Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
#include "Alignment/CommonAlignment/interface/Alignable.h"
#include "Alignment/CommonAlignment/interface/AlignmentParameters.h"
#include "Alignment/CommonAlignment/interface/SurveyDet.h"
#include "DataFormats/Math/interface/Matrix.h"
#include "FWCore/Utilities/interface/Exception.h"

#include "Alignment/CommonAlignment/interface/SurveyResidual.h"

using namespace align;

SurveyResidual::SurveyResidual(const Alignable& ali, StructureType type, bool bias)
    : theMother(nullptr), theSurface(ali.surface()), theSelector(ali.alignmentParameters()->selector()) {
  // Find mother matching given type

  theMother = &ali;  // start finding from this alignable

  while (theMother->alignableObjectId() != type) {
    theMother = theMother->mother();  // move up a level

    if (!theMother)
      return;
    //     {
    //       throw cms::Exception("ConfigError")
    // 	<< "Alignable (id = " << ali.geomDetId().rawId()
    // 	<< ") does not belong to a composite of type " << type;
    //     }
  }

  if (!theMother->mother()) {
    throw cms::Exception("ConfigError") << "The type " << type << " does not have a survey residual defined!\n"
                                        << "You have probably set the highest hierarchy. Choose a lower level.";
  }

  findSisters(theMother, bias);

  if (theSisters.empty()) {
    throw cms::Exception("ConfigError") << "You are finding an unbiased residual of an alignable "
                                        << " (id = " << ali.geomDetId().rawId() << ") which has no sister. Abort!";
  }

  calculate(ali);
}

AlgebraicVector SurveyResidual::sensorResidual() const {
  std::vector<Scalar> pars;  // selected parameters

  pars.reserve(AlignParams::kSize);

  // Find linear displacements.

  align::LocalVector deltaR = theSurface.toLocal(theCurrentVs[0] - theNominalVs[0]);

  if (theSelector[0])
    pars.push_back(deltaR.x());
  if (theSelector[1])
    pars.push_back(deltaR.y());
  if (theSelector[2])
    pars.push_back(deltaR.z());

  // Match the centers of current and nominal surfaces to find the angular
  // displacements about the center. Only do this if angular dof are selected.

  if (theSelector[3] || theSelector[4] || theSelector[5]) {
    GlobalVectors nominalVs = theNominalVs;
    GlobalVectors currentVs = theCurrentVs;

    for (unsigned int j = 0; j < nominalVs.size(); ++j) {
      nominalVs[j] -= theNominalVs[0];  // move to nominal pos
      currentVs[j] -= theCurrentVs[0];  // move to current pos
    }

    RotationType rot = diffRot(nominalVs, currentVs);  // frame rotation

    EulerAngles deltaW = toAngles(theSurface.toLocal(rot));

    if (theSelector[3])
      pars.push_back(deltaW(1));
    if (theSelector[4])
      pars.push_back(deltaW(2));
    if (theSelector[5])
      pars.push_back(deltaW(3));
  }

  AlgebraicVector deltaRW(pars.size());  // (deltaR, deltaW)

  for (unsigned int j = 0; j < pars.size(); ++j)
    deltaRW(j + 1) = pars[j];

  return deltaRW;
}

LocalVectors SurveyResidual::pointsResidual() const {
  LocalVectors residuals;

  unsigned int nPoint = theNominalVs.size();

  residuals.reserve(nPoint);

  for (unsigned int j = 0; j < nPoint; ++j) {
    residuals.push_back(theSurface.toLocal(theCurrentVs[j] - theNominalVs[j]));
  }

  return residuals;
}

AlgebraicSymMatrix SurveyResidual::inverseCovariance() const {
  if (theSelector.size() != ErrorMatrix::kRows) {
    throw cms::Exception("LogicError") << "Mismatched number of dof between ErrorMatrix and Selector.";
  }

  std::vector<unsigned int> indices;  // selected indices

  indices.reserve(ErrorMatrix::kRows);

  for (unsigned int i = 0; i < ErrorMatrix::kRows; ++i)
    if (theSelector[i])
      indices.push_back(i);

  AlgebraicSymMatrix invCov(indices.size());

  for (unsigned int i = 0; i < indices.size(); ++i)
    for (unsigned int j = 0; j <= i; ++j)
      invCov.fast(i + 1, j + 1) = theCovariance(indices[i], indices[j]);

  int fail(0);
  invCov.invert(fail);

  if (fail) {
    throw cms::Exception("ConfigError") << "Cannot invert survey error " << invCov;
  }

  return invCov;
}

void SurveyResidual::findSisters(const Alignable* ali, bool bias) {
  theSisters.clear();
  theSisters.reserve(1000);

  const auto& comp = ali->mother()->components();

  unsigned int nComp = comp.size();

  for (unsigned int i = 0; i < nComp; ++i) {
    const Alignable* dau = comp[i];

    if (dau != ali || bias)
      theSisters.insert(theSisters.end(), dau->deepComponents().begin(), dau->deepComponents().end());
    //     if (dau != ali || bias) theSisters.push_back(dau);
  }
}

void SurveyResidual::calculate(const Alignable& ali) {
  unsigned int nSister = theSisters.size();

  // First get sisters' positions

  std::vector<const PositionType*> nominalSisPos;  // nominal sisters' pos
  std::vector<const PositionType*> currentSisPos;  // current sisters' pos

  nominalSisPos.reserve(nSister);
  currentSisPos.reserve(nSister);

  for (unsigned int i = 0; i < nSister; ++i) {
    const Alignable* sis = theSisters[i];
    const SurveyDet* survey = sis->survey();

    if (!survey) {
      throw cms::Exception("ConfigError") << "No survey info is found for Alignable "
                                          << " (id = " << sis->geomDetId().rawId() << "). Abort!";
    }

    nominalSisPos.push_back(&survey->position());
    currentSisPos.push_back(&sis->globalPosition());
  }

  // Then find mother's position using sisters' positions

  PositionType nominalMomPos = motherPosition(nominalSisPos);
  PositionType currentMomPos = motherPosition(currentSisPos);

  // Now find rotation from nominal mother to current mother

  GlobalVectors nominalSisVs;  // nominal sisters' pos from mother's pos
  GlobalVectors currentSisVs;  // current sisters' pos from mother's pos

  for (unsigned int i = 0; i < nSister; ++i) {
    const Alignable* sis = theSisters[i];

    const GlobalPoints& nominalSisPoints = sis->survey()->globalPoints();
    const GlobalPoints& currentSisPoints = sis->surface().toGlobal(sis->survey()->localPoints());

    for (unsigned int j = 0; j < nominalSisPoints.size(); ++j) {
      nominalSisVs.push_back(nominalSisPoints[j] - *nominalSisPos[i]);
      currentSisVs.push_back(currentSisPoints[j] - *currentSisPos[i]);
      //       nominalSisVs.push_back(nominalSisPoints[j] - nominalMomPos);
      //       currentSisVs.push_back(currentSisPoints[j] - currentMomPos);
    }
  }

  RotationType toCurrent = diffRot(currentSisVs, nominalSisVs);

  // Finally shift and rotate nominal sensor to current sensor

  const SurveyDet* survey = ali.survey();

  if (!survey) {
    throw cms::Exception("ConfigError") << "No survey info is found for Alignable "
                                        << " (id = " << ali.geomDetId().rawId() << "). Abort!";
  }

  const GlobalPoints& nominalPoints = survey->globalPoints();
  const GlobalPoints& currentPoints = theSurface.toGlobal(survey->localPoints());

  for (unsigned int j = 0; j < nominalPoints.size(); ++j) {
    align::GlobalVector nv = nominalPoints[j] - nominalMomPos;

    theNominalVs.push_back(align::GlobalVector(toCurrent * nv.basicVector()));
    theCurrentVs.push_back(currentPoints[j] - currentMomPos);
  }

  // Find the covariance

  const RotationType& currentFrame = ali.globalRotation();

  for (const Alignable* a = &ali; a != theMother->mother(); a = a->mother()) {
    RotationType deltaR = currentFrame * a->survey()->rotation().transposed();

    math::Matrix<6, 6>::type jac;  // 6 by 6 Jacobian init to 0

    jac(0, 0) = deltaR.xx();
    jac(0, 1) = deltaR.xy();
    jac(0, 2) = deltaR.xz();
    jac(1, 0) = deltaR.yx();
    jac(1, 1) = deltaR.yy();
    jac(1, 2) = deltaR.yz();
    jac(2, 0) = deltaR.zx();
    jac(2, 1) = deltaR.zy();
    jac(2, 2) = deltaR.zz();
    jac(3, 3) = deltaR.xx();
    jac(3, 4) = deltaR.xy();
    jac(3, 5) = deltaR.xz();
    jac(4, 3) = deltaR.yx();
    jac(4, 4) = deltaR.yy();
    jac(4, 5) = deltaR.yz();
    jac(5, 3) = deltaR.zx();
    jac(5, 4) = deltaR.zy();
    jac(5, 5) = deltaR.zz();

    theCovariance += ROOT::Math::Similarity(jac, a->survey()->errors());
  }
}

// AlgebraicMatrix SurveyResidual::errorTransform(const RotationType& initialFrame,
// 					       const RotationType& currentFrame) const
// {
// //   align::EulerAngles angles = align::toAngles(r);

// //   align::Scalar s1 = std::sin(angles[0]), c1 = std::cos(angles[0]);
// //   align::Scalar s2 = std::sin(angles[1]), c2 = std::cos(angles[1]);
// //   align::Scalar s3 = std::sin(angles[2]), c3 = std::cos(angles[2]);

//   AlgebraicMatrix drdw(9, 3, 0); // 9 by 3 Jacobian init to 0

// //   drdw(1, 1) =  0;
// //   drdw(1, 2) =  -s2 * c3;
// //   drdw(1, 3) =  c2 * -s3;
// //   drdw(2, 1) =  -s1 * s3 + c1 * s2 * c3;
// //   drdw(2, 2) =  s1 * c2 * c3;
// //   drdw(2, 3) =  c1 * c3 - s1 * s2 * s3;
// //   drdw(3, 1) =  c1 * s3 + s1 * s2 * c3;
// //   drdw(3, 2) =  -c1 * c2 * c3;
// //   drdw(3, 3) =  s1 * c3 + c1 * s2 * s3;
// //   drdw(4, 1) =  0;
// //   drdw(4, 2) =  s2 * s3;
// //   drdw(4, 3) =  -c2 * c3;
// //   drdw(5, 1) =  -s1 * c3 - c1 * s2 * s3;
// //   drdw(5, 2) =  -s1 * c2 * s3;
// //   drdw(5, 3) =  c1 * -s3 - s1 * s2 * c3;
// //   drdw(6, 1) =  c1 * c3 - s1 * s2 * s3;
// //   drdw(6, 2) =  c1 * c2 * s3;
// //   drdw(6, 3) =  s1 * -s3 + c1 * s2 * c3;
// //   drdw(7, 1) =  0;
// //   drdw(7, 2) =  c2;
// //   drdw(7, 3) =  0;
// //   drdw(8, 1) =  -c1 * c2;
// //   drdw(8, 2) =  s1 * s2;
// //   drdw(8, 3) =  0;
// //   drdw(9, 1) =  -s1 * c2;
// //   drdw(9, 2) =  c1 * -s2;
// //   drdw(9, 3) =  0;
//   drdw(2, 3) = drdw(6, 1) = drdw(7, 2) =  1;
//   drdw(3, 2) = drdw(4, 3) = drdw(8, 1) = -1;

//   align::RotationType deltaR = initialFrame * currentFrame.transposed();

//   AlgebraicMatrix dRdr(9, 9, 0); // 9 by 9 Jacobian init to 0

//   dRdr(1, 1) = deltaR.xx(); dRdr(1, 2) = deltaR.yx(); dRdr(1, 3) = deltaR.zx();
//   dRdr(2, 1) = deltaR.xy(); dRdr(2, 2) = deltaR.yy(); dRdr(2, 3) = deltaR.zy();
//   dRdr(3, 1) = deltaR.xz(); dRdr(3, 2) = deltaR.yz(); dRdr(3, 3) = deltaR.zz();
//   dRdr(4, 4) = deltaR.xx(); dRdr(4, 5) = deltaR.yx(); dRdr(4, 6) = deltaR.zx();
//   dRdr(5, 4) = deltaR.xy(); dRdr(5, 5) = deltaR.yy(); dRdr(5, 6) = deltaR.zy();
//   dRdr(6, 4) = deltaR.xz(); dRdr(6, 5) = deltaR.yz(); dRdr(6, 6) = deltaR.zz();
//   dRdr(7, 7) = deltaR.xx(); dRdr(7, 8) = deltaR.yx(); dRdr(7, 9) = deltaR.zx();
//   dRdr(8, 7) = deltaR.xy(); dRdr(8, 8) = deltaR.yy(); dRdr(8, 9) = deltaR.zy();
//   dRdr(9, 7) = deltaR.xz(); dRdr(9, 8) = deltaR.yz(); dRdr(9, 9) = deltaR.zz();

// //   align::RotationType R = r * deltaR;

//   AlgebraicMatrix dWdR(3, 9, 0); // 3 by 9 Jacobian init to 0

//   align::Scalar R11 = deltaR.xx(), R21 = deltaR.yx();
//   align::Scalar R31 = deltaR.zx(), R32 = deltaR.zy(), R33 = deltaR.zz();

//   align::Scalar den1 = R32 * R32 + R33 * R33;
//   align::Scalar den3 = R11 * R11 + R21 * R21;

//   dWdR(1, 8) = -R33 / den1; dWdR(1, 9) = R32 / den1;
//   dWdR(2, 7) = 1 / std::sqrt(1 - R31 * R31);
//   dWdR(3, 1) = R21 / den3; dWdR(3, 4) = -R11 / den3;

//   AlgebraicMatrix dPdp(6, 6, 0);

//   dPdp(1, 1) = deltaR.xx(); dPdp(1, 2) = deltaR.xy(); dPdp(1, 3) = deltaR.xz();
//   dPdp(2, 1) = deltaR.yx(); dPdp(2, 2) = deltaR.yy(); dPdp(2, 3) = deltaR.yz();
//   dPdp(3, 1) = deltaR.zx(); dPdp(3, 2) = deltaR.zy(); dPdp(3, 3) = deltaR.zz();

//   dPdp.sub(4, 4, dWdR * dRdr * drdw);

//   return dPdp;
// }