1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
|
#include "Alignment/CommonAlignment/interface/Alignable.h"
#include "Alignment/CommonAlignment/interface/AlignmentParameters.h"
#include "Alignment/CommonAlignment/interface/SurveyDet.h"
#include "DataFormats/Math/interface/Matrix.h"
#include "FWCore/Utilities/interface/Exception.h"
#include "Alignment/CommonAlignment/interface/SurveyResidual.h"
using namespace align;
SurveyResidual::SurveyResidual(const Alignable& ali, StructureType type, bool bias)
: theMother(nullptr), theSurface(ali.surface()), theSelector(ali.alignmentParameters()->selector()) {
// Find mother matching given type
theMother = &ali; // start finding from this alignable
while (theMother->alignableObjectId() != type) {
theMother = theMother->mother(); // move up a level
if (!theMother)
return;
// {
// throw cms::Exception("ConfigError")
// << "Alignable (id = " << ali.geomDetId().rawId()
// << ") does not belong to a composite of type " << type;
// }
}
if (!theMother->mother()) {
throw cms::Exception("ConfigError") << "The type " << type << " does not have a survey residual defined!\n"
<< "You have probably set the highest hierarchy. Choose a lower level.";
}
findSisters(theMother, bias);
if (theSisters.empty()) {
throw cms::Exception("ConfigError") << "You are finding an unbiased residual of an alignable "
<< " (id = " << ali.geomDetId().rawId() << ") which has no sister. Abort!";
}
calculate(ali);
}
AlgebraicVector SurveyResidual::sensorResidual() const {
std::vector<Scalar> pars; // selected parameters
pars.reserve(AlignParams::kSize);
// Find linear displacements.
align::LocalVector deltaR = theSurface.toLocal(theCurrentVs[0] - theNominalVs[0]);
if (theSelector[0])
pars.push_back(deltaR.x());
if (theSelector[1])
pars.push_back(deltaR.y());
if (theSelector[2])
pars.push_back(deltaR.z());
// Match the centers of current and nominal surfaces to find the angular
// displacements about the center. Only do this if angular dof are selected.
if (theSelector[3] || theSelector[4] || theSelector[5]) {
GlobalVectors nominalVs = theNominalVs;
GlobalVectors currentVs = theCurrentVs;
for (unsigned int j = 0; j < nominalVs.size(); ++j) {
nominalVs[j] -= theNominalVs[0]; // move to nominal pos
currentVs[j] -= theCurrentVs[0]; // move to current pos
}
RotationType rot = diffRot(nominalVs, currentVs); // frame rotation
EulerAngles deltaW = toAngles(theSurface.toLocal(rot));
if (theSelector[3])
pars.push_back(deltaW(1));
if (theSelector[4])
pars.push_back(deltaW(2));
if (theSelector[5])
pars.push_back(deltaW(3));
}
AlgebraicVector deltaRW(pars.size()); // (deltaR, deltaW)
for (unsigned int j = 0; j < pars.size(); ++j)
deltaRW(j + 1) = pars[j];
return deltaRW;
}
LocalVectors SurveyResidual::pointsResidual() const {
LocalVectors residuals;
unsigned int nPoint = theNominalVs.size();
residuals.reserve(nPoint);
for (unsigned int j = 0; j < nPoint; ++j) {
residuals.push_back(theSurface.toLocal(theCurrentVs[j] - theNominalVs[j]));
}
return residuals;
}
AlgebraicSymMatrix SurveyResidual::inverseCovariance() const {
if (theSelector.size() != ErrorMatrix::kRows) {
throw cms::Exception("LogicError") << "Mismatched number of dof between ErrorMatrix and Selector.";
}
std::vector<unsigned int> indices; // selected indices
indices.reserve(ErrorMatrix::kRows);
for (unsigned int i = 0; i < ErrorMatrix::kRows; ++i)
if (theSelector[i])
indices.push_back(i);
AlgebraicSymMatrix invCov(indices.size());
for (unsigned int i = 0; i < indices.size(); ++i)
for (unsigned int j = 0; j <= i; ++j)
invCov.fast(i + 1, j + 1) = theCovariance(indices[i], indices[j]);
int fail(0);
invCov.invert(fail);
if (fail) {
throw cms::Exception("ConfigError") << "Cannot invert survey error " << invCov;
}
return invCov;
}
void SurveyResidual::findSisters(const Alignable* ali, bool bias) {
theSisters.clear();
theSisters.reserve(1000);
const auto& comp = ali->mother()->components();
unsigned int nComp = comp.size();
for (unsigned int i = 0; i < nComp; ++i) {
const Alignable* dau = comp[i];
if (dau != ali || bias)
theSisters.insert(theSisters.end(), dau->deepComponents().begin(), dau->deepComponents().end());
// if (dau != ali || bias) theSisters.push_back(dau);
}
}
void SurveyResidual::calculate(const Alignable& ali) {
unsigned int nSister = theSisters.size();
// First get sisters' positions
std::vector<const PositionType*> nominalSisPos; // nominal sisters' pos
std::vector<const PositionType*> currentSisPos; // current sisters' pos
nominalSisPos.reserve(nSister);
currentSisPos.reserve(nSister);
for (unsigned int i = 0; i < nSister; ++i) {
const Alignable* sis = theSisters[i];
const SurveyDet* survey = sis->survey();
if (!survey) {
throw cms::Exception("ConfigError") << "No survey info is found for Alignable "
<< " (id = " << sis->geomDetId().rawId() << "). Abort!";
}
nominalSisPos.push_back(&survey->position());
currentSisPos.push_back(&sis->globalPosition());
}
// Then find mother's position using sisters' positions
PositionType nominalMomPos = motherPosition(nominalSisPos);
PositionType currentMomPos = motherPosition(currentSisPos);
// Now find rotation from nominal mother to current mother
GlobalVectors nominalSisVs; // nominal sisters' pos from mother's pos
GlobalVectors currentSisVs; // current sisters' pos from mother's pos
for (unsigned int i = 0; i < nSister; ++i) {
const Alignable* sis = theSisters[i];
const GlobalPoints& nominalSisPoints = sis->survey()->globalPoints();
const GlobalPoints& currentSisPoints = sis->surface().toGlobal(sis->survey()->localPoints());
for (unsigned int j = 0; j < nominalSisPoints.size(); ++j) {
nominalSisVs.push_back(nominalSisPoints[j] - *nominalSisPos[i]);
currentSisVs.push_back(currentSisPoints[j] - *currentSisPos[i]);
// nominalSisVs.push_back(nominalSisPoints[j] - nominalMomPos);
// currentSisVs.push_back(currentSisPoints[j] - currentMomPos);
}
}
RotationType toCurrent = diffRot(currentSisVs, nominalSisVs);
// Finally shift and rotate nominal sensor to current sensor
const SurveyDet* survey = ali.survey();
if (!survey) {
throw cms::Exception("ConfigError") << "No survey info is found for Alignable "
<< " (id = " << ali.geomDetId().rawId() << "). Abort!";
}
const GlobalPoints& nominalPoints = survey->globalPoints();
const GlobalPoints& currentPoints = theSurface.toGlobal(survey->localPoints());
for (unsigned int j = 0; j < nominalPoints.size(); ++j) {
align::GlobalVector nv = nominalPoints[j] - nominalMomPos;
theNominalVs.push_back(align::GlobalVector(toCurrent * nv.basicVector()));
theCurrentVs.push_back(currentPoints[j] - currentMomPos);
}
// Find the covariance
const RotationType& currentFrame = ali.globalRotation();
for (const Alignable* a = &ali; a != theMother->mother(); a = a->mother()) {
RotationType deltaR = currentFrame * a->survey()->rotation().transposed();
math::Matrix<6, 6>::type jac; // 6 by 6 Jacobian init to 0
jac(0, 0) = deltaR.xx();
jac(0, 1) = deltaR.xy();
jac(0, 2) = deltaR.xz();
jac(1, 0) = deltaR.yx();
jac(1, 1) = deltaR.yy();
jac(1, 2) = deltaR.yz();
jac(2, 0) = deltaR.zx();
jac(2, 1) = deltaR.zy();
jac(2, 2) = deltaR.zz();
jac(3, 3) = deltaR.xx();
jac(3, 4) = deltaR.xy();
jac(3, 5) = deltaR.xz();
jac(4, 3) = deltaR.yx();
jac(4, 4) = deltaR.yy();
jac(4, 5) = deltaR.yz();
jac(5, 3) = deltaR.zx();
jac(5, 4) = deltaR.zy();
jac(5, 5) = deltaR.zz();
theCovariance += ROOT::Math::Similarity(jac, a->survey()->errors());
}
}
// AlgebraicMatrix SurveyResidual::errorTransform(const RotationType& initialFrame,
// const RotationType& currentFrame) const
// {
// // align::EulerAngles angles = align::toAngles(r);
// // align::Scalar s1 = std::sin(angles[0]), c1 = std::cos(angles[0]);
// // align::Scalar s2 = std::sin(angles[1]), c2 = std::cos(angles[1]);
// // align::Scalar s3 = std::sin(angles[2]), c3 = std::cos(angles[2]);
// AlgebraicMatrix drdw(9, 3, 0); // 9 by 3 Jacobian init to 0
// // drdw(1, 1) = 0;
// // drdw(1, 2) = -s2 * c3;
// // drdw(1, 3) = c2 * -s3;
// // drdw(2, 1) = -s1 * s3 + c1 * s2 * c3;
// // drdw(2, 2) = s1 * c2 * c3;
// // drdw(2, 3) = c1 * c3 - s1 * s2 * s3;
// // drdw(3, 1) = c1 * s3 + s1 * s2 * c3;
// // drdw(3, 2) = -c1 * c2 * c3;
// // drdw(3, 3) = s1 * c3 + c1 * s2 * s3;
// // drdw(4, 1) = 0;
// // drdw(4, 2) = s2 * s3;
// // drdw(4, 3) = -c2 * c3;
// // drdw(5, 1) = -s1 * c3 - c1 * s2 * s3;
// // drdw(5, 2) = -s1 * c2 * s3;
// // drdw(5, 3) = c1 * -s3 - s1 * s2 * c3;
// // drdw(6, 1) = c1 * c3 - s1 * s2 * s3;
// // drdw(6, 2) = c1 * c2 * s3;
// // drdw(6, 3) = s1 * -s3 + c1 * s2 * c3;
// // drdw(7, 1) = 0;
// // drdw(7, 2) = c2;
// // drdw(7, 3) = 0;
// // drdw(8, 1) = -c1 * c2;
// // drdw(8, 2) = s1 * s2;
// // drdw(8, 3) = 0;
// // drdw(9, 1) = -s1 * c2;
// // drdw(9, 2) = c1 * -s2;
// // drdw(9, 3) = 0;
// drdw(2, 3) = drdw(6, 1) = drdw(7, 2) = 1;
// drdw(3, 2) = drdw(4, 3) = drdw(8, 1) = -1;
// align::RotationType deltaR = initialFrame * currentFrame.transposed();
// AlgebraicMatrix dRdr(9, 9, 0); // 9 by 9 Jacobian init to 0
// dRdr(1, 1) = deltaR.xx(); dRdr(1, 2) = deltaR.yx(); dRdr(1, 3) = deltaR.zx();
// dRdr(2, 1) = deltaR.xy(); dRdr(2, 2) = deltaR.yy(); dRdr(2, 3) = deltaR.zy();
// dRdr(3, 1) = deltaR.xz(); dRdr(3, 2) = deltaR.yz(); dRdr(3, 3) = deltaR.zz();
// dRdr(4, 4) = deltaR.xx(); dRdr(4, 5) = deltaR.yx(); dRdr(4, 6) = deltaR.zx();
// dRdr(5, 4) = deltaR.xy(); dRdr(5, 5) = deltaR.yy(); dRdr(5, 6) = deltaR.zy();
// dRdr(6, 4) = deltaR.xz(); dRdr(6, 5) = deltaR.yz(); dRdr(6, 6) = deltaR.zz();
// dRdr(7, 7) = deltaR.xx(); dRdr(7, 8) = deltaR.yx(); dRdr(7, 9) = deltaR.zx();
// dRdr(8, 7) = deltaR.xy(); dRdr(8, 8) = deltaR.yy(); dRdr(8, 9) = deltaR.zy();
// dRdr(9, 7) = deltaR.xz(); dRdr(9, 8) = deltaR.yz(); dRdr(9, 9) = deltaR.zz();
// // align::RotationType R = r * deltaR;
// AlgebraicMatrix dWdR(3, 9, 0); // 3 by 9 Jacobian init to 0
// align::Scalar R11 = deltaR.xx(), R21 = deltaR.yx();
// align::Scalar R31 = deltaR.zx(), R32 = deltaR.zy(), R33 = deltaR.zz();
// align::Scalar den1 = R32 * R32 + R33 * R33;
// align::Scalar den3 = R11 * R11 + R21 * R21;
// dWdR(1, 8) = -R33 / den1; dWdR(1, 9) = R32 / den1;
// dWdR(2, 7) = 1 / std::sqrt(1 - R31 * R31);
// dWdR(3, 1) = R21 / den3; dWdR(3, 4) = -R11 / den3;
// AlgebraicMatrix dPdp(6, 6, 0);
// dPdp(1, 1) = deltaR.xx(); dPdp(1, 2) = deltaR.xy(); dPdp(1, 3) = deltaR.xz();
// dPdp(2, 1) = deltaR.yx(); dPdp(2, 2) = deltaR.yy(); dPdp(2, 3) = deltaR.yz();
// dPdp(3, 1) = deltaR.zx(); dPdp(3, 2) = deltaR.zy(); dPdp(3, 3) = deltaR.zz();
// dPdp.sub(4, 4, dWdR * dRdr * drdw);
// return dPdp;
// }
|