Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
//=========================================================================
// binaryIO.hh
//
// "Low-level" utility API for reading/writing data in a binary form
// (this particular form is not platform independent). All "geners" I/O
// should be performed through one of the functions defined in this file,
// there should be no direct user manipulation of C++ streams. In this
// way possible future I/O modifications will be isolated and restricted
// to this facility.
//
// I. Volobouev
// April 2009
//=========================================================================

#ifndef GENERS_BINARYIO_HH_
#define GENERS_BINARYIO_HH_

#include <memory>
#include "Alignment/Geners/interface/ClassId.hh"
#include "Alignment/Geners/interface/IOException.hh"

#include <cassert>
#include <iostream>
#include <memory>
#include <vector>

namespace gs {
  // The following functions perform binary I/O of built-in types.
  // Note that all of them are "void". It is assumed that the
  // top-level code will check the status of the stream after
  // several I/O operations.
  template <typename T>
  inline void write_pod(std::ostream &of, const T &pod) {
    of.write(reinterpret_cast<const char *>(&pod), sizeof(T));
  }

  template <typename T>
  inline void read_pod(std::istream &in, T *pod) {
    assert(pod);
    in.read(reinterpret_cast<char *>(pod), sizeof(T));
  }

  template <typename T>
  inline void write_pod_array(std::ostream &of, const T *pod, const unsigned long len) {
    if (len) {
      assert(pod);
      of.write(reinterpret_cast<const char *>(pod), len * sizeof(T));
    }
  }

  template <typename T>
  inline void read_pod_array(std::istream &in, T *pod, const unsigned long len) {
    if (len) {
      assert(pod);
      in.read(reinterpret_cast<char *>(pod), len * sizeof(T));
    }
  }

  // String is treated as a pod vector. This will be guaranteed
  // to work correctly in the C++11 standard (the current standard
  // does not specify that the characters must be stored contuguously
  // inside the string -- however, this is always true in practice).
  template <typename T>
  inline void write_string(std::ostream &of, const std::basic_string<T> &v) {
    const unsigned long sz = v.size();
    write_pod(of, sz);
    if (sz)
      write_pod_array(of, v.data(), sz);
  }

  template <typename T>
  inline void read_string(std::istream &in, std::basic_string<T> *pv) {
    assert(pv);
    unsigned long vlen = 0UL;
    read_pod(in, &vlen);
    if (vlen) {
      pv->resize(vlen);
      read_pod_array(in, const_cast<T *>(pv->data()), vlen);
    } else
      pv->clear();
  }

  // Specialization of POD-based I/O functions so that they work
  // as if std::string is a POD
  template <>
  inline void write_pod<std::string>(std::ostream &of, const std::string &s) {
    write_string<char>(of, s);
  }

  template <>
  inline void read_pod<std::string>(std::istream &in, std::string *ps) {
    read_string<char>(in, ps);
  }

  template <>
  inline void write_pod_array<std::string>(std::ostream &of, const std::string *pod, const unsigned long len) {
    if (len) {
      assert(pod);
      for (unsigned long i = 0; i < len; ++i)
        write_string<char>(of, pod[i]);
    }
  }

  template <>
  inline void read_pod_array<std::string>(std::istream &in, std::string *pod, const unsigned long len) {
    if (len) {
      assert(pod);
      for (unsigned long i = 0; i < len; ++i)
        read_string<char>(in, pod + i);
    }
  }

  template <typename T>
  inline void write_pod_vector(std::ostream &of, const std::vector<T> &v) {
    const unsigned long sz = v.size();
    write_pod(of, sz);
    if (sz)
      write_pod_array(of, &v[0], sz);
  }

  template <typename T>
  inline void read_pod_vector(std::istream &in, std::vector<T> *pv) {
    assert(pv);
    unsigned long vlen = 0UL;
    read_pod(in, &vlen);
    if (in.fail())
      throw IOReadFailure("In gs::read_pod_vector: input stream failure");
    if (vlen) {
      pv->resize(vlen);
      read_pod_array(in, &((*pv)[0]), vlen);
    } else
      pv->clear();
  }

  // The following functions perform binary I/O on objects
  // which have write/read/restore functions. Compared to
  // calling the corresponding class methods directly, these
  // function take care of writing out the class identifier.
  //
  template <typename T>
  inline bool write_obj(std::ostream &of, const T &obj) {
    return obj.classId().write(of) && obj.write(of);
  }

  template <typename T>
  inline std::unique_ptr<T> read_obj(std::istream &in) {
    const ClassId id(in, 1);
    return std::unique_ptr<T>(T::read(id, in));
  }

  template <typename T>
  inline void restore_obj(std::istream &in, T *obj) {
    assert(obj);
    const ClassId id(in, 1);
    T::restore(id, in, obj);
  }

  // The following function is templated upon the reader factory
  template <typename Reader>
  inline std::unique_ptr<typename Reader::value_type> read_base_obj(std::istream &in, const Reader &f) {
    typedef typename Reader::value_type T;
    const ClassId id(in, 1);
    return std::unique_ptr<T>(f.read(id, in));
  }

  // The following function assumes that the array contains actual
  // objects rather than pointers
  template <typename T>
  inline bool write_obj_array(std::ostream &of, const T *arr, const unsigned long len) {
    bool status = true;
    if (len) {
      assert(arr);
      status = arr[0].classId().write(of);
      for (unsigned long i = 0; i < len && status; ++i)
        status = arr[i].write(of);
    }
    return status;
  }

  // The following assumes that the array contains actual objects
  // and that class T has the "restore" function
  template <typename T>
  inline void read_placed_obj_array(std::istream &in, T *arr, const unsigned long len) {
    if (len) {
      assert(arr);
      const ClassId id(in, 1);
      for (unsigned long i = 0; i < len; ++i)
        T::restore(id, in, arr + i);
    }
  }

  // The following assumes that the array contains a bunch of
  // shared pointers and that class T has the "read" function
  template <typename T>
  inline void read_heap_obj_array(std::istream &in, std::shared_ptr<T> *arr, const unsigned long len) {
    if (len) {
      assert(arr);
      const ClassId id(in, 1);
      for (unsigned long i = 0; i < len; ++i) {
        T *obj = T::read(id, in);
        arr[i] = std::shared_ptr<T>(obj);
      }
    }
  }

  // The following function is templated upon the reader factory
  template <typename Reader>
  inline void read_base_obj_array(std::istream &in,
                                  const Reader &f,
                                  std::shared_ptr<typename Reader::value_type> *arr,
                                  const unsigned long len) {
    typedef typename Reader::value_type T;
    if (len) {
      assert(arr);
      const ClassId id(in, 1);
      for (unsigned long i = 0; i < len; ++i) {
        T *obj = f.read(id, in);
        arr[i] = std::shared_ptr<T>(obj);
      }
    }
  }

  // The following assumes that the vector contains actual objects
  template <typename T>
  inline bool write_obj_vector(std::ostream &of, const std::vector<T> &v) {
    const unsigned long sz = v.size();
    write_pod(of, sz);
    bool status = !of.fail();
    if (sz && status)
      status = write_obj_array(of, &v[0], sz);
    return status;
  }

  // The following assumes that the vector contains actual objects
  template <typename T>
  inline void read_placed_obj_vector(std::istream &in, std::vector<T> *pv) {
    unsigned long vlen = 0UL;
    read_pod(in, &vlen);
    if (in.fail())
      throw IOReadFailure("In gs::read_placed_obj_vector: input stream failure");
    assert(pv);
    if (vlen) {
      pv->resize(vlen);
      read_placed_obj_array(in, &(*pv)[0], vlen);
    } else
      pv->clear();
  }

  // The following assumes that the vector contains a bunch of
  // shared pointers
  template <typename T>
  inline void read_heap_obj_vector(std::istream &in, std::vector<std::shared_ptr<T>> *pv) {
    unsigned long vlen = 0UL;
    read_pod(in, &vlen);
    if (in.fail())
      throw IOReadFailure("In gs::read_heap_obj_vector: input stream failure");
    assert(pv);
    if (vlen) {
      pv->resize(vlen);
      return read_heap_obj_array(in, &(*pv)[0], vlen);
    } else
      pv->clear();
  }

  // The following assumes that the vector contains actual objects.
  // This function is less efficient than others, but it has to be
  // used sometimes if one wants to have a vector of objects without
  // default constructors.
  //
  template <typename T>
  inline void read_heap_obj_vector_as_placed(std::istream &in, std::vector<T> *pv) {
    unsigned long vlen = 0UL;
    read_pod(in, &vlen);
    if (in.fail())
      throw IOReadFailure("In gs::read_heap_obj_vector_as_placed: input stream failure");
    assert(pv);
    pv->clear();
    if (vlen) {
      const ClassId id(in, 1);
      pv->reserve(vlen);
      for (unsigned long i = 0; i < vlen; ++i) {
        std::unique_ptr<T> obj(T::read(id, in));
        pv->push_back(*obj);
      }
    }
  }

  // The following function is templated upon the reader factory
  template <typename Reader>
  inline void read_base_obj_vector(std::istream &in,
                                   const Reader &f,
                                   std::vector<std::shared_ptr<typename Reader::value_type>> *pv) {
    unsigned long vlen = 0UL;
    read_pod(in, &vlen);
    if (in.fail())
      throw IOReadFailure("In gs::read_base_obj_vector: input stream failure");
    assert(pv);
    if (vlen) {
      pv->resize(vlen);
      read_base_obj_array(in, f, &(*pv)[0], vlen);
    } else
      pv->clear();
  }
}  // namespace gs

#endif  // GENERS_BINARYIO_HH_