1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
|
/**
* \file AlignmentParameterStore.cc
*
* $Revision: 1.31 $
* $Date: 2011/05/23 20:50:32 $
* (last update by $Author: mussgill $)
*/
// This class's header should be first
#include "Alignment/CommonAlignmentAlgorithm/interface/AlignmentParameterStore.h"
#include "FWCore/MessageLogger/interface/MessageLogger.h"
#include "FWCore/Utilities/interface/Exception.h"
#include "FWCore/ParameterSet/interface/ParameterSet.h"
#include "Alignment/CommonAlignment/interface/Alignable.h"
#include "Alignment/CommonAlignment/interface/AlignableDetOrUnitPtr.h"
#include "Alignment/TrackerAlignment/interface/TrackerAlignableId.h"
#include "Alignment/CommonAlignmentParametrization/interface/RigidBodyAlignmentParameters.h"
#include "Alignment/CommonAlignmentParametrization/interface/ParametersToParametersDerivatives.h"
#include "Alignment/CommonAlignmentAlgorithm/interface/AlignmentExtendedCorrelationsStore.h"
#include "DataFormats/GeometryCommonDetAlgo/interface/AlignmentPositionError.h"
#include "Geometry/CommonTopologies/interface/SurfaceDeformation.h"
#include "Geometry/CommonTopologies/interface/SurfaceDeformationFactory.h"
//__________________________________________________________________________________________________
AlignmentParameterStore::AlignmentParameterStore(const align::Alignables& alis, const edm::ParameterSet& config)
: theAlignables(alis) {
if (config.getUntrackedParameter<bool>("UseExtendedCorrelations")) {
theCorrelationsStore =
new AlignmentExtendedCorrelationsStore(config.getParameter<edm::ParameterSet>("ExtendedCorrelationsConfig"));
} else {
theCorrelationsStore = new AlignmentCorrelationsStore();
}
edm::LogInfo("Alignment") << "@SUB=AlignmentParameterStore"
<< "Created with " << theAlignables.size() << " alignables.";
// set hierarchy vs averaging constraints
theTypeOfConstraints = NONE;
const std::string cfgStrTypeOfConstraints(config.getParameter<std::string>("TypeOfConstraints"));
if (cfgStrTypeOfConstraints == "hierarchy") {
theTypeOfConstraints = HIERARCHY_CONSTRAINTS;
} else if (cfgStrTypeOfConstraints == "approximate_averaging") {
theTypeOfConstraints = APPROX_AVERAGING_CONSTRAINTS;
edm::LogWarning("Alignment")
<< "@SUB=AlignmentParameterStore"
<< "\n\n\n******* WARNING ******************************************\n"
<< "Using approximate implementation of averaging constraints."
<< "This is not recommended."
<< "Consider to use 'hierarchy' constraints:"
<< " AlignmentProducer.ParameterStore.TypeOfConstraints = cms.string('hierarchy')\n\n\n";
} else {
edm::LogError("BadArgument") << "@SUB=AlignmentParameterStore"
<< "Unknown type of hierarchy constraints '" << cfgStrTypeOfConstraints << "'";
}
}
//__________________________________________________________________________________________________
AlignmentParameterStore::~AlignmentParameterStore() { delete theCorrelationsStore; }
//__________________________________________________________________________________________________
CompositeAlignmentParameters AlignmentParameterStore::selectParameters(
const std::vector<AlignableDet*>& alignabledets) const {
std::vector<AlignableDetOrUnitPtr> detOrUnits;
detOrUnits.reserve(alignabledets.size());
std::vector<AlignableDet*>::const_iterator it, iEnd;
for (it = alignabledets.begin(), iEnd = alignabledets.end(); it != iEnd; ++it)
detOrUnits.push_back(AlignableDetOrUnitPtr(*it));
return this->selectParameters(detOrUnits);
}
//__________________________________________________________________________________________________
CompositeAlignmentParameters AlignmentParameterStore::selectParameters(
const std::vector<AlignableDetOrUnitPtr>& alignabledets) const {
align::Alignables alignables;
std::map<AlignableDetOrUnitPtr, Alignable*> alidettoalimap;
std::map<Alignable*, int> aliposmap;
std::map<Alignable*, int> alilenmap;
int nparam = 0;
// iterate over AlignableDet's
for (std::vector<AlignableDetOrUnitPtr>::const_iterator iad = alignabledets.begin(); iad != alignabledets.end();
++iad) {
Alignable* ali = alignableFromAlignableDet(*iad);
if (ali) {
alidettoalimap[*iad] = ali; // Add to map
// Check if Alignable already there, insert into vector if not
if (find(alignables.begin(), alignables.end(), ali) == alignables.end()) {
alignables.push_back(ali);
AlignmentParameters* ap = ali->alignmentParameters();
nparam += ap->numSelected();
}
}
}
AlgebraicVector* selpar = new AlgebraicVector(nparam, 0);
AlgebraicSymMatrix* selcov = new AlgebraicSymMatrix(nparam, 0);
// Fill in parameters and corresponding covariance matricess
int ipos = 1; // NOTE: .sub indices start from 1
align::Alignables::const_iterator it1;
for (it1 = alignables.begin(); it1 != alignables.end(); ++it1) {
AlignmentParameters* ap = (*it1)->alignmentParameters();
selpar->sub(ipos, ap->selectedParameters());
selcov->sub(ipos, ap->selectedCovariance());
int npar = ap->numSelected();
aliposmap[*it1] = ipos;
alilenmap[*it1] = npar;
ipos += npar;
}
// Fill in the correlations. Has to be an extra loop, because the
// AlignmentExtendedCorrelationsStore (if used) needs the
// alignables' covariance matrices already present.
ipos = 1;
for (it1 = alignables.begin(); it1 != alignables.end(); ++it1) {
int jpos = 1;
// Look for correlations between alignables
align::Alignables::const_iterator it2;
for (it2 = alignables.begin(); it2 != it1; ++it2) {
theCorrelationsStore->correlations(*it1, *it2, *selcov, ipos - 1, jpos - 1);
jpos += (*it2)->alignmentParameters()->numSelected();
}
ipos += (*it1)->alignmentParameters()->numSelected();
}
AlignmentParametersData::DataContainer data(new AlignmentParametersData(selpar, selcov));
CompositeAlignmentParameters aap(data, alignables, alidettoalimap, aliposmap, alilenmap);
return aap;
}
//__________________________________________________________________________________________________
CompositeAlignmentParameters AlignmentParameterStore::selectParameters(const align::Alignables& alignables) const {
align::Alignables selectedAlignables;
std::map<AlignableDetOrUnitPtr, Alignable*> alidettoalimap; // This map won't be filled!!!
std::map<Alignable*, int> aliposmap;
std::map<Alignable*, int> alilenmap;
int nparam = 0;
// iterate over Alignable's
align::Alignables::const_iterator ita;
for (ita = alignables.begin(); ita != alignables.end(); ++ita) {
// Check if Alignable already there, insert into vector if not
if (find(selectedAlignables.begin(), selectedAlignables.end(), *ita) == selectedAlignables.end()) {
selectedAlignables.push_back(*ita);
AlignmentParameters* ap = (*ita)->alignmentParameters();
nparam += ap->numSelected();
}
}
AlgebraicVector* selpar = new AlgebraicVector(nparam, 0);
AlgebraicSymMatrix* selcov = new AlgebraicSymMatrix(nparam, 0);
// Fill in parameters and corresponding covariance matrices
int ipos = 1; // NOTE: .sub indices start from 1
align::Alignables::const_iterator it1;
for (it1 = selectedAlignables.begin(); it1 != selectedAlignables.end(); ++it1) {
AlignmentParameters* ap = (*it1)->alignmentParameters();
selpar->sub(ipos, ap->selectedParameters());
selcov->sub(ipos, ap->selectedCovariance());
int npar = ap->numSelected();
aliposmap[*it1] = ipos;
alilenmap[*it1] = npar;
ipos += npar;
}
// Fill in the correlations. Has to be an extra loop, because the
// AlignmentExtendedCorrelationsStore (if used) needs the
// alignables' covariance matrices already present.
ipos = 1;
for (it1 = selectedAlignables.begin(); it1 != selectedAlignables.end(); ++it1) {
int jpos = 1;
// Look for correlations between alignables
align::Alignables::const_iterator it2;
for (it2 = selectedAlignables.begin(); it2 != it1; ++it2) {
theCorrelationsStore->correlations(*it1, *it2, *selcov, ipos - 1, jpos - 1);
jpos += (*it2)->alignmentParameters()->numSelected();
}
ipos += (*it1)->alignmentParameters()->numSelected();
}
AlignmentParametersData::DataContainer data(new AlignmentParametersData(selpar, selcov));
CompositeAlignmentParameters aap(data, selectedAlignables, alidettoalimap, aliposmap, alilenmap);
return aap;
}
//__________________________________________________________________________________________________
void AlignmentParameterStore::updateParameters(const CompositeAlignmentParameters& aap, bool updateCorrelations) {
align::Alignables alignables = aap.components();
const AlgebraicVector& parameters = aap.parameters();
const AlgebraicSymMatrix& covariance = aap.covariance();
int ipos = 1; // NOTE: .sub indices start from 1
// Loop over alignables
for (align::Alignables::const_iterator it = alignables.begin(); it != alignables.end(); ++it) {
// Update parameters and local covariance
AlignmentParameters* ap = (*it)->alignmentParameters();
int nsel = ap->numSelected();
AlgebraicVector subvec = parameters.sub(ipos, ipos + nsel - 1);
AlgebraicSymMatrix subcov = covariance.sub(ipos, ipos + nsel - 1);
AlignmentParameters* apnew = ap->cloneFromSelected(subvec, subcov);
(*it)->setAlignmentParameters(apnew);
// Now update correlations between detectors
if (updateCorrelations) {
int jpos = 1;
for (align::Alignables::const_iterator it2 = alignables.begin(); it2 != it; ++it2) {
theCorrelationsStore->setCorrelations(*it, *it2, covariance, ipos - 1, jpos - 1);
jpos += (*it2)->alignmentParameters()->numSelected();
}
}
ipos += nsel;
}
}
//__________________________________________________________________________________________________
align::Alignables AlignmentParameterStore::validAlignables(void) const {
align::Alignables result;
for (align::Alignables::const_iterator iali = theAlignables.begin(); iali != theAlignables.end(); ++iali)
if ((*iali)->alignmentParameters()->isValid())
result.push_back(*iali);
LogDebug("Alignment") << "@SUB=AlignmentParameterStore::validAlignables"
<< "Valid alignables: " << result.size() << "out of " << theAlignables.size();
return result;
}
//__________________________________________________________________________________________________
Alignable* AlignmentParameterStore::alignableFromAlignableDet(const AlignableDetOrUnitPtr& _alignableDet) const {
AlignableDetOrUnitPtr alignableDet = _alignableDet;
Alignable* mother = alignableDet;
while (mother) {
if (mother->alignmentParameters())
return mother;
mother = mother->mother();
}
return nullptr;
}
//__________________________________________________________________________________________________
void AlignmentParameterStore::applyParameters(void) {
align::Alignables::const_iterator iali;
for (iali = theAlignables.begin(); iali != theAlignables.end(); ++iali)
applyParameters(*iali);
}
//__________________________________________________________________________________________________
void AlignmentParameterStore::applyParameters(Alignable* alignable) {
AlignmentParameters* pars = (alignable ? alignable->alignmentParameters() : nullptr);
if (!pars) {
throw cms::Exception("BadAlignable") << "applyParameters: provided alignable does not have alignment parameters";
}
pars->apply();
}
//__________________________________________________________________________________________________
void AlignmentParameterStore::resetParameters(void) {
// Erase contents of correlation map
theCorrelationsStore->resetCorrelations();
// Iterate over alignables in the store and reset parameters
align::Alignables::const_iterator iali;
for (iali = theAlignables.begin(); iali != theAlignables.end(); ++iali)
resetParameters(*iali);
}
//__________________________________________________________________________________________________
void AlignmentParameterStore::resetParameters(Alignable* ali) {
if (ali) {
// Get alignment parameters for this alignable
AlignmentParameters* ap = ali->alignmentParameters();
if (ap) {
int npar = ap->numSelected();
AlgebraicVector par(npar, 0);
AlgebraicSymMatrix cov(npar, 0);
AlignmentParameters* apnew = ap->cloneFromSelected(par, cov);
ali->setAlignmentParameters(apnew);
apnew->setValid(false);
} else
edm::LogError("BadArgument") << "@SUB=AlignmentParameterStore::resetParameters"
<< "alignable has no alignment parameter";
} else
edm::LogError("BadArgument") << "@SUB=AlignmentParameterStore::resetParameters"
<< "argument is NULL";
}
//__________________________________________________________________________________________________
void AlignmentParameterStore::cacheTransformations(void) {
align::Alignables::const_iterator iali;
for (iali = theAlignables.begin(); iali != theAlignables.end(); ++iali)
(*iali)->cacheTransformation();
}
//__________________________________________________________________________________________________
void AlignmentParameterStore::cacheTransformations(const align::RunNumber& run) {
for (const auto& iali : theAlignables)
iali->cacheTransformation(run);
}
//__________________________________________________________________________________________________
void AlignmentParameterStore::restoreCachedTransformations(void) {
align::Alignables::const_iterator iali;
for (iali = theAlignables.begin(); iali != theAlignables.end(); ++iali)
(*iali)->restoreCachedTransformation();
}
//__________________________________________________________________________________________________
void AlignmentParameterStore::restoreCachedTransformations(const align::RunNumber& run) {
for (const auto& iali : theAlignables)
iali->restoreCachedTransformation(run);
}
//__________________________________________________________________________________________________
void AlignmentParameterStore::acquireRelativeParameters(void) {
unsigned int nAlignables = theAlignables.size();
for (unsigned int i = 0; i < nAlignables; ++i) {
Alignable* ali = theAlignables[i];
RigidBodyAlignmentParameters* ap = dynamic_cast<RigidBodyAlignmentParameters*>(ali->alignmentParameters());
if (!ap)
throw cms::Exception("BadAlignable") << "acquireRelativeParameters: "
<< "provided alignable does not have rigid body alignment parameters";
AlgebraicVector par(ap->size(), 0);
AlgebraicSymMatrix cov(ap->size(), 0);
// Get displacement and transform global->local
align::LocalVector dloc = ali->surface().toLocal(ali->displacement());
par[0] = dloc.x();
par[1] = dloc.y();
par[2] = dloc.z();
// Transform to local euler angles
align::EulerAngles euloc = align::toAngles(ali->surface().toLocal(ali->rotation()));
par[3] = euloc(1);
par[4] = euloc(2);
par[5] = euloc(3);
// Clone parameters
RigidBodyAlignmentParameters* apnew = ap->clone(par, cov);
ali->setAlignmentParameters(apnew);
}
}
//__________________________________________________________________________________________________
// Get type/layer from Alignable
// type: -6 -5 -4 -3 -2 -1 1 2 3 4 5 6
// TEC- TOB- TID- TIB- PxEC- PxBR- PxBr+ PxEC+ TIB+ TID+ TOB+ TEC+
// Layers start from zero
std::pair<int, int> AlignmentParameterStore::typeAndLayer(const Alignable* ali, const TrackerTopology* tTopo) const {
return TrackerAlignableId().typeAndLayerFromDetId(ali->id(), tTopo);
}
//__________________________________________________________________________________________________
void AlignmentParameterStore::applyAlignableAbsolutePositions(const align::Alignables& alivec,
const AlignablePositions& newpos,
int& ierr) {
unsigned int nappl = 0;
ierr = 0;
// Iterate over list of alignables
for (align::Alignables::const_iterator iali = alivec.begin(); iali != alivec.end(); ++iali) {
Alignable* ali = *iali;
align::ID id = ali->id();
align::StructureType typeId = ali->alignableObjectId();
// Find corresponding entry in AlignablePositions
bool found = false;
for (AlignablePositions::const_iterator ipos = newpos.begin(); ipos != newpos.end(); ++ipos) {
if (id == ipos->id() && typeId == ipos->objId()) {
if (found) {
edm::LogError("DuplicatePosition") << "New positions for alignable found more than once!";
} else {
// New position/rotation
const align::PositionType& pnew = ipos->pos();
const align::RotationType& rnew = ipos->rot();
const std::vector<double>& dnew = ipos->deformationParameters();
// Current position / rotation
const align::PositionType& pold = ali->globalPosition();
const align::RotationType& rold = ali->globalRotation();
// Current surf. deformation
std::vector<std::pair<int, SurfaceDeformation*> > dold_id_pairs;
SurfaceDeformation* dold_obj = nullptr;
SurfaceDeformationFactory::Type dtype = SurfaceDeformationFactory::kNoDeformations;
std::vector<double> dold;
if (1 == ali->surfaceDeformationIdPairs(dold_id_pairs)) { // might not have any...
dold_obj = dold_id_pairs[0].second;
dold = dold_obj->parameters();
dtype = (SurfaceDeformationFactory::Type)dold_obj->type();
}
// shift needed to move from current to new position
align::GlobalVector posDiff = pnew - pold;
align::RotationType rotDiff = rold.multiplyInverse(rnew);
align::rectify(rotDiff); // correct for rounding errors
ali->move(posDiff);
ali->rotateInGlobalFrame(rotDiff);
LogDebug("NewPosition") << "moving by:" << posDiff;
LogDebug("NewRotation") << "rotating by:\n" << rotDiff;
// add the surface deformations
// If an old surface deformation record exists, ensure that the added deformation has the same type and size.
if (!dold.empty() && dtype != SurfaceDeformationFactory::kNoDeformations && dnew.size() == dold.size()) {
std::vector<double> defDiff;
defDiff.reserve(dold.size());
for (unsigned int i = 0; i < dold.size(); i++)
defDiff.push_back(dnew[i] - dold[i]);
auto deform = SurfaceDeformationFactory::create(dtype, defDiff);
edm::LogInfo("Alignment") << "@SUB=AlignmentParameterStore::applyAlignableAbsolutePositions"
<< "Adding surface deformation of type "
<< SurfaceDeformationFactory::surfaceDeformationTypeName(
(SurfaceDeformationFactory::Type)deform->type())
<< ", size " << defDiff.size() << " and first element " << defDiff.at(0)
<< " to alignable with id / type: " << id << " / " << typeId;
ali->addSurfaceDeformation(deform, true);
delete deform;
}
// In case no old surface deformation record exists, only ensure that the new surface deformation record has size>0. Size check is done elsewhere.
else if (!dnew.empty()) {
auto deform = SurfaceDeformationFactory::create(dnew);
edm::LogInfo("Alignment") << "@SUB=AlignmentParameterStore::applyAlignableAbsolutePositions"
<< "Setting surface deformation of type "
<< SurfaceDeformationFactory::surfaceDeformationTypeName(
(SurfaceDeformationFactory::Type)deform->type())
<< ", size " << dnew.size() << " and first element " << dnew.at(0)
<< " to alignable with id / type: " << id << " / " << typeId;
ali->addSurfaceDeformation(deform, true); // Equivalent to setSurfaceDeformation in this case
delete deform;
}
// If there is no new surface deformation record, do nothing.
// add position error
// AlignmentPositionError ape(shift.x(),shift.y(),shift.z());
// (*iali)->addAlignmentPositionError(ape);
// (*iali)->addAlignmentPositionErrorFromRotation(rot);
found = true;
++nappl;
}
}
}
}
if (nappl < newpos.size())
edm::LogError("Mismatch") << "Applied only " << nappl << " new positions"
<< " out of " << newpos.size();
LogDebug("NewPositions") << "Applied new positions for " << nappl << " out of " << alivec.size() << " alignables.";
}
//__________________________________________________________________________________________________
void AlignmentParameterStore::applyAlignableRelativePositions(const align::Alignables& alivec,
const AlignableShifts& shifts,
int& ierr) {
ierr = 0;
unsigned int nappl = 0;
unsigned int nAlignables = alivec.size();
for (unsigned int i = 0; i < nAlignables; ++i) {
Alignable* ali = alivec[i];
align::ID id = ali->id();
align::StructureType typeId = ali->alignableObjectId();
// Find corresponding entry in AlignableShifts
bool found = false;
for (AlignableShifts::const_iterator ipos = shifts.begin(); ipos != shifts.end(); ++ipos) {
if (id == ipos->id() && typeId == ipos->objId()) {
if (found) {
edm::LogError("DuplicatePosition") << "New positions for alignable found more than once!";
} else {
// Current surf. deformation
std::vector<std::pair<int, SurfaceDeformation*> > dold_id_pairs;
SurfaceDeformation* dold_obj = nullptr;
SurfaceDeformationFactory::Type dtype = SurfaceDeformationFactory::kNoDeformations;
std::vector<double> dold;
if (1 == ali->surfaceDeformationIdPairs(dold_id_pairs)) { // might not have any...
dold_obj = dold_id_pairs[0].second;
dold = dold_obj->parameters();
dtype = (SurfaceDeformationFactory::Type)dold_obj->type();
}
ali->move(ipos->pos());
ali->rotateInGlobalFrame(ipos->rot());
const std::vector<double>& defDiff = ipos->deformationParameters();
// If an old surface deformation record exists, ensure that the added deformation has the same type and size.
if (!dold.empty() && dtype != SurfaceDeformationFactory::kNoDeformations && defDiff.size() == dold.size()) {
auto deform = SurfaceDeformationFactory::create(dtype, defDiff);
edm::LogInfo("Alignment") << "@SUB=AlignmentParameterStore::applyAlignableRelativePositions"
<< "Adding surface deformation of type "
<< SurfaceDeformationFactory::surfaceDeformationTypeName(
(SurfaceDeformationFactory::Type)deform->type())
<< ", size " << defDiff.size() << " and first element " << defDiff.at(0)
<< " to alignable with id / type: " << id << " / " << typeId;
ali->addSurfaceDeformation(deform, true);
delete deform;
}
// In case no old surface deformation record exists, only ensure that the new surface deformation record has size>0. Size check is done elsewhere.
else if (!defDiff.empty()) {
auto deform = SurfaceDeformationFactory::create(defDiff);
edm::LogInfo("Alignment") << "@SUB=AlignmentParameterStore::applyAlignableRelativePositions"
<< "Setting surface deformation of type "
<< SurfaceDeformationFactory::surfaceDeformationTypeName(
(SurfaceDeformationFactory::Type)deform->type())
<< ", size " << defDiff.size() << " and first element " << defDiff.at(0)
<< " to alignable with id / type: " << id << " / " << typeId;
ali->addSurfaceDeformation(deform, true); // Equivalent to setSurfaceDeformation in this case
delete deform;
}
// If there is no new surface deformation record, do nothing.
// Add position error
//AlignmentPositionError ape(pnew.x(),pnew.y(),pnew.z());
//ali->addAlignmentPositionError(ape);
//ali->addAlignmentPositionErrorFromRotation(rnew);
found = true;
++nappl;
}
}
}
}
if (nappl < shifts.size())
edm::LogError("Mismatch") << "Applied only " << nappl << " new positions"
<< " out of " << shifts.size();
LogDebug("NewPositions") << "Applied new positions for " << nappl << " alignables.";
}
//__________________________________________________________________________________________________
void AlignmentParameterStore::attachAlignmentParameters(const Parameters& parvec, int& ierr) {
attachAlignmentParameters(theAlignables, parvec, ierr);
}
//__________________________________________________________________________________________________
void AlignmentParameterStore::attachAlignmentParameters(const align::Alignables& alivec,
const Parameters& parvec,
int& ierr) {
int ipass = 0;
int ifail = 0;
ierr = 0;
// Iterate over alignables
for (align::Alignables::const_iterator iali = alivec.begin(); iali != alivec.end(); ++iali) {
// Iterate over Parameters
bool found = false;
for (Parameters::const_iterator ipar = parvec.begin(); ipar != parvec.end(); ++ipar) {
// Get new alignment parameters
AlignmentParameters* ap = *ipar;
// Check if parameters belong to alignable
if (ap->alignable() == (*iali)) {
if (!found) {
(*iali)->setAlignmentParameters(ap);
++ipass;
found = true;
} else
edm::LogError("Alignment") << "@SUB=AlignmentParameterStore::attachAlignmentParameters"
<< "More than one parameters for Alignable.";
}
}
if (!found)
++ifail;
}
if (ifail > 0)
ierr = -1;
LogDebug("attachAlignmentParameters") << " Parameters, Alignables: " << parvec.size() << "," << alivec.size()
<< "\n pass,fail: " << ipass << "," << ifail;
}
//__________________________________________________________________________________________________
void AlignmentParameterStore::attachCorrelations(const Correlations& cormap, bool overwrite, int& ierr) {
attachCorrelations(theAlignables, cormap, overwrite, ierr);
}
//__________________________________________________________________________________________________
void AlignmentParameterStore::attachCorrelations(const align::Alignables& alivec,
const Correlations& cormap,
bool overwrite,
int& ierr) {
ierr = 0;
int icount = 0;
// Iterate over correlations
for (Correlations::const_iterator icor = cormap.begin(); icor != cormap.end(); ++icor) {
AlgebraicMatrix mat = (*icor).second;
Alignable* ali1 = (*icor).first.first;
Alignable* ali2 = (*icor).first.second;
// Check if alignables exist
if (find(alivec.begin(), alivec.end(), ali1) != alivec.end() &&
find(alivec.begin(), alivec.end(), ali2) != alivec.end()) {
// Check if correlations already existing between these alignables
if (!theCorrelationsStore->correlationsAvailable(ali1, ali2) || (overwrite)) {
theCorrelationsStore->setCorrelations(ali1, ali2, mat);
++icount;
} else
edm::LogInfo("AlreadyExists") << "Correlation existing and not overwritten";
} else
edm::LogInfo("IgnoreCorrelation") << "Ignoring correlation with no alignables!";
}
LogDebug("attachCorrelations") << " Alignables,Correlations: " << alivec.size() << "," << cormap.size()
<< "\n applied: " << icount;
}
//__________________________________________________________________________________________________
void AlignmentParameterStore::attachUserVariables(const align::Alignables& alivec,
const std::vector<AlignmentUserVariables*>& uvarvec,
int& ierr) {
ierr = 0;
LogDebug("DumpArguments") << "size of alivec: " << alivec.size() << "\nsize of uvarvec: " << uvarvec.size();
std::vector<AlignmentUserVariables*>::const_iterator iuvar = uvarvec.begin();
for (align::Alignables::const_iterator iali = alivec.begin(); iali != alivec.end(); ++iali, ++iuvar) {
AlignmentParameters* ap = (*iali)->alignmentParameters();
AlignmentUserVariables* uvarnew = (*iuvar);
ap->setUserVariables(uvarnew);
}
}
//__________________________________________________________________________________________________
void AlignmentParameterStore::setAlignmentPositionError(const align::Alignables& alivec,
double valshift,
double valrot) {
unsigned int nAlignables = alivec.size();
for (unsigned int i = 0; i < nAlignables; ++i) {
Alignable* ali = alivec[i];
// First reset APE
AlignmentPositionError nulApe(0, 0, 0);
ali->setAlignmentPositionError(nulApe, true);
// Set APE from displacement
AlignmentPositionError ape(valshift, valshift, valshift);
if (valshift > 0.)
ali->addAlignmentPositionError(ape, true);
else
ali->setAlignmentPositionError(ape, true);
// GF: Resetting and setting as above does not really make sense to me,
// and adding to zero or setting is the same! I'd just do
//ali->setAlignmentPositionError(AlignmentPositionError ape(valshift,valshift,valshift),true);
// Set APE from rotation
align::EulerAngles r(3);
r(1) = valrot;
r(2) = valrot;
r(3) = valrot;
ali->addAlignmentPositionErrorFromRotation(align::toMatrix(r), true);
}
LogDebug("StoreAPE") << "Store APE from shift: " << valshift << "\nStore APE from rotation: " << valrot;
}
//__________________________________________________________________________________________________
bool AlignmentParameterStore ::hierarchyConstraints(const Alignable* ali,
const align::Alignables& aliComps,
std::vector<std::vector<ParameterId> >& paramIdsVecOut,
std::vector<std::vector<double> >& factorsVecOut,
bool all,
double epsilon) const {
// Weak point if all = false:
// Ignores constraints between non-subsequent levels in case the parameter is not considered in
// the intermediate level, e.g. global z for dets and layers is aligned, but not for rods!
if (!ali || !ali->alignmentParameters())
return false;
const std::vector<bool>& aliSel = ali->alignmentParameters()->selector();
paramIdsVecOut.clear();
factorsVecOut.clear();
bool firstComp = true;
for (align::Alignables::const_iterator iComp = aliComps.begin(), iCompE = aliComps.end(); iComp != iCompE; ++iComp) {
const ParametersToParametersDerivatives p2pDerivs(**iComp, *ali);
if (!p2pDerivs.isOK()) {
// std::cerr << (*iComp)->alignmentParameters()->type() << " "
// << ali->alignmentParameters()->type() << std::endl;
throw cms::Exception("BadConfig") << "AlignmentParameterStore::hierarchyConstraints"
<< " Bad match of types of AlignmentParameters classes.\n";
return false;
}
const std::vector<bool>& aliCompSel = (*iComp)->alignmentParameters()->selector();
for (unsigned int iParMast = 0, iParMastUsed = 0; iParMast < aliSel.size(); ++iParMast) {
if (!all && !aliSel[iParMast])
continue; // no higher level parameter & constraint deselected
if (firstComp) { // fill output with empty arrays
paramIdsVecOut.push_back(std::vector<ParameterId>());
factorsVecOut.push_back(std::vector<double>());
}
for (unsigned int iParComp = 0; iParComp < aliCompSel.size(); ++iParComp) {
if (aliCompSel[iParComp]) {
double factor = 0.;
if (theTypeOfConstraints == HIERARCHY_CONSTRAINTS) {
// hierachy constraints
factor = p2pDerivs(iParMast, iParComp);
} else if (theTypeOfConstraints == APPROX_AVERAGING_CONSTRAINTS) {
// CHK poor mans averaging constraints
factor = p2pDerivs(iParMast, iParComp);
if (iParMast < 3 && (iParComp % 9) >= 3)
factor = 0.;
}
if (fabs(factor) > epsilon) {
paramIdsVecOut[iParMastUsed].push_back(ParameterId(*iComp, iParComp));
factorsVecOut[iParMastUsed].push_back(factor);
}
}
}
++iParMastUsed;
}
firstComp = false;
} // end loop on components
return true;
}
|