1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
|
/** \file TwoBowedSurfacesAlignmentParameters.cc
*
* Version : $Revision: 1.2 $
* last update: $Date: 2010/11/23 13:50:50 $
* by : $Author: flucke $
*/
#include "FWCore/MessageLogger/interface/MessageLogger.h"
#include "FWCore/Utilities/interface/Exception.h"
#include "TrackingTools/TrajectoryState/interface/TrajectoryStateOnSurface.h"
#include "Alignment/CommonAlignment/interface/Alignable.h"
#include "Alignment/CommonAlignment/interface/AlignableDetOrUnitPtr.h"
#include "Alignment/CommonAlignmentParametrization/interface/AlignmentParametersFactory.h"
#include "Alignment/CommonAlignmentParametrization/interface/KarimakiAlignmentDerivatives.h"
#include "CondFormats/Alignment/interface/Definitions.h"
//#include "DataFormats/Alignment/interface/SurfaceDeformation.h"
#include "Geometry/CommonTopologies/interface/TwoBowedSurfacesDeformation.h"
// This class's header
#include "Alignment/CommonAlignmentParametrization/interface/TwoBowedSurfacesAlignmentParameters.h"
#include <cmath>
#include <iostream>
//_________________________________________________________________________________________________
TwoBowedSurfacesAlignmentParameters::TwoBowedSurfacesAlignmentParameters(Alignable *ali)
: AlignmentParameters(ali, AlgebraicVector(N_PARAM), AlgebraicSymMatrix(N_PARAM, 0)),
ySplit_(this->ySplitFromAlignable(ali)) {}
//_________________________________________________________________________________________________
TwoBowedSurfacesAlignmentParameters ::TwoBowedSurfacesAlignmentParameters(Alignable *alignable,
const AlgebraicVector ¶meters,
const AlgebraicSymMatrix &covMatrix)
: AlignmentParameters(alignable, parameters, covMatrix), ySplit_(this->ySplitFromAlignable(alignable)) {
if (parameters.num_row() != N_PARAM) {
throw cms::Exception("BadParameters") << "in TwoBowedSurfacesAlignmentParameters(): " << parameters.num_row()
<< " instead of " << N_PARAM << " parameters.";
}
}
//_________________________________________________________________________________________________
TwoBowedSurfacesAlignmentParameters ::TwoBowedSurfacesAlignmentParameters(Alignable *alignable,
const AlgebraicVector ¶meters,
const AlgebraicSymMatrix &covMatrix,
const std::vector<bool> &selection)
: AlignmentParameters(alignable, parameters, covMatrix, selection), ySplit_(this->ySplitFromAlignable(alignable)) {
if (parameters.num_row() != N_PARAM) {
throw cms::Exception("BadParameters") << "in TwoBowedSurfacesAlignmentParameters(): " << parameters.num_row()
<< " instead of " << N_PARAM << " parameters.";
}
}
//_________________________________________________________________________________________________
TwoBowedSurfacesAlignmentParameters *TwoBowedSurfacesAlignmentParameters::clone(
const AlgebraicVector ¶meters, const AlgebraicSymMatrix &covMatrix) const {
TwoBowedSurfacesAlignmentParameters *rbap =
new TwoBowedSurfacesAlignmentParameters(this->alignable(), parameters, covMatrix, selector());
if (this->userVariables())
rbap->setUserVariables(this->userVariables()->clone());
rbap->setValid(this->isValid());
return rbap;
}
//_________________________________________________________________________________________________
TwoBowedSurfacesAlignmentParameters *TwoBowedSurfacesAlignmentParameters::cloneFromSelected(
const AlgebraicVector ¶meters, const AlgebraicSymMatrix &covMatrix) const {
return this->clone(this->expandVector(parameters, this->selector()),
this->expandSymMatrix(covMatrix, this->selector()));
}
//_________________________________________________________________________________________________
AlgebraicMatrix TwoBowedSurfacesAlignmentParameters::derivatives(const TrajectoryStateOnSurface &tsos,
const AlignableDetOrUnitPtr &alidet) const {
const Alignable *ali = this->alignable(); // Alignable of these parameters
AlgebraicMatrix result(N_PARAM, 2); // initialised with zeros
if (ali == alidet) {
const AlignableSurface &surf = ali->surface();
// matrix of dimension BowedDerivs::N_PARAM x 2
const AlgebraicMatrix derivs(BowedDerivs()(tsos, surf.width(), surf.length(), true, ySplit_)); // split at ySplit_!
// Parameters belong to surface part with y < ySplit_ or y >= ySplit_?
const double localY = tsos.localParameters().mixedFormatVector()[4];
const unsigned int indexOffset = (localY < ySplit_ ? 0 : dx2);
// Copy derivatives to relevant part of result
for (unsigned int i = BowedDerivs::dx; i < BowedDerivs::N_PARAM; ++i) {
result[indexOffset + i][0] = derivs[i][0];
result[indexOffset + i][1] = derivs[i][1];
}
} else {
// The following is even more difficult for
// TwoBowedSurfacesAlignmentParameters than for
// BowedSurfaceAlignmentParameters where this text comes from:
//
// We could give this a meaning by applying frame-to-frame derivatives
// to the rigid body part of the parameters (be careful that alpha ~=
// dslopeY and beta ~= -dslopeX, but with changed scale!) and keep the
// surface structure parameters untouched in local meaning. In this way we
// could do higher level alignment and determine 'average' surface
// structures for the components.
throw cms::Exception("MisMatch") << "TwoBowedSurfacesAlignmentParameters::derivatives: The hit "
"alignable must match the "
<< "aligned one (i.e. bowed surface parameters cannot be used for "
"composed alignables)\n";
}
return result;
}
//_________________________________________________________________________________________________
void TwoBowedSurfacesAlignmentParameters::apply() {
Alignable *alignable = this->alignable();
if (!alignable) {
throw cms::Exception("BadParameters") << "TwoBowedSurfacesAlignmentParameters::apply: parameters without "
"alignable";
}
// Some repeatedly needed variables
const AlignableSurface &surface = alignable->surface();
const double halfLength = surface.length() * 0.5; // full module
const double halfLength1 = (halfLength + ySplit_) * 0.5; // low-y surface
const double halfLength2 = (halfLength - ySplit_) * 0.5; // high-y surface
// first copy the parameters into separate parts for the two surfaces
const AlgebraicVector ¶ms = theData->parameters();
std::vector<double> rigidBowPar1(BowedDerivs::N_PARAM); // 1st surface (y < ySplit_)
std::vector<double> rigidBowPar2(BowedDerivs::N_PARAM); // 2nd surface (y >= ySplit_)
for (unsigned int i = 0; i < BowedDerivs::N_PARAM; ++i) {
rigidBowPar1[i] = params[i];
rigidBowPar2[i] = params[i + BowedDerivs::N_PARAM];
}
// Now adjust slopes to angles, note that dslopeX <-> -beta & dslopeY <->
// alpha, see BowedSurfaceAlignmentParameters::rotation(): FIXME: use atan?
rigidBowPar1[3] = params[dslopeY1] / halfLength1; // alpha1
rigidBowPar2[3] = params[dslopeY2] / halfLength2; // alpha2
rigidBowPar1[4] = -params[dslopeX1] / (surface.width() * 0.5); // beta1
rigidBowPar2[4] = -params[dslopeX2] / (surface.width() * 0.5); // beta2
// gamma is simply scaled
const double gammaScale1 = BowedDerivs::gammaScale(surface.width(), 2.0 * halfLength1);
rigidBowPar1[5] = params[drotZ1] / gammaScale1;
// const double gammaScale2 = std::sqrt(halfLength2 * halfLength2
// + surface.width() * surface.width()/4.);
const double gammaScale2 = BowedDerivs::gammaScale(surface.width(), 2.0 * halfLength2);
rigidBowPar2[5] = params[drotZ2] / gammaScale2;
// Get rigid body rotations of full module as mean of the two surfaces:
align::EulerAngles angles(3); // to become 'common' rotation in local frame
for (unsigned int i = 0; i < 3; ++i) {
angles[i] = (rigidBowPar1[i + 3] + rigidBowPar2[i + 3]) * 0.5;
}
// Module rotations are around other axes than the one we determined,
// so we have to correct that the surfaces are shifted by the rotation around
// the module axis - in linear approximation just an additional shift:
const double yMean1 = -halfLength + halfLength1; // y of alpha1 rotation axis in module frame
const double yMean2 = halfLength - halfLength2; // y of alpha2 rotation axis in module frame
rigidBowPar1[dz1] -= angles[0] * yMean1; // correct w1 for alpha
rigidBowPar2[dz1] -= angles[0] * yMean2; // correct w2 for alpha
// Nothing for beta1/2 since anyway both around the y-axis of the module.
rigidBowPar1[dx1] += angles[2] * yMean1; // correct x1 for gamma
rigidBowPar2[dx1] += angles[2] * yMean2; // correct x1 for gamma
// Get rigid body shifts of full module as mean of the two surfaces:
const align::LocalVector shift((rigidBowPar1[dx1] + rigidBowPar2[dx1]) * 0.5, // dx1!
(rigidBowPar1[dy1] + rigidBowPar2[dy1]) * 0.5, // dy1!
(rigidBowPar1[dz1] + rigidBowPar2[dz1]) * 0.5); // dz1!
// Apply module shift and rotation:
alignable->move(surface.toGlobal(shift));
// original code:
// alignable->rotateInLocalFrame( align::toMatrix(angles) );
// correct for rounding errors:
align::RotationType rot(surface.toGlobal(align::toMatrix(angles)));
align::rectify(rot);
alignable->rotateInGlobalFrame(rot);
// only update the surface deformations if they were selected for alignment
if (selector()[dsagittaX1] || selector()[dsagittaXY1] || selector()[dsagittaY1] || selector()[dsagittaX2] ||
selector()[dsagittaXY2] || selector()[dsagittaY2]) {
// Fill surface structures with mean bows and half differences for all
// parameters:
std::vector<align::Scalar> deformations;
deformations.reserve(13);
// first part: average bows
deformations.push_back((params[dsagittaX1] + params[dsagittaX2]) * 0.5);
deformations.push_back((params[dsagittaXY1] + params[dsagittaXY2]) * 0.5);
deformations.push_back((params[dsagittaY1] + params[dsagittaY2]) * 0.5);
// second part: half difference of all corrections
for (unsigned int i = 0; i < BowedDerivs::N_PARAM; ++i) {
// sign means that we have to apply e.g.
// - sagittaX for sensor 1: deformations[0] + deformations[9]
// - sagittaX for sensor 2: deformations[0] - deformations[9]
// - additional dx for sensor 1: deformations[3]
// - additional dx for sensor 2: -deformations[3]
deformations.push_back((rigidBowPar1[i] - rigidBowPar2[i]) * 0.5);
}
// finally: keep track of where we have split the module
deformations.push_back(ySplit_); // index is 12
const TwoBowedSurfacesDeformation deform{deformations};
// FIXME: true to propagate down?
// Needed for hierarchy with common deformation parameter,
// but that is not possible now anyway.
alignable->addSurfaceDeformation(&deform, false);
}
}
//_________________________________________________________________________________________________
int TwoBowedSurfacesAlignmentParameters::type() const { return AlignmentParametersFactory::kTwoBowedSurfaces; }
//_________________________________________________________________________________________________
void TwoBowedSurfacesAlignmentParameters::print() const {
std::cout << "Contents of TwoBowedSurfacesAlignmentParameters:"
<< "\nParameters: " << theData->parameters() << "\nCovariance: " << theData->covariance() << std::endl;
}
//_________________________________________________________________________________________________
double TwoBowedSurfacesAlignmentParameters::ySplitFromAlignable(const Alignable *ali) const {
if (!ali)
return 0.;
const align::PositionType pos(ali->globalPosition());
const double r = pos.perp();
// The returned numbers for TEC are calculated as stated below from
// what is found in CMS-NOTE 2003/20.
// Note that at that time it was planned to use ST sensors for the outer TEC
// while in the end there are only a few of them in the tracker - the others
// are HPK. No idea whether there are subtle changes in geometry. The numbers
// have been cross checked with y-residuals in data, see
// https://hypernews.cern.ch/HyperNews/CMS/get/recoTracking/1018/1/1/2/1/1/1/2/1.html.
if (r < 58.) { // Pixel, TIB, TID or TEC ring 1-4
edm::LogError("Alignment") << "@SUB=TwoBowedSurfacesAlignmentParameters::ySplitFromAlignable"
<< "There are no split modules for radii < 58, but r = " << r;
return 0.;
} else if (fabs(pos.z()) < 118.) { // TOB
return 0.;
} else if (r > 90.) { // TEC ring 7
// W7a Height active= 106.900mm (Tab. 2) (but 106.926 mm p. 40!?)
// W7a R min active = 888.400mm (Paragraph 5.5.7)
// W7a R max active = W7a R min active + W7a Height active =
// = 888.400mm + 106.900mm = 995.300mm
// W7b Height active= 94.900mm (Tab. 2) (but 94.876 mm p. 41!?)
// W7b R min active = 998.252mm (Paragraph 5.5.8)
// W7b R max active = 998.252mm + 94.900mm = 1093.152mm
// mean radius module = 0.5*(1093.152mm + 888.400mm) = 990.776mm
// mean radius gap = 0.5*(998.252mm + 995.300mm) = 996.776mm
// ySplit = (mean radius gap - mean radius module) // local y and r have
// same directions!
// = 996.776mm - 990.776mm = 6mm
return 0.6;
} else if (r > 75.) { // TEC ring 6
// W6a Height active= 96.100mm (Tab. 2) (but 96.136 mm p. 38!?)
// W6a R min active = 727.000mm (Paragraph 5.5.5)
// W6a R max active = W6a R min active + W6a Height active =
// = 727.000mm + 96.100mm = 823.100mm
// W6b Height active= 84.900mm (Tab. 2) (but 84.936 mm p. 39!?)
// W6b R min active = 826.060mm (Paragraph 5.5.6)
// W6b R max active = 826.060mm + 84.900mm = 910.960mm
// mean radius module = 0.5*(910.960mm + 727.000mm) = 818.980mm
// mean radius gap = 0.5*(826.060mm + 823.100mm) = 824.580mm
// -1: local y and r have opposite directions!
// ySplit = -1*(mean radius gap - mean radius module)
// = -1*(824.580mm - 818.980mm) = -5.6mm
return -0.56;
} else { // TEC ring 5 - smaller radii alreay excluded before
// W5a Height active= 81.200mm (Tab. 2) (but 81.169 mm p. 36!?)
// W5a R min active = 603.200mm (Paragraph 5.5.3)
// W5a R max active = W5a R min active + W5a Height active =
// = 603.200mm + 81.200mm = 684.400mm
// W5b Height active= 63.200mm (Tab. 2) (63.198 mm on p. 37)
// W5b R min active = 687.293mm (Abschnitt 5.5.4 der note)
// W5b R max active = 687.293mm + 63.200mm = 750.493mm
// mean radius module = 0.5*(750.493mm + 603.200mm) = 676.8465mm
// mean radius gap = 0.5*(687.293mm + 684.400mm) = 685.8465mm
// -1: local y and r have opposite directions!
// ySplit = -1*(mean radius gap - mean radius module)
// = -1*(685.8465mm - 676.8465mm) = -9mm
return -0.9;
}
// return 0.;
}
|