shear_ = pSet.getParameter<double>(*iParam);
else if ((*iParam) == "localX") {
phiXlocal_ = pSet.getParameter<double>(*iParam);
rotX_++;
} else if ((*iParam) == "localY") {
phiYlocal_ = pSet.getParameter<double>(*iParam);
rotY_++;
} else if ((*iParam) == "localZ") {
phiZlocal_ = pSet.getParameter<double>(*iParam);
rotZ_++;
} else if ((*iParam) == "phiXlocal") {
phiXlocal_ = pSet.getParameter<double>(*iParam);
rotX_++;
} else if ((*iParam) == "phiYlocal") {
phiYlocal_ = pSet.getParameter<double>(*iParam);
rotY_++;
} else if ((*iParam) == "phiZlocal") {
phiZlocal_ = pSet.getParameter<double>(*iParam);
rotZ_++;
} else if ((*iParam) == "deformation") {
const edm::ParameterSet deform(pSet.getParameter<edm::ParameterSet>(*iParam));
deformation_.first = deform.getParameter<std::string>("type");
deformation_.second = deform.getParameter<std::vector<double> >("parameters");
} else if (pSet.existsAs<edm::ParameterSet>(*iParam)) {
// Other PSets than 'deformation' must refer to hierarchy structures, i.e. their name
// is a level name followed by 's' or ending with a digit (see
// MisalignmentScenarioBuilder::getParameterSet_). Pitfall is to forget the trailing 's'!
// 'Muon' is an especially allowed case used in MuonScenarioBuilder::moveMuon(..),
// also check that we do not have any mistyping like 'deformations' or 'deformation2'
const auto lastCharacter = (iParam->empty() ? '_' : (*iParam)[iParam->size() - 1]);
if ((lastCharacter != 's' && !isdigit(lastCharacter) && (*iParam) != "Muon") ||
iParam->find("deformation") != std::string::npos) {
throw cms::Exception("BadConfig") << "@SUB=AlignableModifier::modify(..):\n"
<< "I see parameter '" << *iParam << "' of type PSet, "
<< "but expect either 'deformation' or a level name "
<< "with 's' or a digit at the end.\n";
} // other PSets should now be hierarchy levels and thus be OK to ignore here
} else {
if (error.str().empty())
error << "Unknown parameter name(s): ";
error << " " << *iParam;
}
}
// Check if both 'localN' and 'phiNlocal' have been used
if (rotX_ == 2)
throw cms::Exception("BadConfig") << "Found both localX and phiXlocal";
if (rotY_ == 2)
throw cms::Exception("BadConfig") << "Found both localY and phiYlocal";
if (rotZ_ == 2)
throw cms::Exception("BadConfig") << "Found both localZ and phiZlocal";
// Check error
if (!error.str().empty())
throw cms::Exception("BadConfig") << error.str();
// Decode distribution
this->setDistribution(distribution_);
//if (scale_) { NO! Different random sequence if only parts scale to zero!
// Apply displacements
if (std::abs(dX_) + std::abs(dY_) + std::abs(dZ_) > 0 && setTranslations_)
this->moveAlignable(alignable, random_, gaussian_, scale_ * dX_, scale_ * dY_, scale_ * dZ_);
// Apply local displacements
if (std::abs(dXlocal_) + std::abs(dYlocal_) + std::abs(dZlocal_) > 0 && setTranslations_)
this->moveAlignableLocal(alignable, random_, gaussian_, scale_ * dXlocal_, scale_ * dYlocal_, scale_ * dZlocal_);
// Apply rotations
if (std::abs(phiX_) + std::abs(phiY_) + std::abs(phiZ_) > 0 && setRotations_)
this->rotateAlignable(alignable, random_, gaussian_, scale_ * phiX_, scale_ * phiY_, scale_ * phiZ_);
// Apply local rotations
if (std::abs(phiXlocal_) + std::abs(phiYlocal_) + std::abs(phiZlocal_) > 0 && setRotations_)
this->rotateAlignableLocal(
alignable, random_, gaussian_, scale_ * phiXlocal_, scale_ * phiYlocal_, scale_ * phiZlocal_);
// Apply twist
if (std::abs(twist_) > 0)
edm::LogError("NotImplemented") << "Twist is not implemented yet";
// Apply shear
if (std::abs(shear_) > 0)
edm::LogError("NotImplemented") << "Shear is not implemented yet";
if (!deformation_.first.empty()) {
this->addDeformation(alignable, deformation_, random_, gaussian_, scale_);
}
// Apply error - first add scale_ to error
scaleError_ *= scale_;
if (setError_ && scaleError_) {
// Alignment Position Error for flat distribution: 1 sigma
if (!gaussian_)
scaleError_ *= 0.68;
// Error on displacement
if (std::abs(dX_) + std::abs(dY_) + std::abs(dZ_) > 0 && setTranslations_)
this->addAlignmentPositionError(alignable, scaleError_ * dX_, scaleError_ * dY_, scaleError_ * dZ_);
// Error on local displacements
if (std::abs(dXlocal_) + std::abs(dYlocal_) + std::abs(dZlocal_) > 0 && setTranslations_)
this->addAlignmentPositionErrorLocal(
alignable, scaleError_ * dXlocal_, scaleError_ * dYlocal_, scaleError_ * dZlocal_);
// Error on rotations
if (std::abs(phiX_) + std::abs(phiY_) + std::abs(phiZ_) > 0 && setRotations_)
this->addAlignmentPositionErrorFromRotation(
alignable, scaleError_ * phiX_, scaleError_ * phiY_, scaleError_ * phiZ_);
// Error on local rotations
if (std::abs(phiXlocal_) + std::abs(phiYlocal_) + std::abs(phiZlocal_) > 0 && setRotations_)
this->addAlignmentPositionErrorFromLocalRotation(
alignable, scaleError_ * phiXlocal_, scaleError_ * phiYlocal_, scaleError_ * phiZlocal_);
// Do we need to add any APE for deformations?
// Probably we would do so if there wouldn't be data, but only MC to play with... ;-)
}
// } // end if (scale_)
return (m_modified > 0);
}
//__________________________________________________________________________________________________
void AlignableModifier::setDistribution(const std::string& distr) {
if (distr == "fixed")
random_ = false;
else if (distr == "flat") {
random_ = true;
gaussian_ = false;
} else if (distr == "gaussian") {
random_ = true;
gaussian_ = true;
}
}
//__________________________________________________________________________________________________
/// If 'seed' is zero, asks RandomNumberGenerator service.
void AlignableModifier::setSeed(const long seed) {
long m_seed;
if (seed > 0)
m_seed = seed;
else {
edm::Service<edm::RandomNumberGenerator> rng;
m_seed = rng->mySeed();
}
LogDebug("PrintArgs") << "Setting generator seed to " << m_seed;
theDRand48Engine->setSeed(m_seed);
}
//__________________________________________________________________________________________________
/// If 'random' is false, the given movements are strictly applied. Otherwise, a random
/// number is generated according to a gaussian or a flat distribution depending on 'gaussian'.
void AlignableModifier::moveAlignable(
Alignable* alignable, bool random, bool gaussian, float sigmaX, float sigmaY, float sigmaZ) {
std::ostringstream message;
// Get movement vector according to arguments
GlobalVector moveV(sigmaX, sigmaY, sigmaZ); // Default: fixed
if (random) {
std::vector<float> randomNumbers;
message << "random ";
if (gaussian) {
randomNumbers = this->gaussianRandomVector(sigmaX, sigmaY, sigmaZ);
message << "gaussian ";
} else {
randomNumbers = this->flatRandomVector(sigmaX, sigmaY, sigmaZ);
message << "flat ";
}
moveV = GlobalVector(randomNumbers[0], randomNumbers[1], randomNumbers[2]);
}
message << " move with sigma " << sigmaX << " " << sigmaY << " " << sigmaZ;
LogDebug("PrintArgs") << message.str(); // Arguments
LogDebug("PrintMovement") << "applied displacement: " << moveV; // Actual movements
alignable->move(moveV);
m_modified++;
}
//__________________________________________________________________________________________________
/// If 'random' is false, the given movements are strictly applied. Otherwise, a random
/// number is generated according to a gaussian or a flat distribution depending on 'gaussian'.
void AlignableModifier::moveAlignableLocal(
Alignable* alignable, bool random, bool gaussian, float sigmaX, float sigmaY, float sigmaZ) {
std::ostringstream message;
// Get movement vector according to arguments
align::LocalVector moveV(sigmaX, sigmaY, sigmaZ); // Default: fixed
if (random) {
std::vector<float> randomNumbers;
message << "random ";
if (gaussian) {
randomNumbers = this->gaussianRandomVector(sigmaX, sigmaY, sigmaZ);
message << "gaussian ";
} else {
randomNumbers = this->flatRandomVector(sigmaX, sigmaY, sigmaZ);
message << "flat ";
}
moveV = align::LocalVector(randomNumbers[0], randomNumbers[1], randomNumbers[2]);
}
message << " move with sigma " << sigmaX << " " << sigmaY << " " << sigmaZ;
LogDebug("PrintArgs") << message.str(); // Arguments
LogDebug("PrintMovement") << "applied local displacement: " << moveV; // Actual movements
alignable->move(alignable->surface().toGlobal(moveV));
m_modified++;
}
//__________________________________________________________________________________________________
void AlignableModifier ::addDeformation(Alignable* alignable,
const AlignableModifier::DeformationMemberType& deformation,
bool random,
bool gaussian,
double scale) {
const SurfaceDeformationFactory::Type deformType =
SurfaceDeformationFactory::surfaceDeformationType(deformation.first);
// Scale and randomize
// (need a little hack since ySplit must not be treated)!
const bool rndNotLast = (deformType == SurfaceDeformationFactory::kTwoBowedSurfaces);
std::vector<double> rndDeformation(deformation.second.begin(), deformation.second.end() - (rndNotLast ? 1 : 0));
for (unsigned int i = 0; i < rndDeformation.size(); ++i) {
rndDeformation[i] *= scale;
}
if (random) {
this->randomise(rndDeformation, gaussian);
}
if (rndNotLast) { // put back ySplit at the end
rndDeformation.push_back(deformation.second.back());
}
// auto_ptr has exception safe delete (in contrast to bare pointer)
const std::unique_ptr<SurfaceDeformation> surfDef(SurfaceDeformationFactory::create(deformType, rndDeformation));
alignable->addSurfaceDeformation(surfDef.get(), true); // true to propagate down
++m_modified;
}
//__________________________________________________________________________________________________
/// If 'random' is false, the given rotations are strictly applied. Otherwise, a random
/// number is generated according to a gaussian or a flat distribution depending on 'gaussian'.
void AlignableModifier::rotateAlignable(
Alignable* alignable, bool random, bool gaussian, float sigmaPhiX, float sigmaPhiY, float sigmaPhiZ) {
std::ostringstream message;
// Get rotation vector according to arguments
GlobalVector rotV(sigmaPhiX, sigmaPhiY, sigmaPhiZ); // Default: fixed
if (random) {
std::vector<float> randomNumbers;
message << "random ";
if (gaussian) {
randomNumbers = this->gaussianRandomVector(sigmaPhiX, sigmaPhiY, sigmaPhiZ);
message << "gaussian ";
} else {
randomNumbers = flatRandomVector(sigmaPhiX, sigmaPhiY, sigmaPhiZ);
message << "flat ";
}
rotV = GlobalVector(randomNumbers[0], randomNumbers[1], randomNumbers[2]);
}
message << "global rotation by angles " << sigmaPhiX << " " << sigmaPhiY << " " << sigmaPhiZ;
LogDebug("PrintArgs") << message.str(); // Arguments
LogDebug("PrintMovement") << "applied rotation angles: " << rotV; // Actual movements
if (std::abs(sigmaPhiX))
alignable->rotateAroundGlobalX(rotV.x());
if (std::abs(sigmaPhiY))
alignable->rotateAroundGlobalY(rotV.y());
if (std::abs(sigmaPhiZ))
alignable->rotateAroundGlobalZ(rotV.z());
m_modified++;
}
//__________________________________________________________________________________________________
/// If 'random' is false, the given rotations are strictly applied. Otherwise, a random
/// number is generated according to a gaussian or a flat distribution depending on 'gaussian'.
void AlignableModifier::rotateAlignableLocal(
Alignable* alignable, bool random, bool gaussian, float sigmaPhiX, float sigmaPhiY, float sigmaPhiZ) {
std::ostringstream message;
// Get rotation vector according to arguments
align::LocalVector rotV(sigmaPhiX, sigmaPhiY, sigmaPhiZ); // Default: fixed
if (random) {
std::vector<float> randomNumbers;
message << "random ";
if (gaussian) {
randomNumbers = this->gaussianRandomVector(sigmaPhiX, sigmaPhiY, sigmaPhiZ);
message << "gaussian ";
} else {
randomNumbers = flatRandomVector(sigmaPhiX, sigmaPhiY, sigmaPhiZ);
message << "flat ";
}
rotV = align::LocalVector(randomNumbers[0], randomNumbers[1], randomNumbers[2]);
}
message << "local rotation by angles " << sigmaPhiX << " " << sigmaPhiY << " " << sigmaPhiZ;
LogDebug("PrintArgs") << message.str(); // Arguments
LogDebug("PrintMovement") << "applied local rotation angles: " << rotV; // Actual movements
if (std::abs(sigmaPhiX))
alignable->rotateAroundLocalX(rotV.x());
if (std::abs(sigmaPhiY))
alignable->rotateAroundLocalY(rotV.y());
if (std::abs(sigmaPhiZ))
alignable->rotateAroundLocalZ(rotV.z());
m_modified++;
}
//__________________________________________________________________________________________________
const std::vector<float> AlignableModifier::gaussianRandomVector(float sigmaX, float sigmaY, float sigmaZ) const {
// Get absolute value if negative arguments
if (sigmaX < 0) {
edm::LogWarning("BadConfig") << " taking absolute value for gaussian sigma_x";
sigmaX = std::abs(sigmaX);
}
if (sigmaY < 0) {
edm::LogWarning("BadConfig") << " taking absolute value for gaussian sigma_y";
sigmaY = std::abs(sigmaY);
}
if (sigmaZ < 0) {
edm::LogWarning("BadConfig") << " taking absolute value for gaussian sigma_z";
sigmaZ = std::abs(sigmaZ);
}
// Pass by reference, otherwise pointer is deleted!
CLHEP::RandGauss aGaussObjX(*theDRand48Engine, 0., sigmaX);
CLHEP::RandGauss aGaussObjY(*theDRand48Engine, 0., sigmaY);
CLHEP::RandGauss aGaussObjZ(*theDRand48Engine, 0., sigmaZ);
std::vector<float> randomVector;
randomVector.push_back(aGaussObjX.fire());
randomVector.push_back(aGaussObjY.fire());
randomVector.push_back(aGaussObjZ.fire());
return randomVector;
}
//__________________________________________________________________________________________________
const std::vector<float> AlignableModifier::flatRandomVector(float sigmaX, float sigmaY, float sigmaZ) const {
// Get absolute value if negative arguments
if (sigmaX < 0) {
edm::LogWarning("BadConfig") << " taking absolute value for flat sigma_x";
sigmaX = std::abs(sigmaX);
}
if (sigmaY < 0) {
edm::LogWarning("BadConfig") << " taking absolute value for flat sigma_y";
sigmaY = std::abs(sigmaY);
}
if (sigmaZ < 0) {
edm::LogWarning("BadConfig") << " taking absolute value for flat sigma_z";
sigmaZ = std::abs(sigmaZ);
}
CLHEP::RandFlat aFlatObjX(*theDRand48Engine, -sigmaX, sigmaX);
CLHEP::RandFlat aFlatObjY(*theDRand48Engine, -sigmaY, sigmaY);
CLHEP::RandFlat aFlatObjZ(*theDRand48Engine, -sigmaZ, sigmaZ);
std::vector<float> randomVector;
randomVector.push_back(aFlatObjX.fire());
randomVector.push_back(aFlatObjY.fire());
randomVector.push_back(aFlatObjZ.fire());
return randomVector;
}
//__________________________________________________________________________________________________
void AlignableModifier::randomise(std::vector<double>& rnd, bool gaussian) const {
for (unsigned int i = 0; i < rnd.size(); ++i) {
if (rnd[i] < 0.) {
edm::LogWarning("BadConfig") << " taking absolute value to randomise " << i;
rnd[i] = std::abs(rnd[i]);
}
if (gaussian) {
CLHEP::RandGauss aGaussObj(*theDRand48Engine, 0., rnd[i]);
rnd[i] = aGaussObj.fire();
} else {
CLHEP::RandFlat aFlatObj(*theDRand48Engine, -rnd[i], rnd[i]);
rnd[i] = aFlatObj.fire();
}
}
}
//__________________________________________________________________________________________________
void AlignableModifier::addAlignmentPositionError(Alignable* alignable, float dx, float dy, float dz) {
LogDebug("PrintArgs") << "Adding an AlignmentPositionError of size " << dx << " " << dy << " " << dz;
AlignmentPositionError ape(dx, dy, dz);
alignable->addAlignmentPositionError(ape, true);
}
//__________________________________________________________________________________________________
void AlignableModifier::addAlignmentPositionErrorLocal(Alignable* alignable, float dx, float dy, float dz) {
LogDebug("PrintArgs") << "Adding a local AlignmentPositionError of size " << dx << " " << dy << " " << dz;
AlgebraicSymMatrix as(3, 0); //3x3, zeroed
as[0][0] = dx * dx;
as[1][1] = dy * dy;
as[2][2] = dz * dz; //diagonals
align::RotationType rt = alignable->globalRotation(); //get rotation
AlgebraicMatrix am(3, 3);
am[0][0] = rt.xx();
am[0][1] = rt.xy();
am[0][2] = rt.xz();
am[1][0] = rt.yx();
am[1][1] = rt.yy();
am[1][2] = rt.yz();
am[2][0] = rt.zx();
am[2][1] = rt.zy();
am[2][2] = rt.zz();
as = as.similarityT(am); //rotate error matrix
GlobalError ge(asSMatrix<3>(as));
GlobalErrorExtended gee(ge.cxx(),
ge.cyx(),
ge.czx(),
0.,
0.,
0.,
ge.cyy(),
ge.czy(),
0.,
0.,
0.,
ge.czz(),
0.,
0.,
0.,
0.,
0.,
0.,
0.,
0.,
0.);
AlignmentPositionError ape(gee);
alignable->addAlignmentPositionError(ape, true); // propagate down to components
}
//__________________________________________________________________________________________________
void AlignableModifier::addAlignmentPositionErrorFromRotation(Alignable* alignable, float phiX, float phiY, float phiZ) {
align::RotationType rotx(Basic3DVector<float>(1.0, 0.0, 0.0), phiX);
align::RotationType roty(Basic3DVector<float>(0.0, 1.0, 0.0), phiY);
align::RotationType rotz(Basic3DVector<float>(0.0, 0.0, 1.0), phiZ);
align::RotationType rot = rotz * roty * rotx;
this->addAlignmentPositionErrorFromRotation(alignable, rot);
}
//__________________________________________________________________________________________________
void AlignableModifier::addAlignmentPositionErrorFromLocalRotation(Alignable* alignable,
float phiX,
float phiY,
float phiZ) {
align::RotationType rotx(Basic3DVector<float>(1.0, 0.0, 0.0), phiX);
align::RotationType roty(Basic3DVector<float>(0.0, 1.0, 0.0), phiY);
align::RotationType rotz(Basic3DVector<float>(0.0, 0.0, 1.0), phiZ);
align::RotationType rot = rotz * roty * rotx;
this->addAlignmentPositionErrorFromLocalRotation(alignable, rot);
}
//__________________________________________________________________________________________________
void AlignableModifier::addAlignmentPositionErrorFromRotation(Alignable* alignable, align::RotationType& rotation) {
LogDebug("PrintArgs") << "Adding an AlignmentPositionError from Rotation" << std::endl << rotation;
alignable->addAlignmentPositionErrorFromRotation(rotation, true); // propagate down to components
}
//__________________________________________________________________________________________________
void AlignableModifier::addAlignmentPositionErrorFromLocalRotation(Alignable* alignable,
align::RotationType& rotation) {
LogDebug("PrintArgs") << "Adding an AlignmentPositionError from Local Rotation" << std::endl << rotation;
// true: propagate down to components
alignable->addAlignmentPositionErrorFromLocalRotation(rotation, true);
}
|