AlignmentParameterName

BowedSurfaceAlignmentDerivatives

Macros

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
#ifndef Alignment_CommonAlignmentParametrization_BowedSurfaceAlignmentDerivatives_h
#define Alignment_CommonAlignmentParametrization_BowedSurfaceAlignmentDerivatives_h

#include "DataFormats/CLHEP/interface/AlgebraicObjects.h"

/// \class BowedSurfaceAlignmentDerivatives
///
/// Calculates alignment derivatives for a bowed surface using Legendre
/// polynomials for the surface structure (as studied by Claus Kleinwort),
/// i.e.
/// - rigid body part (partially from KarimakiAlignmentDerivatives)
/// - bow in local u, v and mixed term.
///
/// If a surface is split into two parts at a given ySplit value,
/// rotation axes are re-centred to that part hit by the track
/// (as predicted by TSOS) and the length of the surface is re-scaled.
///
///  by Gero Flucke, October 2010
///  $Date$
///  $Revision$
/// (last update by $Author$)

class TrajectoryStateOnSurface;

class BowedSurfaceAlignmentDerivatives {
public:
  enum AlignmentParameterName {
    dx = 0,
    dy,
    dz,
    dslopeX,  // NOTE: slope(u) -> k*tan(beta),
    dslopeY,  //       slope(v) -> k*tan(alpha)
    drotZ,    // rotation around w axis, scaled by gammaScale
    dsagittaX,
    dsagittaXY,
    dsagittaY,
    N_PARAM
  };

  /// Returns 9x2 jacobian matrix
  AlgebraicMatrix operator()(const TrajectoryStateOnSurface &tsos,
                             double uWidth,
                             double vLength,
                             bool doSplit = false,
                             double ySplit = 0.) const;

  /// scale to apply to convert drotZ to karimaki-gamma,
  /// depending on module width and length (the latter after splitting!)
  static double gammaScale(double width, double splitLength);
};

#endif