Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
/**
 * \file AlignmentParameterStore.cc
 *
 *  $Revision: 1.31 $
 *  $Date: 2011/05/23 20:50:32 $
 *  (last update by $Author: mussgill $)
 */

// This class's header should be first
#include "Alignment/CommonAlignmentAlgorithm/interface/AlignmentParameterStore.h"

#include "FWCore/MessageLogger/interface/MessageLogger.h"
#include "FWCore/Utilities/interface/Exception.h"
#include "FWCore/ParameterSet/interface/ParameterSet.h"

#include "Alignment/CommonAlignment/interface/Alignable.h"
#include "Alignment/CommonAlignment/interface/AlignableDetOrUnitPtr.h"
#include "Alignment/TrackerAlignment/interface/TrackerAlignableId.h"

#include "Alignment/CommonAlignmentParametrization/interface/RigidBodyAlignmentParameters.h"
#include "Alignment/CommonAlignmentParametrization/interface/ParametersToParametersDerivatives.h"
#include "Alignment/CommonAlignmentAlgorithm/interface/AlignmentExtendedCorrelationsStore.h"
#include "DataFormats/GeometryCommonDetAlgo/interface/AlignmentPositionError.h"

#include "Geometry/CommonTopologies/interface/SurfaceDeformation.h"
#include "Geometry/CommonTopologies/interface/SurfaceDeformationFactory.h"

//__________________________________________________________________________________________________
AlignmentParameterStore::AlignmentParameterStore(const align::Alignables& alis, const edm::ParameterSet& config)
    : theAlignables(alis) {
  if (config.getUntrackedParameter<bool>("UseExtendedCorrelations")) {
    theCorrelationsStore =
        new AlignmentExtendedCorrelationsStore(config.getParameter<edm::ParameterSet>("ExtendedCorrelationsConfig"));
  } else {
    theCorrelationsStore = new AlignmentCorrelationsStore();
  }

  edm::LogInfo("Alignment") << "@SUB=AlignmentParameterStore"
                            << "Created with " << theAlignables.size() << " alignables.";

  // set hierarchy vs averaging constraints
  theTypeOfConstraints = NONE;
  const std::string cfgStrTypeOfConstraints(config.getParameter<std::string>("TypeOfConstraints"));
  if (cfgStrTypeOfConstraints == "hierarchy") {
    theTypeOfConstraints = HIERARCHY_CONSTRAINTS;
  } else if (cfgStrTypeOfConstraints == "approximate_averaging") {
    theTypeOfConstraints = APPROX_AVERAGING_CONSTRAINTS;
    edm::LogWarning("Alignment")
        << "@SUB=AlignmentParameterStore"
        << "\n\n\n******* WARNING ******************************************\n"
        << "Using approximate implementation of averaging constraints."
        << "This is not recommended."
        << "Consider to use 'hierarchy' constraints:"
        << "  AlignmentProducer.ParameterStore.TypeOfConstraints = cms.string('hierarchy')\n\n\n";
  } else {
    edm::LogError("BadArgument") << "@SUB=AlignmentParameterStore"
                                 << "Unknown type of hierarchy constraints '" << cfgStrTypeOfConstraints << "'";
  }
}

//__________________________________________________________________________________________________
AlignmentParameterStore::~AlignmentParameterStore() { delete theCorrelationsStore; }

//__________________________________________________________________________________________________
CompositeAlignmentParameters AlignmentParameterStore::selectParameters(
    const std::vector<AlignableDet*>& alignabledets) const {
  std::vector<AlignableDetOrUnitPtr> detOrUnits;
  detOrUnits.reserve(alignabledets.size());

  std::vector<AlignableDet*>::const_iterator it, iEnd;
  for (it = alignabledets.begin(), iEnd = alignabledets.end(); it != iEnd; ++it)
    detOrUnits.push_back(AlignableDetOrUnitPtr(*it));

  return this->selectParameters(detOrUnits);
}

//__________________________________________________________________________________________________
CompositeAlignmentParameters AlignmentParameterStore::selectParameters(
    const std::vector<AlignableDetOrUnitPtr>& alignabledets) const {
  align::Alignables alignables;
  std::map<AlignableDetOrUnitPtr, Alignable*> alidettoalimap;
  std::map<Alignable*, int> aliposmap;
  std::map<Alignable*, int> alilenmap;
  int nparam = 0;

  // iterate over AlignableDet's
  for (std::vector<AlignableDetOrUnitPtr>::const_iterator iad = alignabledets.begin(); iad != alignabledets.end();
       ++iad) {
    Alignable* ali = alignableFromAlignableDet(*iad);
    if (ali) {
      alidettoalimap[*iad] = ali;  // Add to map
      // Check if Alignable already there, insert into vector if not
      if (find(alignables.begin(), alignables.end(), ali) == alignables.end()) {
        alignables.push_back(ali);
        AlignmentParameters* ap = ali->alignmentParameters();
        nparam += ap->numSelected();
      }
    }
  }

  AlgebraicVector* selpar = new AlgebraicVector(nparam, 0);
  AlgebraicSymMatrix* selcov = new AlgebraicSymMatrix(nparam, 0);

  // Fill in parameters and corresponding covariance matricess
  int ipos = 1;  // NOTE: .sub indices start from 1
  align::Alignables::const_iterator it1;
  for (it1 = alignables.begin(); it1 != alignables.end(); ++it1) {
    AlignmentParameters* ap = (*it1)->alignmentParameters();
    selpar->sub(ipos, ap->selectedParameters());
    selcov->sub(ipos, ap->selectedCovariance());
    int npar = ap->numSelected();
    aliposmap[*it1] = ipos;
    alilenmap[*it1] = npar;
    ipos += npar;
  }

  // Fill in the correlations. Has to be an extra loop, because the
  // AlignmentExtendedCorrelationsStore (if used) needs the
  // alignables' covariance matrices already present.
  ipos = 1;
  for (it1 = alignables.begin(); it1 != alignables.end(); ++it1) {
    int jpos = 1;

    // Look for correlations between alignables
    align::Alignables::const_iterator it2;
    for (it2 = alignables.begin(); it2 != it1; ++it2) {
      theCorrelationsStore->correlations(*it1, *it2, *selcov, ipos - 1, jpos - 1);
      jpos += (*it2)->alignmentParameters()->numSelected();
    }

    ipos += (*it1)->alignmentParameters()->numSelected();
  }

  AlignmentParametersData::DataContainer data(new AlignmentParametersData(selpar, selcov));
  CompositeAlignmentParameters aap(data, alignables, alidettoalimap, aliposmap, alilenmap);

  return aap;
}

//__________________________________________________________________________________________________
CompositeAlignmentParameters AlignmentParameterStore::selectParameters(const align::Alignables& alignables) const {
  align::Alignables selectedAlignables;
  std::map<AlignableDetOrUnitPtr, Alignable*> alidettoalimap;  // This map won't be filled!!!
  std::map<Alignable*, int> aliposmap;
  std::map<Alignable*, int> alilenmap;
  int nparam = 0;

  // iterate over Alignable's
  align::Alignables::const_iterator ita;
  for (ita = alignables.begin(); ita != alignables.end(); ++ita) {
    // Check if Alignable already there, insert into vector if not
    if (find(selectedAlignables.begin(), selectedAlignables.end(), *ita) == selectedAlignables.end()) {
      selectedAlignables.push_back(*ita);
      AlignmentParameters* ap = (*ita)->alignmentParameters();
      nparam += ap->numSelected();
    }
  }

  AlgebraicVector* selpar = new AlgebraicVector(nparam, 0);
  AlgebraicSymMatrix* selcov = new AlgebraicSymMatrix(nparam, 0);

  // Fill in parameters and corresponding covariance matrices
  int ipos = 1;  // NOTE: .sub indices start from 1
  align::Alignables::const_iterator it1;
  for (it1 = selectedAlignables.begin(); it1 != selectedAlignables.end(); ++it1) {
    AlignmentParameters* ap = (*it1)->alignmentParameters();
    selpar->sub(ipos, ap->selectedParameters());
    selcov->sub(ipos, ap->selectedCovariance());
    int npar = ap->numSelected();
    aliposmap[*it1] = ipos;
    alilenmap[*it1] = npar;
    ipos += npar;
  }

  // Fill in the correlations. Has to be an extra loop, because the
  // AlignmentExtendedCorrelationsStore (if used) needs the
  // alignables' covariance matrices already present.
  ipos = 1;
  for (it1 = selectedAlignables.begin(); it1 != selectedAlignables.end(); ++it1) {
    int jpos = 1;

    // Look for correlations between alignables
    align::Alignables::const_iterator it2;
    for (it2 = selectedAlignables.begin(); it2 != it1; ++it2) {
      theCorrelationsStore->correlations(*it1, *it2, *selcov, ipos - 1, jpos - 1);
      jpos += (*it2)->alignmentParameters()->numSelected();
    }

    ipos += (*it1)->alignmentParameters()->numSelected();
  }

  AlignmentParametersData::DataContainer data(new AlignmentParametersData(selpar, selcov));
  CompositeAlignmentParameters aap(data, selectedAlignables, alidettoalimap, aliposmap, alilenmap);

  return aap;
}

//__________________________________________________________________________________________________
void AlignmentParameterStore::updateParameters(const CompositeAlignmentParameters& aap, bool updateCorrelations) {
  align::Alignables alignables = aap.components();
  const AlgebraicVector& parameters = aap.parameters();
  const AlgebraicSymMatrix& covariance = aap.covariance();

  int ipos = 1;  // NOTE: .sub indices start from 1

  // Loop over alignables
  for (align::Alignables::const_iterator it = alignables.begin(); it != alignables.end(); ++it) {
    // Update parameters and local covariance
    AlignmentParameters* ap = (*it)->alignmentParameters();
    int nsel = ap->numSelected();
    AlgebraicVector subvec = parameters.sub(ipos, ipos + nsel - 1);
    AlgebraicSymMatrix subcov = covariance.sub(ipos, ipos + nsel - 1);
    AlignmentParameters* apnew = ap->cloneFromSelected(subvec, subcov);
    (*it)->setAlignmentParameters(apnew);

    // Now update correlations between detectors
    if (updateCorrelations) {
      int jpos = 1;
      for (align::Alignables::const_iterator it2 = alignables.begin(); it2 != it; ++it2) {
        theCorrelationsStore->setCorrelations(*it, *it2, covariance, ipos - 1, jpos - 1);
        jpos += (*it2)->alignmentParameters()->numSelected();
      }
    }

    ipos += nsel;
  }
}

//__________________________________________________________________________________________________
align::Alignables AlignmentParameterStore::validAlignables(void) const {
  align::Alignables result;
  for (align::Alignables::const_iterator iali = theAlignables.begin(); iali != theAlignables.end(); ++iali)
    if ((*iali)->alignmentParameters()->isValid())
      result.push_back(*iali);

  LogDebug("Alignment") << "@SUB=AlignmentParameterStore::validAlignables"
                        << "Valid alignables: " << result.size() << "out of " << theAlignables.size();
  return result;
}

//__________________________________________________________________________________________________
Alignable* AlignmentParameterStore::alignableFromAlignableDet(const AlignableDetOrUnitPtr& _alignableDet) const {
  AlignableDetOrUnitPtr alignableDet = _alignableDet;
  Alignable* mother = alignableDet;
  while (mother) {
    if (mother->alignmentParameters())
      return mother;
    mother = mother->mother();
  }

  return nullptr;
}

//__________________________________________________________________________________________________
void AlignmentParameterStore::applyParameters(void) {
  align::Alignables::const_iterator iali;
  for (iali = theAlignables.begin(); iali != theAlignables.end(); ++iali)
    applyParameters(*iali);
}

//__________________________________________________________________________________________________
void AlignmentParameterStore::applyParameters(Alignable* alignable) {
  AlignmentParameters* pars = (alignable ? alignable->alignmentParameters() : nullptr);
  if (!pars) {
    throw cms::Exception("BadAlignable") << "applyParameters: provided alignable does not have alignment parameters";
  }
  pars->apply();
}

//__________________________________________________________________________________________________
void AlignmentParameterStore::resetParameters(void) {
  // Erase contents of correlation map
  theCorrelationsStore->resetCorrelations();

  // Iterate over alignables in the store and reset parameters
  align::Alignables::const_iterator iali;
  for (iali = theAlignables.begin(); iali != theAlignables.end(); ++iali)
    resetParameters(*iali);
}

//__________________________________________________________________________________________________
void AlignmentParameterStore::resetParameters(Alignable* ali) {
  if (ali) {
    // Get alignment parameters for this alignable
    AlignmentParameters* ap = ali->alignmentParameters();
    if (ap) {
      int npar = ap->numSelected();

      AlgebraicVector par(npar, 0);
      AlgebraicSymMatrix cov(npar, 0);
      AlignmentParameters* apnew = ap->cloneFromSelected(par, cov);
      ali->setAlignmentParameters(apnew);
      apnew->setValid(false);
    } else
      edm::LogError("BadArgument") << "@SUB=AlignmentParameterStore::resetParameters"
                                   << "alignable has no alignment parameter";
  } else
    edm::LogError("BadArgument") << "@SUB=AlignmentParameterStore::resetParameters"
                                 << "argument is NULL";
}

//__________________________________________________________________________________________________
void AlignmentParameterStore::cacheTransformations(void) {
  align::Alignables::const_iterator iali;
  for (iali = theAlignables.begin(); iali != theAlignables.end(); ++iali)
    (*iali)->cacheTransformation();
}

//__________________________________________________________________________________________________
void AlignmentParameterStore::cacheTransformations(const align::RunNumber& run) {
  for (const auto& iali : theAlignables)
    iali->cacheTransformation(run);
}

//__________________________________________________________________________________________________
void AlignmentParameterStore::restoreCachedTransformations(void) {
  align::Alignables::const_iterator iali;
  for (iali = theAlignables.begin(); iali != theAlignables.end(); ++iali)
    (*iali)->restoreCachedTransformation();
}

//__________________________________________________________________________________________________
void AlignmentParameterStore::restoreCachedTransformations(const align::RunNumber& run) {
  for (const auto& iali : theAlignables)
    iali->restoreCachedTransformation(run);
}

//__________________________________________________________________________________________________
void AlignmentParameterStore::acquireRelativeParameters(void) {
  unsigned int nAlignables = theAlignables.size();

  for (unsigned int i = 0; i < nAlignables; ++i) {
    Alignable* ali = theAlignables[i];

    RigidBodyAlignmentParameters* ap = dynamic_cast<RigidBodyAlignmentParameters*>(ali->alignmentParameters());

    if (!ap)
      throw cms::Exception("BadAlignable") << "acquireRelativeParameters: "
                                           << "provided alignable does not have rigid body alignment parameters";

    AlgebraicVector par(ap->size(), 0);
    AlgebraicSymMatrix cov(ap->size(), 0);

    // Get displacement and transform global->local
    align::LocalVector dloc = ali->surface().toLocal(ali->displacement());
    par[0] = dloc.x();
    par[1] = dloc.y();
    par[2] = dloc.z();

    // Transform to local euler angles
    align::EulerAngles euloc = align::toAngles(ali->surface().toLocal(ali->rotation()));
    par[3] = euloc(1);
    par[4] = euloc(2);
    par[5] = euloc(3);

    // Clone parameters
    RigidBodyAlignmentParameters* apnew = ap->clone(par, cov);

    ali->setAlignmentParameters(apnew);
  }
}

//__________________________________________________________________________________________________
// Get type/layer from Alignable
// type: -6   -5   -4   -3   -2    -1     1     2    3    4    5    6
//      TEC- TOB- TID- TIB- PxEC- PxBR- PxBr+ PxEC+ TIB+ TID+ TOB+ TEC+
// Layers start from zero
std::pair<int, int> AlignmentParameterStore::typeAndLayer(const Alignable* ali, const TrackerTopology* tTopo) const {
  return TrackerAlignableId().typeAndLayerFromDetId(ali->id(), tTopo);
}

//__________________________________________________________________________________________________
void AlignmentParameterStore::applyAlignableAbsolutePositions(const align::Alignables& alivec,
                                                              const AlignablePositions& newpos,
                                                              int& ierr) {
  unsigned int nappl = 0;
  ierr = 0;

  // Iterate over list of alignables
  for (align::Alignables::const_iterator iali = alivec.begin(); iali != alivec.end(); ++iali) {
    Alignable* ali = *iali;
    align::ID id = ali->id();
    align::StructureType typeId = ali->alignableObjectId();

    // Find corresponding entry in AlignablePositions
    bool found = false;
    for (AlignablePositions::const_iterator ipos = newpos.begin(); ipos != newpos.end(); ++ipos) {
      if (id == ipos->id() && typeId == ipos->objId()) {
        if (found) {
          edm::LogError("DuplicatePosition") << "New positions for alignable found more than once!";
        } else {
          // New position/rotation
          const align::PositionType& pnew = ipos->pos();
          const align::RotationType& rnew = ipos->rot();
          const std::vector<double>& dnew = ipos->deformationParameters();
          // Current position / rotation
          const align::PositionType& pold = ali->globalPosition();
          const align::RotationType& rold = ali->globalRotation();
          // Current surf. deformation
          std::vector<std::pair<int, SurfaceDeformation*> > dold_id_pairs;
          SurfaceDeformation* dold_obj = nullptr;
          SurfaceDeformationFactory::Type dtype = SurfaceDeformationFactory::kNoDeformations;
          std::vector<double> dold;
          if (1 == ali->surfaceDeformationIdPairs(dold_id_pairs)) {  // might not have any...
            dold_obj = dold_id_pairs[0].second;
            dold = dold_obj->parameters();
            dtype = (SurfaceDeformationFactory::Type)dold_obj->type();
          }

          // shift needed to move from current to new position
          align::GlobalVector posDiff = pnew - pold;
          align::RotationType rotDiff = rold.multiplyInverse(rnew);
          align::rectify(rotDiff);  // correct for rounding errors
          ali->move(posDiff);
          ali->rotateInGlobalFrame(rotDiff);
          LogDebug("NewPosition") << "moving by:" << posDiff;
          LogDebug("NewRotation") << "rotating by:\n" << rotDiff;

          // add the surface deformations
          // If an old surface deformation record exists, ensure that the added deformation has the same type and size.
          if (!dold.empty() && dtype != SurfaceDeformationFactory::kNoDeformations && dnew.size() == dold.size()) {
            std::vector<double> defDiff;
            defDiff.reserve(dold.size());
            for (unsigned int i = 0; i < dold.size(); i++)
              defDiff.push_back(dnew[i] - dold[i]);
            auto deform = SurfaceDeformationFactory::create(dtype, defDiff);
            edm::LogInfo("Alignment") << "@SUB=AlignmentParameterStore::applyAlignableAbsolutePositions"
                                      << "Adding surface deformation of type "
                                      << SurfaceDeformationFactory::surfaceDeformationTypeName(
                                             (SurfaceDeformationFactory::Type)deform->type())
                                      << ", size " << defDiff.size() << " and first element " << defDiff.at(0)
                                      << " to alignable with id / type: " << id << " / " << typeId;
            ali->addSurfaceDeformation(deform, true);
            delete deform;
          }
          // In case no old surface deformation record exists, only ensure that the new surface deformation record has size>0. Size check is done elsewhere.
          else if (!dnew.empty()) {
            auto deform = SurfaceDeformationFactory::create(dnew);
            edm::LogInfo("Alignment") << "@SUB=AlignmentParameterStore::applyAlignableAbsolutePositions"
                                      << "Setting surface deformation of type "
                                      << SurfaceDeformationFactory::surfaceDeformationTypeName(
                                             (SurfaceDeformationFactory::Type)deform->type())
                                      << ", size " << dnew.size() << " and first element " << dnew.at(0)
                                      << " to alignable with id / type: " << id << " / " << typeId;
            ali->addSurfaceDeformation(deform, true);  // Equivalent to setSurfaceDeformation in this case
            delete deform;
          }
          // If there is no new surface deformation record, do nothing.

          // add position error
          // AlignmentPositionError ape(shift.x(),shift.y(),shift.z());
          // (*iali)->addAlignmentPositionError(ape);
          // (*iali)->addAlignmentPositionErrorFromRotation(rot);

          found = true;
          ++nappl;
        }
      }
    }
  }

  if (nappl < newpos.size())
    edm::LogError("Mismatch") << "Applied only " << nappl << " new positions"
                              << " out of " << newpos.size();

  LogDebug("NewPositions") << "Applied new positions for " << nappl << " out of " << alivec.size() << " alignables.";
}

//__________________________________________________________________________________________________
void AlignmentParameterStore::applyAlignableRelativePositions(const align::Alignables& alivec,
                                                              const AlignableShifts& shifts,
                                                              int& ierr) {
  ierr = 0;
  unsigned int nappl = 0;
  unsigned int nAlignables = alivec.size();

  for (unsigned int i = 0; i < nAlignables; ++i) {
    Alignable* ali = alivec[i];

    align::ID id = ali->id();
    align::StructureType typeId = ali->alignableObjectId();

    // Find corresponding entry in AlignableShifts
    bool found = false;
    for (AlignableShifts::const_iterator ipos = shifts.begin(); ipos != shifts.end(); ++ipos) {
      if (id == ipos->id() && typeId == ipos->objId()) {
        if (found) {
          edm::LogError("DuplicatePosition") << "New positions for alignable found more than once!";
        } else {
          // Current surf. deformation
          std::vector<std::pair<int, SurfaceDeformation*> > dold_id_pairs;
          SurfaceDeformation* dold_obj = nullptr;
          SurfaceDeformationFactory::Type dtype = SurfaceDeformationFactory::kNoDeformations;
          std::vector<double> dold;
          if (1 == ali->surfaceDeformationIdPairs(dold_id_pairs)) {  // might not have any...
            dold_obj = dold_id_pairs[0].second;
            dold = dold_obj->parameters();
            dtype = (SurfaceDeformationFactory::Type)dold_obj->type();
          }

          ali->move(ipos->pos());
          ali->rotateInGlobalFrame(ipos->rot());

          const std::vector<double>& defDiff = ipos->deformationParameters();
          // If an old surface deformation record exists, ensure that the added deformation has the same type and size.
          if (!dold.empty() && dtype != SurfaceDeformationFactory::kNoDeformations && defDiff.size() == dold.size()) {
            auto deform = SurfaceDeformationFactory::create(dtype, defDiff);
            edm::LogInfo("Alignment") << "@SUB=AlignmentParameterStore::applyAlignableRelativePositions"
                                      << "Adding surface deformation of type "
                                      << SurfaceDeformationFactory::surfaceDeformationTypeName(
                                             (SurfaceDeformationFactory::Type)deform->type())
                                      << ", size " << defDiff.size() << " and first element " << defDiff.at(0)
                                      << " to alignable with id / type: " << id << " / " << typeId;
            ali->addSurfaceDeformation(deform, true);
            delete deform;
          }
          // In case no old surface deformation record exists, only ensure that the new surface deformation record has size>0. Size check is done elsewhere.
          else if (!defDiff.empty()) {
            auto deform = SurfaceDeformationFactory::create(defDiff);
            edm::LogInfo("Alignment") << "@SUB=AlignmentParameterStore::applyAlignableRelativePositions"
                                      << "Setting surface deformation of type "
                                      << SurfaceDeformationFactory::surfaceDeformationTypeName(
                                             (SurfaceDeformationFactory::Type)deform->type())
                                      << ", size " << defDiff.size() << " and first element " << defDiff.at(0)
                                      << " to alignable with id / type: " << id << " / " << typeId;
            ali->addSurfaceDeformation(deform, true);  // Equivalent to setSurfaceDeformation in this case
            delete deform;
          }
          // If there is no new surface deformation record, do nothing.

          // Add position error
          //AlignmentPositionError ape(pnew.x(),pnew.y(),pnew.z());
          //ali->addAlignmentPositionError(ape);
          //ali->addAlignmentPositionErrorFromRotation(rnew);

          found = true;
          ++nappl;
        }
      }
    }
  }

  if (nappl < shifts.size())
    edm::LogError("Mismatch") << "Applied only " << nappl << " new positions"
                              << " out of " << shifts.size();

  LogDebug("NewPositions") << "Applied new positions for " << nappl << " alignables.";
}

//__________________________________________________________________________________________________
void AlignmentParameterStore::attachAlignmentParameters(const Parameters& parvec, int& ierr) {
  attachAlignmentParameters(theAlignables, parvec, ierr);
}

//__________________________________________________________________________________________________
void AlignmentParameterStore::attachAlignmentParameters(const align::Alignables& alivec,
                                                        const Parameters& parvec,
                                                        int& ierr) {
  int ipass = 0;
  int ifail = 0;
  ierr = 0;

  // Iterate over alignables
  for (align::Alignables::const_iterator iali = alivec.begin(); iali != alivec.end(); ++iali) {
    // Iterate over Parameters
    bool found = false;
    for (Parameters::const_iterator ipar = parvec.begin(); ipar != parvec.end(); ++ipar) {
      // Get new alignment parameters
      AlignmentParameters* ap = *ipar;

      // Check if parameters belong to alignable
      if (ap->alignable() == (*iali)) {
        if (!found) {
          (*iali)->setAlignmentParameters(ap);
          ++ipass;
          found = true;
        } else
          edm::LogError("Alignment") << "@SUB=AlignmentParameterStore::attachAlignmentParameters"
                                     << "More than one parameters for Alignable.";
      }
    }
    if (!found)
      ++ifail;
  }
  if (ifail > 0)
    ierr = -1;

  LogDebug("attachAlignmentParameters") << " Parameters, Alignables: " << parvec.size() << "," << alivec.size()
                                        << "\n pass,fail: " << ipass << "," << ifail;
}

//__________________________________________________________________________________________________
void AlignmentParameterStore::attachCorrelations(const Correlations& cormap, bool overwrite, int& ierr) {
  attachCorrelations(theAlignables, cormap, overwrite, ierr);
}

//__________________________________________________________________________________________________
void AlignmentParameterStore::attachCorrelations(const align::Alignables& alivec,
                                                 const Correlations& cormap,
                                                 bool overwrite,
                                                 int& ierr) {
  ierr = 0;
  int icount = 0;

  // Iterate over correlations
  for (Correlations::const_iterator icor = cormap.begin(); icor != cormap.end(); ++icor) {
    AlgebraicMatrix mat = (*icor).second;
    Alignable* ali1 = (*icor).first.first;
    Alignable* ali2 = (*icor).first.second;

    // Check if alignables exist
    if (find(alivec.begin(), alivec.end(), ali1) != alivec.end() &&
        find(alivec.begin(), alivec.end(), ali2) != alivec.end()) {
      // Check if correlations already existing between these alignables
      if (!theCorrelationsStore->correlationsAvailable(ali1, ali2) || (overwrite)) {
        theCorrelationsStore->setCorrelations(ali1, ali2, mat);
        ++icount;
      } else
        edm::LogInfo("AlreadyExists") << "Correlation existing and not overwritten";
    } else
      edm::LogInfo("IgnoreCorrelation") << "Ignoring correlation with no alignables!";
  }

  LogDebug("attachCorrelations") << " Alignables,Correlations: " << alivec.size() << "," << cormap.size()
                                 << "\n applied: " << icount;
}

//__________________________________________________________________________________________________
void AlignmentParameterStore::attachUserVariables(const align::Alignables& alivec,
                                                  const std::vector<AlignmentUserVariables*>& uvarvec,
                                                  int& ierr) {
  ierr = 0;

  LogDebug("DumpArguments") << "size of alivec:   " << alivec.size() << "\nsize of uvarvec: " << uvarvec.size();

  std::vector<AlignmentUserVariables*>::const_iterator iuvar = uvarvec.begin();

  for (align::Alignables::const_iterator iali = alivec.begin(); iali != alivec.end(); ++iali, ++iuvar) {
    AlignmentParameters* ap = (*iali)->alignmentParameters();
    AlignmentUserVariables* uvarnew = (*iuvar);
    ap->setUserVariables(uvarnew);
  }
}

//__________________________________________________________________________________________________
void AlignmentParameterStore::setAlignmentPositionError(const align::Alignables& alivec,
                                                        double valshift,
                                                        double valrot) {
  unsigned int nAlignables = alivec.size();

  for (unsigned int i = 0; i < nAlignables; ++i) {
    Alignable* ali = alivec[i];

    // First reset APE
    AlignmentPositionError nulApe(0, 0, 0);
    ali->setAlignmentPositionError(nulApe, true);

    // Set APE from displacement
    AlignmentPositionError ape(valshift, valshift, valshift);
    if (valshift > 0.)
      ali->addAlignmentPositionError(ape, true);
    else
      ali->setAlignmentPositionError(ape, true);
    // GF: Resetting and setting as above does not really make sense to me,
    //     and adding to zero or setting is the same! I'd just do
    //ali->setAlignmentPositionError(AlignmentPositionError ape(valshift,valshift,valshift),true);

    // Set APE from rotation
    align::EulerAngles r(3);
    r(1) = valrot;
    r(2) = valrot;
    r(3) = valrot;
    ali->addAlignmentPositionErrorFromRotation(align::toMatrix(r), true);
  }

  LogDebug("StoreAPE") << "Store APE from shift: " << valshift << "\nStore APE from rotation: " << valrot;
}

//__________________________________________________________________________________________________
bool AlignmentParameterStore ::hierarchyConstraints(const Alignable* ali,
                                                    const align::Alignables& aliComps,
                                                    std::vector<std::vector<ParameterId> >& paramIdsVecOut,
                                                    std::vector<std::vector<double> >& factorsVecOut,
                                                    bool all,
                                                    double epsilon) const {
  // Weak point if all = false:
  // Ignores constraints between non-subsequent levels in case the parameter is not considered in
  // the intermediate level, e.g. global z for dets and layers is aligned, but not for rods!
  if (!ali || !ali->alignmentParameters())
    return false;

  const std::vector<bool>& aliSel = ali->alignmentParameters()->selector();
  paramIdsVecOut.clear();
  factorsVecOut.clear();

  bool firstComp = true;
  for (align::Alignables::const_iterator iComp = aliComps.begin(), iCompE = aliComps.end(); iComp != iCompE; ++iComp) {
    const ParametersToParametersDerivatives p2pDerivs(**iComp, *ali);
    if (!p2pDerivs.isOK()) {
      // std::cerr << (*iComp)->alignmentParameters()->type() << " "
      // 		<< ali->alignmentParameters()->type() << std::endl;
      throw cms::Exception("BadConfig") << "AlignmentParameterStore::hierarchyConstraints"
                                        << " Bad match of types of AlignmentParameters classes.\n";
      return false;
    }
    const std::vector<bool>& aliCompSel = (*iComp)->alignmentParameters()->selector();
    for (unsigned int iParMast = 0, iParMastUsed = 0; iParMast < aliSel.size(); ++iParMast) {
      if (!all && !aliSel[iParMast])
        continue;       // no higher level parameter & constraint deselected
      if (firstComp) {  // fill output with empty arrays
        paramIdsVecOut.push_back(std::vector<ParameterId>());
        factorsVecOut.push_back(std::vector<double>());
      }
      for (unsigned int iParComp = 0; iParComp < aliCompSel.size(); ++iParComp) {
        if (aliCompSel[iParComp]) {
          double factor = 0.;
          if (theTypeOfConstraints == HIERARCHY_CONSTRAINTS) {
            // hierachy constraints
            factor = p2pDerivs(iParMast, iParComp);
          } else if (theTypeOfConstraints == APPROX_AVERAGING_CONSTRAINTS) {
            // CHK poor mans averaging constraints
            factor = p2pDerivs(iParMast, iParComp);
            if (iParMast < 3 && (iParComp % 9) >= 3)
              factor = 0.;
          }
          if (fabs(factor) > epsilon) {
            paramIdsVecOut[iParMastUsed].push_back(ParameterId(*iComp, iParComp));
            factorsVecOut[iParMastUsed].push_back(factor);
          }
        }
      }
      ++iParMastUsed;
    }
    firstComp = false;
  }  // end loop on components

  return true;
}