Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
/** \file TwoBowedSurfacesAlignmentParameters.cc
 *
 *  Version    : $Revision: 1.2 $
 *  last update: $Date: 2010/11/23 13:50:50 $
 *  by         : $Author: flucke $
 */

#include "FWCore/MessageLogger/interface/MessageLogger.h"
#include "FWCore/Utilities/interface/Exception.h"

#include "TrackingTools/TrajectoryState/interface/TrajectoryStateOnSurface.h"

#include "Alignment/CommonAlignment/interface/Alignable.h"
#include "Alignment/CommonAlignment/interface/AlignableDetOrUnitPtr.h"
#include "Alignment/CommonAlignmentParametrization/interface/AlignmentParametersFactory.h"
#include "Alignment/CommonAlignmentParametrization/interface/KarimakiAlignmentDerivatives.h"
#include "CondFormats/Alignment/interface/Definitions.h"
//#include "DataFormats/Alignment/interface/SurfaceDeformation.h"
#include "Geometry/CommonTopologies/interface/TwoBowedSurfacesDeformation.h"

// This class's header
#include "Alignment/CommonAlignmentParametrization/interface/TwoBowedSurfacesAlignmentParameters.h"

#include <cmath>
#include <iostream>
//_________________________________________________________________________________________________
TwoBowedSurfacesAlignmentParameters::TwoBowedSurfacesAlignmentParameters(Alignable *ali)
    : AlignmentParameters(ali, AlgebraicVector(N_PARAM), AlgebraicSymMatrix(N_PARAM, 0)),
      ySplit_(this->ySplitFromAlignable(ali)) {}

//_________________________________________________________________________________________________
TwoBowedSurfacesAlignmentParameters ::TwoBowedSurfacesAlignmentParameters(Alignable *alignable,
                                                                          const AlgebraicVector &parameters,
                                                                          const AlgebraicSymMatrix &covMatrix)
    : AlignmentParameters(alignable, parameters, covMatrix), ySplit_(this->ySplitFromAlignable(alignable)) {
  if (parameters.num_row() != N_PARAM) {
    throw cms::Exception("BadParameters") << "in TwoBowedSurfacesAlignmentParameters(): " << parameters.num_row()
                                          << " instead of " << N_PARAM << " parameters.";
  }
}

//_________________________________________________________________________________________________
TwoBowedSurfacesAlignmentParameters ::TwoBowedSurfacesAlignmentParameters(Alignable *alignable,
                                                                          const AlgebraicVector &parameters,
                                                                          const AlgebraicSymMatrix &covMatrix,
                                                                          const std::vector<bool> &selection)
    : AlignmentParameters(alignable, parameters, covMatrix, selection), ySplit_(this->ySplitFromAlignable(alignable)) {
  if (parameters.num_row() != N_PARAM) {
    throw cms::Exception("BadParameters") << "in TwoBowedSurfacesAlignmentParameters(): " << parameters.num_row()
                                          << " instead of " << N_PARAM << " parameters.";
  }
}

//_________________________________________________________________________________________________
TwoBowedSurfacesAlignmentParameters *TwoBowedSurfacesAlignmentParameters::clone(
    const AlgebraicVector &parameters, const AlgebraicSymMatrix &covMatrix) const {
  TwoBowedSurfacesAlignmentParameters *rbap =
      new TwoBowedSurfacesAlignmentParameters(this->alignable(), parameters, covMatrix, selector());

  if (this->userVariables())
    rbap->setUserVariables(this->userVariables()->clone());
  rbap->setValid(this->isValid());

  return rbap;
}

//_________________________________________________________________________________________________
TwoBowedSurfacesAlignmentParameters *TwoBowedSurfacesAlignmentParameters::cloneFromSelected(
    const AlgebraicVector &parameters, const AlgebraicSymMatrix &covMatrix) const {
  return this->clone(this->expandVector(parameters, this->selector()),
                     this->expandSymMatrix(covMatrix, this->selector()));
}

//_________________________________________________________________________________________________
AlgebraicMatrix TwoBowedSurfacesAlignmentParameters::derivatives(const TrajectoryStateOnSurface &tsos,
                                                                 const AlignableDetOrUnitPtr &alidet) const {
  const Alignable *ali = this->alignable();  // Alignable of these parameters
  AlgebraicMatrix result(N_PARAM, 2);        // initialised with zeros

  if (ali == alidet) {
    const AlignableSurface &surf = ali->surface();

    // matrix of dimension BowedDerivs::N_PARAM x 2
    const AlgebraicMatrix derivs(BowedDerivs()(tsos, surf.width(), surf.length(), true, ySplit_));  // split at ySplit_!

    // Parameters belong to surface part with y < ySplit_ or y >= ySplit_?
    const double localY = tsos.localParameters().mixedFormatVector()[4];
    const unsigned int indexOffset = (localY < ySplit_ ? 0 : dx2);
    // Copy derivatives to relevant part of result
    for (unsigned int i = BowedDerivs::dx; i < BowedDerivs::N_PARAM; ++i) {
      result[indexOffset + i][0] = derivs[i][0];
      result[indexOffset + i][1] = derivs[i][1];
    }
  } else {
    // The following is even more difficult for
    // TwoBowedSurfacesAlignmentParameters than for
    // BowedSurfaceAlignmentParameters where this text comes from:
    //
    // We could give this a meaning by applying frame-to-frame derivatives
    // to the rigid body part of the parameters (be careful that alpha ~=
    // dslopeY and beta ~= -dslopeX, but with changed scale!) and keep the
    // surface structure parameters untouched in local meaning. In this way we
    // could do higher level alignment and determine 'average' surface
    // structures for the components.
    throw cms::Exception("MisMatch") << "TwoBowedSurfacesAlignmentParameters::derivatives: The hit "
                                        "alignable must match the "
                                     << "aligned one (i.e. bowed surface parameters cannot be used for "
                                        "composed alignables)\n";
  }

  return result;
}

//_________________________________________________________________________________________________
void TwoBowedSurfacesAlignmentParameters::apply() {
  Alignable *alignable = this->alignable();
  if (!alignable) {
    throw cms::Exception("BadParameters") << "TwoBowedSurfacesAlignmentParameters::apply: parameters without "
                                             "alignable";
  }

  // Some repeatedly needed variables
  const AlignableSurface &surface = alignable->surface();
  const double halfLength = surface.length() * 0.5;         // full module
  const double halfLength1 = (halfLength + ySplit_) * 0.5;  // low-y surface
  const double halfLength2 = (halfLength - ySplit_) * 0.5;  // high-y surface

  // first copy the parameters into separate parts for the two surfaces
  const AlgebraicVector &params = theData->parameters();
  std::vector<double> rigidBowPar1(BowedDerivs::N_PARAM);  // 1st surface (y <  ySplit_)
  std::vector<double> rigidBowPar2(BowedDerivs::N_PARAM);  // 2nd surface (y >= ySplit_)
  for (unsigned int i = 0; i < BowedDerivs::N_PARAM; ++i) {
    rigidBowPar1[i] = params[i];
    rigidBowPar2[i] = params[i + BowedDerivs::N_PARAM];
  }
  // Now adjust slopes to angles, note that dslopeX <-> -beta & dslopeY <->
  // alpha, see BowedSurfaceAlignmentParameters::rotation(): FIXME: use atan?
  rigidBowPar1[3] = params[dslopeY1] / halfLength1;               // alpha1
  rigidBowPar2[3] = params[dslopeY2] / halfLength2;               // alpha2
  rigidBowPar1[4] = -params[dslopeX1] / (surface.width() * 0.5);  // beta1
  rigidBowPar2[4] = -params[dslopeX2] / (surface.width() * 0.5);  // beta2
  // gamma is simply scaled
  const double gammaScale1 = BowedDerivs::gammaScale(surface.width(), 2.0 * halfLength1);
  rigidBowPar1[5] = params[drotZ1] / gammaScale1;
  //   const double gammaScale2 = std::sqrt(halfLength2 * halfLength2
  // 				       + surface.width() * surface.width()/4.);
  const double gammaScale2 = BowedDerivs::gammaScale(surface.width(), 2.0 * halfLength2);
  rigidBowPar2[5] = params[drotZ2] / gammaScale2;

  // Get rigid body rotations of full module as mean of the two surfaces:
  align::EulerAngles angles(3);  // to become 'common' rotation in local frame
  for (unsigned int i = 0; i < 3; ++i) {
    angles[i] = (rigidBowPar1[i + 3] + rigidBowPar2[i + 3]) * 0.5;
  }
  // Module rotations are around other axes than the one we determined,
  // so we have to correct that the surfaces are shifted by the rotation around
  // the module axis - in linear approximation just an additional shift:
  const double yMean1 = -halfLength + halfLength1;  // y of alpha1 rotation axis in module frame
  const double yMean2 = halfLength - halfLength2;   // y of alpha2 rotation axis in module frame
  rigidBowPar1[dz1] -= angles[0] * yMean1;          // correct w1 for alpha
  rigidBowPar2[dz1] -= angles[0] * yMean2;          // correct w2 for alpha
  // Nothing for beta1/2 since anyway both around the y-axis of the module.
  rigidBowPar1[dx1] += angles[2] * yMean1;  // correct x1 for gamma
  rigidBowPar2[dx1] += angles[2] * yMean2;  // correct x1 for gamma

  // Get rigid body shifts of full module as mean of the two surfaces:
  const align::LocalVector shift((rigidBowPar1[dx1] + rigidBowPar2[dx1]) * 0.5,   // dx1!
                                 (rigidBowPar1[dy1] + rigidBowPar2[dy1]) * 0.5,   // dy1!
                                 (rigidBowPar1[dz1] + rigidBowPar2[dz1]) * 0.5);  // dz1!
  // Apply module shift and rotation:
  alignable->move(surface.toGlobal(shift));
  // original code:
  //  alignable->rotateInLocalFrame( align::toMatrix(angles) );
  // correct for rounding errors:
  align::RotationType rot(surface.toGlobal(align::toMatrix(angles)));
  align::rectify(rot);
  alignable->rotateInGlobalFrame(rot);

  // only update the surface deformations if they were selected for alignment
  if (selector()[dsagittaX1] || selector()[dsagittaXY1] || selector()[dsagittaY1] || selector()[dsagittaX2] ||
      selector()[dsagittaXY2] || selector()[dsagittaY2]) {
    // Fill surface structures with mean bows and half differences for all
    // parameters:
    std::vector<align::Scalar> deformations;
    deformations.reserve(13);
    // first part: average bows
    deformations.push_back((params[dsagittaX1] + params[dsagittaX2]) * 0.5);
    deformations.push_back((params[dsagittaXY1] + params[dsagittaXY2]) * 0.5);
    deformations.push_back((params[dsagittaY1] + params[dsagittaY2]) * 0.5);
    // second part: half difference of all corrections
    for (unsigned int i = 0; i < BowedDerivs::N_PARAM; ++i) {
      // sign means that we have to apply e.g.
      // - sagittaX for sensor 1: deformations[0] + deformations[9]
      // - sagittaX for sensor 2: deformations[0] - deformations[9]
      // - additional dx for sensor 1:  deformations[3]
      // - additional dx for sensor 2: -deformations[3]
      deformations.push_back((rigidBowPar1[i] - rigidBowPar2[i]) * 0.5);
    }
    // finally: keep track of where we have split the module
    deformations.push_back(ySplit_);  // index is 12

    const TwoBowedSurfacesDeformation deform{deformations};

    // FIXME: true to propagate down?
    //        Needed for hierarchy with common deformation parameter,
    //        but that is not possible now anyway.
    alignable->addSurfaceDeformation(&deform, false);
  }
}

//_________________________________________________________________________________________________
int TwoBowedSurfacesAlignmentParameters::type() const { return AlignmentParametersFactory::kTwoBowedSurfaces; }

//_________________________________________________________________________________________________
void TwoBowedSurfacesAlignmentParameters::print() const {
  std::cout << "Contents of TwoBowedSurfacesAlignmentParameters:"
            << "\nParameters: " << theData->parameters() << "\nCovariance: " << theData->covariance() << std::endl;
}

//_________________________________________________________________________________________________
double TwoBowedSurfacesAlignmentParameters::ySplitFromAlignable(const Alignable *ali) const {
  if (!ali)
    return 0.;

  const align::PositionType pos(ali->globalPosition());
  const double r = pos.perp();

  // The returned numbers for TEC are calculated as stated below from
  // what is found in CMS-NOTE 2003/20.
  // Note that at that time it was planned to use ST sensors for the outer TEC
  // while in the end there are only a few of them in the tracker - the others
  // are HPK. No idea whether there are subtle changes in geometry. The numbers
  // have been cross checked with y-residuals in data, see
  // https://hypernews.cern.ch/HyperNews/CMS/get/recoTracking/1018/1/1/2/1/1/1/2/1.html.

  if (r < 58.) {  // Pixel, TIB, TID or TEC ring 1-4
    edm::LogError("Alignment") << "@SUB=TwoBowedSurfacesAlignmentParameters::ySplitFromAlignable"
                               << "There are no split modules for radii < 58, but r = " << r;
    return 0.;
  } else if (fabs(pos.z()) < 118.) {  // TOB
    return 0.;
  } else if (r > 90.) {  // TEC ring 7
    // W7a Height active= 106.900mm (Tab. 2) (but 106.926 mm p. 40!?)
    // W7a R min active = 888.400mm (Paragraph 5.5.7)
    // W7a R max active = W7a R min active + W7a Height active =
    //                  = 888.400mm + 106.900mm = 995.300mm
    // W7b Height active=  94.900mm (Tab. 2)  (but 94.876 mm p. 41!?)
    // W7b R min active = 998.252mm (Paragraph 5.5.8)
    // W7b R max active = 998.252mm + 94.900mm = 1093.152mm
    // mean radius module = 0.5*(1093.152mm + 888.400mm) = 990.776mm
    // mean radius gap = 0.5*(998.252mm + 995.300mm) = 996.776mm
    // ySplit = (mean radius gap - mean radius module) // local y and r have
    // same directions!
    //        = 996.776mm - 990.776mm = 6mm
    return 0.6;
  } else if (r > 75.) {  // TEC ring 6
    // W6a Height active= 96.100mm (Tab. 2) (but 96.136 mm p. 38!?)
    // W6a R min active = 727.000mm (Paragraph 5.5.5)
    // W6a R max active = W6a R min active + W6a Height active =
    //                  = 727.000mm + 96.100mm = 823.100mm
    // W6b Height active= 84.900mm (Tab. 2) (but 84.936 mm p. 39!?)
    // W6b R min active = 826.060mm (Paragraph 5.5.6)
    // W6b R max active = 826.060mm + 84.900mm = 910.960mm
    // mean radius module = 0.5*(910.960mm + 727.000mm) = 818.980mm
    // mean radius gap = 0.5*(826.060mm + 823.100mm) = 824.580mm
    //          -1: local y and r have opposite directions!
    // ySplit = -1*(mean radius gap - mean radius module)
    //        = -1*(824.580mm - 818.980mm) = -5.6mm
    return -0.56;
  } else {  // TEC ring 5 - smaller radii alreay excluded before
    // W5a Height active= 81.200mm (Tab. 2) (but 81.169 mm p. 36!?)
    // W5a R min active = 603.200mm (Paragraph 5.5.3)
    // W5a R max active = W5a R min active + W5a Height active =
    //                  = 603.200mm + 81.200mm = 684.400mm
    // W5b Height active= 63.200mm (Tab. 2) (63.198 mm on p. 37)
    // W5b R min active = 687.293mm (Abschnitt 5.5.4 der note)
    // W5b R max active = 687.293mm + 63.200mm = 750.493mm
    // mean radius module = 0.5*(750.493mm + 603.200mm) = 676.8465mm
    // mean radius gap = 0.5*(687.293mm + 684.400mm) = 685.8465mm
    //          -1: local y and r have opposite directions!
    // ySplit = -1*(mean radius gap - mean radius module)
    //        = -1*(685.8465mm - 676.8465mm) = -9mm
    return -0.9;
  }
  //  return 0.;
}