1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
|
#ifndef GENERS_ARRAYADAPTOR_HH_
#define GENERS_ARRAYADAPTOR_HH_
#include "Alignment/Geners/interface/IOException.hh"
#include <cassert>
#include <cstddef>
#include "Alignment/Geners/interface/IOIsContiguous.hh"
#include "Alignment/Geners/interface/InsertContainerItem.hh"
#include "Alignment/Geners/interface/ProcessItem.hh"
#include "Alignment/Geners/interface/binaryIO.hh"
namespace gs {
template <class Stream, class State, class Item, class Stage>
struct GenericWriter;
template <class Stream, class State, class Item, class Stage>
struct GenericReader;
template <typename T>
class ArrayAdaptor {
public:
typedef T value_type;
typedef const T *const_iterator;
inline ArrayAdaptor(const T *indata, const std::size_t sz, const bool writeItemClassId = true)
: data_(indata), size_(sz), writetemCl_(writeItemClassId) {
if (sz)
assert(data_);
}
inline std::size_t size() const { return size_; }
inline const_iterator begin() const { return data_; }
inline const_iterator end() const { return data_ + size_; }
inline bool writeItemClassId() const { return writetemCl_; }
inline const T &operator[](const std::size_t index) const { return data_[index]; }
inline T &operator[](const std::size_t index) { return (const_cast<T *>(data_))[index]; }
inline T &at(const std::size_t index) {
if (index >= size_)
throw gs::IOOutOfRange("gs::ArrayAdaptor::at: index out of range");
return (const_cast<T *>(data_))[index];
}
ArrayAdaptor() = delete;
private:
const T *data_;
std::size_t size_;
bool writetemCl_;
};
template <class T>
struct IOIsContiguous<ArrayAdaptor<T>> {
enum { value = 1 };
};
template <class T>
struct IOIsContiguous<const ArrayAdaptor<T>> {
enum { value = 1 };
};
template <class T>
struct IOIsContiguous<volatile ArrayAdaptor<T>> {
enum { value = 1 };
};
template <class T>
struct IOIsContiguous<const volatile ArrayAdaptor<T>> {
enum { value = 1 };
};
template <class T>
struct InsertContainerItem<ArrayAdaptor<T>> {
typedef ArrayAdaptor<T> A;
static inline void insert(A &obj, const typename A::value_type &item, const std::size_t itemNumber) {
obj.at(itemNumber) = item;
}
};
template <class T>
struct InsertContainerItem<volatile ArrayAdaptor<T>> {
typedef ArrayAdaptor<T> A;
static inline void insert(A &obj, const typename A::value_type &item, const std::size_t itemNumber) {
obj.at(itemNumber) = item;
}
};
// Ignore array size I/O. The size is provided in the constructor.
// Of course, it still has to be written somewhere, but that code
// is external w.r.t. the array adaptor.
template <class Stream, class State, class T>
struct GenericWriter<Stream, State, ArrayAdaptor<T>, InContainerSize> {
inline static bool process(std::size_t, Stream &os, State *, const bool processClassId) { return true; }
};
template <class Stream, class State, class T>
struct GenericReader<Stream, State, ArrayAdaptor<T>, InContainerSize> {
inline static bool process(std::size_t, Stream &os, State *, const bool processClassId) { return true; }
};
template <class Stream, class State, class T>
struct GenericWriter<Stream, State, ArrayAdaptor<T>, InPODArray> {
inline static bool process(const ArrayAdaptor<T> &a, Stream &os, State *, bool) {
const std::size_t len = a.size();
if (len)
write_pod_array(os, &a[0], len);
return !os.fail();
}
};
template <class Stream, class State, class T>
struct GenericReader<Stream, State, ArrayAdaptor<T>, InPODArray> {
inline static bool process(ArrayAdaptor<T> &a, Stream &s, State *, bool) {
const std::size_t len = a.size();
if (len)
read_pod_array(s, &a[0], len);
return !s.fail();
}
};
template <class Stream, class State, class T>
struct GenericWriter<Stream, State, ArrayAdaptor<T>, InContainerHeader> {
typedef ArrayAdaptor<T> Container;
inline static bool process(const Container &c, Stream &os, State *, const bool processClassId) {
bool status = processClassId ? ClassId::makeId<Container>().write(os) : true;
if (status && !(IOTraits<T>::IsPOD && IOTraits<Container>::IsContiguous) && c.writeItemClassId())
status = ClassId::makeId<T>().write(os);
return status;
}
};
template <class Stream, class State, class T>
struct GenericReader<Stream, State, ArrayAdaptor<T>, InContainerHeader> {
typedef ArrayAdaptor<T> Container;
inline static bool process(Container &a, Stream &is, State *state, const bool processClassId) {
bool status = true;
if (processClassId) {
ClassId id(is, 1);
const ClassId ¤t = ClassId::makeId<Container>();
status = (id.name() == current.name());
}
if (status) {
if (!(IOTraits<T>::IsPOD && IOTraits<Container>::IsContiguous))
if (a.writeItemClassId()) {
ClassId id(is, 1);
state->push_back(id);
}
}
return status;
}
};
template <class Stream, class State, class T>
struct GenericReader<Stream, State, ArrayAdaptor<T>, InContainerFooter> {
typedef ArrayAdaptor<T> Container;
inline static bool process(Container &a, Stream &, State *state, bool) {
if (!(IOTraits<T>::IsPOD && IOTraits<Container>::IsContiguous))
if (a.writeItemClassId())
state->pop_back();
return true;
}
};
} // namespace gs
gs_specialize_template_id_T(gs::ArrayAdaptor, 0, 1)
#endif // GENERS_ARRAYADAPTOR_HH_
|