1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
|
#include "Alignment/LaserAlignment/interface/LASAlignmentTubeAlgorithm.h"
///
///
///
LASAlignmentTubeAlgorithm::LASAlignmentTubeAlgorithm() {}
///
///
///
LASBarrelAlignmentParameterSet LASAlignmentTubeAlgorithm::CalculateParameters(
LASGlobalData<LASCoordinateSet>& measuredCoordinates, LASGlobalData<LASCoordinateSet>& nominalCoordinates) {
std::cout << " [LASAlignmentTubeAlgorithm::CalculateParameters] -- Starting." << std::endl;
// for debugging only
//######################################################################################
//ReadMisalignmentFromFile( "misalign-var.txt", measuredCoordinates, nominalCoordinates );
//######################################################################################
// loop object
LASGlobalLoop globalLoop;
int det, beam, disk, pos;
// phi positions of the AT beams in rad
const double phiPositions[8] = {0.392699, 1.289799, 1.851794, 2.748894, 3.645995, 4.319690, 5.216791, 5.778784};
std::vector<double> beamPhiPositions(8, 0.);
for (beam = 0; beam < 8; ++beam)
beamPhiPositions.at(beam) = phiPositions[beam];
// the radii of the alignment tube beams for each halfbarrel.
// the halfbarrels 1-6 are (see TkLasATModel TWiki): TEC+, TEC-, TIB+, TIB-. TOB+, TOB-
// in TIB/TOB modules these radii differ from the beam radius..
// ..due to the radial offsets (after the semitransparent mirrors)
const double radii[6] = {564., 564., 514., 514., 600., 600.};
std::vector<double> beamRadii(6, 0.);
for (int aHalfbarrel = 0; aHalfbarrel < 6; ++aHalfbarrel)
beamRadii.at(aHalfbarrel) = radii[aHalfbarrel];
// the z positions of the halfbarrel_end_faces / outer_TEC_disks (in mm);
// parameters are: det, side(0=+/1=-), z(0=lowerZ/1=higherZ). TECs have no side (use side = 0)
std::vector<std::vector<std::vector<double> > > endFaceZPositions(
4, std::vector<std::vector<double> >(2, std::vector<double>(2, 0.)));
endFaceZPositions.at(0).at(0).at(0) = 1322.5; // TEC+, *, disk1 ///
endFaceZPositions.at(0).at(0).at(1) = 2667.5; // TEC+, *, disk9 /// SIDE INFORMATION
endFaceZPositions.at(1).at(0).at(0) = -2667.5; // TEC-, *, disk9 /// MEANINGLESS FOR TEC -> USE .at(0)!
endFaceZPositions.at(1).at(0).at(1) = -1322.5; // TEC-, *, disk1 ///
endFaceZPositions.at(2).at(1).at(0) = -700.; // TIB, -, outer
endFaceZPositions.at(2).at(1).at(1) = -300.; // TIB, -, inner
endFaceZPositions.at(2).at(0).at(0) = 300.; // TIB, +, inner
endFaceZPositions.at(2).at(0).at(1) = 700.; // TIB, +, outer
endFaceZPositions.at(3).at(1).at(0) = -1090.; // TOB, -, outer
endFaceZPositions.at(3).at(1).at(1) = -300.; // TOB, -, inner
endFaceZPositions.at(3).at(0).at(0) = 300.; // TOB, +, inner
endFaceZPositions.at(3).at(0).at(1) = 1090.; // TOB, +, outer
// reduced z positions of the beam spots ( z'_{k,j}, z"_{k,j} )
double detReducedZ[2] = {0., 0.};
// reduced beam splitter positions ( zt'_{k,j}, zt"_{k,j} )
double beamReducedZ[2] = {0., 0.};
// the z positions of the virtual planes at which the beam parameters are measured
std::vector<double> disk9EndFaceZPositions(2, 0.);
disk9EndFaceZPositions.at(0) = -2667.5; // TEC- disk9
disk9EndFaceZPositions.at(1) = 2667.5; // TEC+ disk9
// define sums over measured values to "simplify" the beam parameter formulas
// all these have 6 entries, one for each halfbarrel (TEC+,TEC-,TIB+,TIB-,TOB+,TOB-)
std::vector<double> sumOverPhiZPrime(6, 0.);
std::vector<double> sumOverPhiZPrimePrime(6, 0.);
std::vector<double> sumOverPhiZPrimeSinTheta(6, 0.);
std::vector<double> sumOverPhiZPrimePrimeSinTheta(6, 0.);
std::vector<double> sumOverPhiZPrimeCosTheta(6, 0.);
std::vector<double> sumOverPhiZPrimePrimeCosTheta(6, 0.);
// these have 8 entries, one for each beam
std::vector<double> sumOverPhiZTPrime(8, 0.);
std::vector<double> sumOverPhiZTPrimePrime(8, 0.);
// define sums over nominal values
// all these have 6 entries, one for each halfbarrel (TEC+,TEC-,TIB+,TIB-,TOB+,TOB-)
std::vector<double> sumOverZPrimeSquared(6, 0.);
std::vector<double> sumOverZPrimePrimeSquared(6, 0.);
std::vector<double> sumOverZPrimeZPrimePrime(6, 0.);
std::vector<double> sumOverZPrimeZTPrime(6, 0.);
std::vector<double> sumOverZPrimeZTPrimePrime(6, 0.);
std::vector<double> sumOverZPrimePrimeZTPrime(6, 0.);
std::vector<double> sumOverZPrimePrimeZTPrimePrime(6, 0.);
// all these are scalars
double sumOverZTPrimeSquared = 0.;
double sumOverZTPrimePrimeSquared = 0.;
double sumOverZTPrimeZTPrimePrime = 0.;
// now calculate them for TIBTOB
det = 2;
beam = 0;
pos = 0;
do {
// define the side: 0 for TIB+/TOB+ and 1 for TIB-/TOB-
const int theSide = pos < 3 ? 0 : 1;
// define the halfbarrel number from det/side
const int halfbarrel = det == 2 ? det + theSide : det + 1 + theSide; // TIB:TOB
// this is the path the beam has to travel radially after being reflected
// by the AT mirrors (TIB:50mm, TOB:36mm) -> used for beam parameters
const double radialOffset = det == 2 ? 50. : 36.;
// reduced module's z position with respect to the subdetector endfaces (zPrime, zPrimePrime)
detReducedZ[0] = measuredCoordinates.GetTIBTOBEntry(det, beam, pos).GetZ() -
endFaceZPositions.at(det).at(theSide).at(0); // = zPrime
detReducedZ[0] /= (endFaceZPositions.at(det).at(theSide).at(1) - endFaceZPositions.at(det).at(theSide).at(0));
detReducedZ[1] = endFaceZPositions.at(det).at(theSide).at(1) -
measuredCoordinates.GetTIBTOBEntry(det, beam, pos).GetZ(); // = zPrimePrime
detReducedZ[1] /= (endFaceZPositions.at(det).at(theSide).at(1) - endFaceZPositions.at(det).at(theSide).at(0));
// reduced module's z position with respect to the tec disks +-9 (for the beam parameters)
beamReducedZ[0] = (measuredCoordinates.GetTIBTOBEntry(det, beam, pos).GetZ() - radialOffset) -
disk9EndFaceZPositions.at(0); // = ZTPrime
beamReducedZ[0] /= (disk9EndFaceZPositions.at(1) - disk9EndFaceZPositions.at(0));
beamReducedZ[1] = disk9EndFaceZPositions.at(1) -
(measuredCoordinates.GetTIBTOBEntry(det, beam, pos).GetZ() - radialOffset); // ZTPrimePrime
beamReducedZ[1] /= (disk9EndFaceZPositions.at(1) - disk9EndFaceZPositions.at(0));
// residual in phi (in the formulas this corresponds to y_ik/R)
const double phiResidual = measuredCoordinates.GetTIBTOBEntry(det, beam, pos).GetPhi() -
nominalCoordinates.GetTIBTOBEntry(det, beam, pos).GetPhi();
// sums over measured values
sumOverPhiZPrime.at(halfbarrel) += phiResidual * detReducedZ[0];
sumOverPhiZPrimePrime.at(halfbarrel) += phiResidual * detReducedZ[1];
sumOverPhiZPrimeSinTheta.at(halfbarrel) += phiResidual * detReducedZ[0] * sin(beamPhiPositions.at(beam));
sumOverPhiZPrimePrimeSinTheta.at(halfbarrel) += phiResidual * detReducedZ[1] * sin(beamPhiPositions.at(beam));
sumOverPhiZPrimeCosTheta.at(halfbarrel) += phiResidual * detReducedZ[0] * cos(beamPhiPositions.at(beam));
sumOverPhiZPrimePrimeCosTheta.at(halfbarrel) += phiResidual * detReducedZ[1] * cos(beamPhiPositions.at(beam));
sumOverPhiZTPrime.at(beam) += phiResidual * beamReducedZ[0]; // note the index change here..
sumOverPhiZTPrimePrime.at(beam) += phiResidual * beamReducedZ[1];
// sums over nominal values
sumOverZPrimeSquared.at(halfbarrel) += pow(detReducedZ[0], 2) / 8.; // these are defined beam-wise, so: / 8.
sumOverZPrimePrimeSquared.at(halfbarrel) += pow(detReducedZ[1], 2) / 8.;
sumOverZPrimeZPrimePrime.at(halfbarrel) += detReducedZ[0] * detReducedZ[1] / 8.;
sumOverZPrimeZTPrime.at(halfbarrel) += detReducedZ[0] * beamReducedZ[0] / 8.;
sumOverZPrimeZTPrimePrime.at(halfbarrel) += detReducedZ[0] * beamReducedZ[1] / 8.;
sumOverZPrimePrimeZTPrime.at(halfbarrel) += detReducedZ[1] * beamReducedZ[0] / 8.;
sumOverZPrimePrimeZTPrimePrime.at(halfbarrel) += detReducedZ[1] * beamReducedZ[1] / 8.;
sumOverZTPrimeSquared += pow(beamReducedZ[0], 2) / 8.;
sumOverZTPrimePrimeSquared += pow(beamReducedZ[1], 2) / 8.;
sumOverZTPrimeZTPrimePrime += beamReducedZ[0] * beamReducedZ[1] / 8.;
} while (globalLoop.TIBTOBLoop(det, beam, pos));
// now for TEC2TEC
det = 0;
beam = 0;
disk = 0;
do {
// for the tec, the halfbarrel numbers are equal to the det numbers...
const int halfbarrel = det;
// ...so there's no side distinction for the TEC
const int theSide = 0;
// also, there's no radial offset for the TEC
const double radialOffset = 0.;
// reduced module's z position with respect to the subdetector endfaces (zPrime, zPrimePrime)
detReducedZ[0] = measuredCoordinates.GetTEC2TECEntry(det, beam, disk).GetZ() -
endFaceZPositions.at(det).at(theSide).at(0); // = zPrime
detReducedZ[0] /= (endFaceZPositions.at(det).at(theSide).at(1) - endFaceZPositions.at(det).at(theSide).at(0));
detReducedZ[1] = endFaceZPositions.at(det).at(theSide).at(1) -
measuredCoordinates.GetTEC2TECEntry(det, beam, disk).GetZ(); // = zPrimePrime
detReducedZ[1] /= (endFaceZPositions.at(det).at(theSide).at(1) - endFaceZPositions.at(det).at(theSide).at(0));
// reduced module's z position with respect to the tec disks +-9 (for the beam parameters)
beamReducedZ[0] = (measuredCoordinates.GetTEC2TECEntry(det, beam, disk).GetZ() - radialOffset) -
disk9EndFaceZPositions.at(0); // = ZTPrime
beamReducedZ[0] /= (disk9EndFaceZPositions.at(1) - disk9EndFaceZPositions.at(0));
beamReducedZ[1] = disk9EndFaceZPositions.at(1) -
(measuredCoordinates.GetTEC2TECEntry(det, beam, disk).GetZ() - radialOffset); // ZTPrimePrime
beamReducedZ[1] /= (disk9EndFaceZPositions.at(1) - disk9EndFaceZPositions.at(0));
// residual in phi (in the formulas this corresponds to y_ik/R)
const double phiResidual = measuredCoordinates.GetTEC2TECEntry(det, beam, disk).GetPhi() -
nominalCoordinates.GetTEC2TECEntry(det, beam, disk).GetPhi();
// sums over measured values
sumOverPhiZPrime.at(halfbarrel) += phiResidual * detReducedZ[0];
sumOverPhiZPrimePrime.at(halfbarrel) += phiResidual * detReducedZ[1];
sumOverPhiZPrimeSinTheta.at(halfbarrel) += phiResidual * detReducedZ[0] * sin(beamPhiPositions.at(beam));
sumOverPhiZPrimePrimeSinTheta.at(halfbarrel) += phiResidual * detReducedZ[1] * sin(beamPhiPositions.at(beam));
sumOverPhiZPrimeCosTheta.at(halfbarrel) += phiResidual * detReducedZ[0] * cos(beamPhiPositions.at(beam));
sumOverPhiZPrimePrimeCosTheta.at(halfbarrel) += phiResidual * detReducedZ[1] * cos(beamPhiPositions.at(beam));
sumOverPhiZTPrime.at(beam) += phiResidual * beamReducedZ[0]; // note the index change here..
sumOverPhiZTPrimePrime.at(beam) += phiResidual * beamReducedZ[1];
// sums over nominal values
sumOverZPrimeSquared.at(halfbarrel) += pow(detReducedZ[0], 2) / 8.; // these are defined beam-wise, so: / 8.
sumOverZPrimePrimeSquared.at(halfbarrel) += pow(detReducedZ[1], 2) / 8.;
sumOverZPrimeZPrimePrime.at(halfbarrel) += detReducedZ[0] * detReducedZ[1] / 8.;
sumOverZPrimeZTPrime.at(halfbarrel) += detReducedZ[0] * beamReducedZ[0] / 8.;
sumOverZPrimeZTPrimePrime.at(halfbarrel) += detReducedZ[0] * beamReducedZ[1] / 8.;
sumOverZPrimePrimeZTPrime.at(halfbarrel) += detReducedZ[1] * beamReducedZ[0] / 8.;
sumOverZPrimePrimeZTPrimePrime.at(halfbarrel) += detReducedZ[1] * beamReducedZ[1] / 8.;
sumOverZTPrimeSquared += pow(beamReducedZ[0], 2) / 8.;
sumOverZTPrimePrimeSquared += pow(beamReducedZ[1], 2) / 8.;
sumOverZTPrimeZTPrimePrime += beamReducedZ[0] * beamReducedZ[1] / 8.;
} while (globalLoop.TEC2TECLoop(det, beam, disk));
// more "simplification" terms...
// these here are functions of theta and can be calculated directly
double sumOverSinTheta = 0.;
double sumOverCosTheta = 0.;
double sumOverSinThetaSquared = 0.;
double sumOverCosThetaSquared = 0.;
double sumOverCosThetaSinTheta = 0.;
double mixedTrigonometricTerm = 0.;
for (beam = 0; beam < 8; ++beam) {
sumOverSinTheta += sin(beamPhiPositions.at(beam));
sumOverCosTheta += cos(beamPhiPositions.at(beam));
sumOverSinThetaSquared += pow(sin(beamPhiPositions.at(beam)), 2);
sumOverCosThetaSquared += pow(cos(beamPhiPositions.at(beam)), 2);
sumOverCosThetaSinTheta += cos(beamPhiPositions.at(beam)) * sin(beamPhiPositions.at(beam));
}
mixedTrigonometricTerm = 8. * (sumOverCosThetaSquared * sumOverSinThetaSquared - pow(sumOverCosThetaSinTheta, 2)) -
pow(sumOverCosTheta, 2) * sumOverSinThetaSquared -
pow(sumOverSinTheta, 2) * sumOverCosThetaSquared +
2. * sumOverCosTheta * sumOverSinTheta * sumOverCosThetaSinTheta;
// even more shortcuts before we can calculate the parameters
double beamDenominator =
(pow(sumOverZTPrimeZTPrimePrime, 2) - sumOverZTPrimeSquared * sumOverZTPrimePrimeSquared) * beamRadii.at(0);
std::vector<double> alignmentDenominator(6, 0.);
std::vector<double> termA(6, 0.), termB(6, 0.), termC(6, 0.), termD(6, 0.);
for (unsigned int aHalfbarrel = 0; aHalfbarrel < 6; ++aHalfbarrel) {
alignmentDenominator.at(aHalfbarrel) =
(pow(sumOverZPrimeZPrimePrime.at(aHalfbarrel), 2) -
sumOverZPrimeSquared.at(aHalfbarrel) * sumOverZPrimePrimeSquared.at(aHalfbarrel)) *
mixedTrigonometricTerm;
termA.at(aHalfbarrel) = sumOverZPrimeZTPrime.at(aHalfbarrel) * sumOverZTPrimeZTPrimePrime -
sumOverZPrimeZTPrimePrime.at(aHalfbarrel) * sumOverZTPrimeSquared;
termB.at(aHalfbarrel) = sumOverZPrimePrimeZTPrime.at(aHalfbarrel) * sumOverZTPrimeZTPrimePrime -
sumOverZPrimePrimeZTPrimePrime.at(aHalfbarrel) * sumOverZTPrimeSquared;
termC.at(aHalfbarrel) = sumOverZPrimeZTPrimePrime.at(aHalfbarrel) * sumOverZTPrimeZTPrimePrime -
sumOverZPrimeZTPrime.at(aHalfbarrel) * sumOverZTPrimePrimeSquared;
termD.at(aHalfbarrel) = sumOverZPrimePrimeZTPrimePrime.at(aHalfbarrel) * sumOverZTPrimeZTPrimePrime -
sumOverZPrimePrimeZTPrime.at(aHalfbarrel) * sumOverZTPrimePrimeSquared;
}
// have eight alignment tube beams..
const int numberOfBeams = 8;
// that's all for preparation, now it gets ugly:
// calculate the alignment parameters
LASBarrelAlignmentParameterSet theResult;
// can do this in one go for all halfbarrels
for (int aHalfbarrel = 0; aHalfbarrel < 6; ++aHalfbarrel) {
// no errors yet
// rotation angles of the lower z endfaces (in rad)
theResult.GetParameter(aHalfbarrel, 0, 0).first =
(sumOverPhiZPrime.at(aHalfbarrel) * sumOverZPrimeZPrimePrime.at(aHalfbarrel) * sumOverCosThetaSquared *
sumOverSinThetaSquared -
sumOverPhiZPrimePrime.at(aHalfbarrel) * sumOverZPrimeSquared.at(aHalfbarrel) * sumOverCosThetaSquared *
sumOverSinThetaSquared -
sumOverPhiZPrimeCosTheta.at(aHalfbarrel) * sumOverZPrimeZPrimePrime.at(aHalfbarrel) * sumOverCosTheta *
sumOverSinThetaSquared +
sumOverPhiZPrimePrimeCosTheta.at(aHalfbarrel) * sumOverZPrimeSquared.at(aHalfbarrel) * sumOverCosTheta *
sumOverSinThetaSquared +
sumOverPhiZPrimeCosTheta.at(aHalfbarrel) * sumOverZPrimeZPrimePrime.at(aHalfbarrel) * sumOverCosThetaSinTheta *
sumOverSinTheta -
sumOverPhiZPrimePrimeCosTheta.at(aHalfbarrel) * sumOverZPrimeSquared.at(aHalfbarrel) *
sumOverCosThetaSinTheta * sumOverSinTheta -
sumOverPhiZPrimeSinTheta.at(aHalfbarrel) * sumOverZPrimeZPrimePrime.at(aHalfbarrel) * sumOverCosThetaSquared *
sumOverSinTheta +
sumOverPhiZPrimePrimeSinTheta.at(aHalfbarrel) * sumOverZPrimeSquared.at(aHalfbarrel) * sumOverCosThetaSquared *
sumOverSinTheta -
sumOverPhiZPrime.at(aHalfbarrel) * sumOverZPrimeZPrimePrime.at(aHalfbarrel) * pow(sumOverCosThetaSinTheta, 2) +
sumOverPhiZPrimePrime.at(aHalfbarrel) * sumOverZPrimeSquared.at(aHalfbarrel) *
pow(sumOverCosThetaSinTheta, 2) +
sumOverPhiZPrimeSinTheta.at(aHalfbarrel) * sumOverZPrimeZPrimePrime.at(aHalfbarrel) * sumOverCosTheta *
sumOverCosThetaSinTheta -
sumOverPhiZPrimePrimeSinTheta.at(aHalfbarrel) * sumOverZPrimeSquared.at(aHalfbarrel) * sumOverCosTheta *
sumOverCosThetaSinTheta) /
alignmentDenominator.at(aHalfbarrel);
// rotation angles of the upper z endfaces (in rad)
theResult.GetParameter(aHalfbarrel, 1, 0).first =
(sumOverPhiZPrimePrime.at(aHalfbarrel) * sumOverZPrimeZPrimePrime.at(aHalfbarrel) * sumOverCosThetaSquared *
sumOverSinThetaSquared -
sumOverPhiZPrime.at(aHalfbarrel) * sumOverZPrimePrimeSquared.at(aHalfbarrel) * sumOverCosThetaSquared *
sumOverSinThetaSquared -
sumOverPhiZPrimePrimeCosTheta.at(aHalfbarrel) * sumOverZPrimeZPrimePrime.at(aHalfbarrel) * sumOverCosTheta *
sumOverSinThetaSquared +
sumOverPhiZPrimeCosTheta.at(aHalfbarrel) * sumOverZPrimePrimeSquared.at(aHalfbarrel) * sumOverCosTheta *
sumOverSinThetaSquared +
sumOverPhiZPrimePrimeCosTheta.at(aHalfbarrel) * sumOverZPrimeZPrimePrime.at(aHalfbarrel) *
sumOverCosThetaSinTheta * sumOverSinTheta -
sumOverPhiZPrimeCosTheta.at(aHalfbarrel) * sumOverZPrimePrimeSquared.at(aHalfbarrel) *
sumOverCosThetaSinTheta * sumOverSinTheta -
sumOverPhiZPrimePrimeSinTheta.at(aHalfbarrel) * sumOverZPrimeZPrimePrime.at(aHalfbarrel) *
sumOverCosThetaSquared * sumOverSinTheta +
sumOverPhiZPrimeSinTheta.at(aHalfbarrel) * sumOverZPrimePrimeSquared.at(aHalfbarrel) * sumOverCosThetaSquared *
sumOverSinTheta -
sumOverPhiZPrimePrime.at(aHalfbarrel) * sumOverZPrimeZPrimePrime.at(aHalfbarrel) * sumOverCosThetaSinTheta *
sumOverCosThetaSinTheta +
sumOverPhiZPrime.at(aHalfbarrel) * sumOverZPrimePrimeSquared.at(aHalfbarrel) * sumOverCosThetaSinTheta *
sumOverCosThetaSinTheta +
sumOverPhiZPrimePrimeSinTheta.at(aHalfbarrel) * sumOverZPrimeZPrimePrime.at(aHalfbarrel) * sumOverCosTheta *
sumOverCosThetaSinTheta -
sumOverPhiZPrimeSinTheta.at(aHalfbarrel) * sumOverZPrimePrimeSquared.at(aHalfbarrel) * sumOverCosTheta *
sumOverCosThetaSinTheta) /
alignmentDenominator.at(aHalfbarrel);
// x deviations of the lower z endfaces (in mm)
theResult.GetParameter(aHalfbarrel, 0, 1).first =
-1. *
(sumOverPhiZPrime.at(aHalfbarrel) * sumOverZPrimeZPrimePrime.at(aHalfbarrel) * sumOverCosThetaSquared *
sumOverSinTheta -
sumOverPhiZPrimePrime.at(aHalfbarrel) * sumOverZPrimeSquared.at(aHalfbarrel) * sumOverCosThetaSquared *
sumOverSinTheta -
sumOverPhiZPrimeCosTheta.at(aHalfbarrel) * sumOverZPrimeZPrimePrime.at(aHalfbarrel) * sumOverCosTheta *
sumOverSinTheta +
sumOverPhiZPrimePrimeCosTheta.at(aHalfbarrel) * sumOverZPrimeSquared.at(aHalfbarrel) * sumOverCosTheta *
sumOverSinTheta -
sumOverPhiZPrime.at(aHalfbarrel) * sumOverZPrimeZPrimePrime.at(aHalfbarrel) * sumOverCosTheta *
sumOverCosThetaSinTheta +
sumOverPhiZPrimePrime.at(aHalfbarrel) * sumOverZPrimeSquared.at(aHalfbarrel) * sumOverCosTheta *
sumOverCosThetaSinTheta +
sumOverPhiZPrimeCosTheta.at(aHalfbarrel) * sumOverZPrimeZPrimePrime.at(aHalfbarrel) * numberOfBeams *
sumOverCosThetaSinTheta -
sumOverPhiZPrimePrimeCosTheta.at(aHalfbarrel) * sumOverZPrimeSquared.at(aHalfbarrel) * numberOfBeams *
sumOverCosThetaSinTheta -
sumOverPhiZPrimeSinTheta.at(aHalfbarrel) * sumOverZPrimeZPrimePrime.at(aHalfbarrel) * numberOfBeams *
sumOverCosThetaSquared +
sumOverPhiZPrimePrimeSinTheta.at(aHalfbarrel) * sumOverZPrimeSquared.at(aHalfbarrel) * numberOfBeams *
sumOverCosThetaSquared +
sumOverPhiZPrimeSinTheta.at(aHalfbarrel) * sumOverZPrimeZPrimePrime.at(aHalfbarrel) * sumOverCosTheta *
sumOverCosTheta -
sumOverPhiZPrimePrimeSinTheta.at(aHalfbarrel) * sumOverZPrimeSquared.at(aHalfbarrel) * sumOverCosTheta *
sumOverCosTheta) /
alignmentDenominator.at(aHalfbarrel) * beamRadii.at(aHalfbarrel);
// x deviations of the upper z endfaces (in mm)
theResult.GetParameter(aHalfbarrel, 1, 1).first =
-1. *
(sumOverPhiZPrimePrime.at(aHalfbarrel) * sumOverZPrimeZPrimePrime.at(aHalfbarrel) * sumOverCosThetaSquared *
sumOverSinTheta -
sumOverPhiZPrime.at(aHalfbarrel) * sumOverZPrimePrimeSquared.at(aHalfbarrel) * sumOverCosThetaSquared *
sumOverSinTheta -
sumOverPhiZPrimePrimeCosTheta.at(aHalfbarrel) * sumOverZPrimeZPrimePrime.at(aHalfbarrel) * sumOverCosTheta *
sumOverSinTheta +
sumOverPhiZPrimeCosTheta.at(aHalfbarrel) * sumOverZPrimePrimeSquared.at(aHalfbarrel) * sumOverCosTheta *
sumOverSinTheta -
sumOverPhiZPrimePrime.at(aHalfbarrel) * sumOverZPrimeZPrimePrime.at(aHalfbarrel) * sumOverCosTheta *
sumOverCosThetaSinTheta +
sumOverPhiZPrime.at(aHalfbarrel) * sumOverZPrimePrimeSquared.at(aHalfbarrel) * sumOverCosTheta *
sumOverCosThetaSinTheta +
sumOverPhiZPrimePrimeCosTheta.at(aHalfbarrel) * sumOverZPrimeZPrimePrime.at(aHalfbarrel) * numberOfBeams *
sumOverCosThetaSinTheta -
sumOverPhiZPrimeCosTheta.at(aHalfbarrel) * sumOverZPrimePrimeSquared.at(aHalfbarrel) * numberOfBeams *
sumOverCosThetaSinTheta -
sumOverPhiZPrimePrimeSinTheta.at(aHalfbarrel) * sumOverZPrimeZPrimePrime.at(aHalfbarrel) * numberOfBeams *
sumOverCosThetaSquared +
sumOverPhiZPrimeSinTheta.at(aHalfbarrel) * sumOverZPrimePrimeSquared.at(aHalfbarrel) * numberOfBeams *
sumOverCosThetaSquared +
sumOverPhiZPrimePrimeSinTheta.at(aHalfbarrel) * sumOverZPrimeZPrimePrime.at(aHalfbarrel) * sumOverCosTheta *
sumOverCosTheta -
sumOverPhiZPrimeSinTheta.at(aHalfbarrel) * sumOverZPrimePrimeSquared.at(aHalfbarrel) * sumOverCosTheta *
sumOverCosTheta) /
alignmentDenominator.at(aHalfbarrel) * beamRadii.at(aHalfbarrel);
// y deviations of the lower z endfaces (in mm)
theResult.GetParameter(aHalfbarrel, 0, 2).first =
(sumOverPhiZPrime.at(aHalfbarrel) * sumOverZPrimeZPrimePrime.at(aHalfbarrel) * sumOverCosTheta *
sumOverSinThetaSquared -
sumOverPhiZPrimePrime.at(aHalfbarrel) * sumOverZPrimeSquared.at(aHalfbarrel) * sumOverCosTheta *
sumOverSinThetaSquared -
sumOverPhiZPrimeCosTheta.at(aHalfbarrel) * sumOverZPrimeZPrimePrime.at(aHalfbarrel) * numberOfBeams *
sumOverSinThetaSquared +
sumOverPhiZPrimePrimeCosTheta.at(aHalfbarrel) * sumOverZPrimeSquared.at(aHalfbarrel) * numberOfBeams *
sumOverSinThetaSquared +
sumOverPhiZPrimeCosTheta.at(aHalfbarrel) * sumOverZPrimeZPrimePrime.at(aHalfbarrel) * sumOverSinTheta *
sumOverSinTheta -
sumOverPhiZPrimePrimeCosTheta.at(aHalfbarrel) * sumOverZPrimeSquared.at(aHalfbarrel) * sumOverSinTheta *
sumOverSinTheta -
sumOverPhiZPrime.at(aHalfbarrel) * sumOverZPrimeZPrimePrime.at(aHalfbarrel) * sumOverCosThetaSinTheta *
sumOverSinTheta +
sumOverPhiZPrimePrime.at(aHalfbarrel) * sumOverZPrimeSquared.at(aHalfbarrel) * sumOverCosThetaSinTheta *
sumOverSinTheta -
sumOverPhiZPrimeSinTheta.at(aHalfbarrel) * sumOverZPrimeZPrimePrime.at(aHalfbarrel) * sumOverCosTheta *
sumOverSinTheta +
sumOverPhiZPrimePrimeSinTheta.at(aHalfbarrel) * sumOverZPrimeSquared.at(aHalfbarrel) * sumOverCosTheta *
sumOverSinTheta +
sumOverPhiZPrimeSinTheta.at(aHalfbarrel) * sumOverZPrimeZPrimePrime.at(aHalfbarrel) * numberOfBeams *
sumOverCosThetaSinTheta -
sumOverPhiZPrimePrimeSinTheta.at(aHalfbarrel) * sumOverZPrimeSquared.at(aHalfbarrel) * numberOfBeams *
sumOverCosThetaSinTheta) /
alignmentDenominator.at(aHalfbarrel) * beamRadii.at(aHalfbarrel);
// y deviations of the upper z endfaces (in mm)
theResult.GetParameter(aHalfbarrel, 1, 2).first =
(sumOverPhiZPrimePrime.at(aHalfbarrel) * sumOverZPrimeZPrimePrime.at(aHalfbarrel) * sumOverCosTheta *
sumOverSinThetaSquared -
sumOverPhiZPrime.at(aHalfbarrel) * sumOverZPrimePrimeSquared.at(aHalfbarrel) * sumOverCosTheta *
sumOverSinThetaSquared -
sumOverPhiZPrimePrimeCosTheta.at(aHalfbarrel) * sumOverZPrimeZPrimePrime.at(aHalfbarrel) * numberOfBeams *
sumOverSinThetaSquared +
sumOverPhiZPrimeCosTheta.at(aHalfbarrel) * sumOverZPrimePrimeSquared.at(aHalfbarrel) * numberOfBeams *
sumOverSinThetaSquared +
sumOverPhiZPrimePrimeCosTheta.at(aHalfbarrel) * sumOverZPrimeZPrimePrime.at(aHalfbarrel) * sumOverSinTheta *
sumOverSinTheta -
sumOverPhiZPrimeCosTheta.at(aHalfbarrel) * sumOverZPrimePrimeSquared.at(aHalfbarrel) * sumOverSinTheta *
sumOverSinTheta -
sumOverPhiZPrimePrime.at(aHalfbarrel) * sumOverZPrimeZPrimePrime.at(aHalfbarrel) * sumOverCosThetaSinTheta *
sumOverSinTheta +
sumOverPhiZPrime.at(aHalfbarrel) * sumOverZPrimePrimeSquared.at(aHalfbarrel) * sumOverCosThetaSinTheta *
sumOverSinTheta -
sumOverPhiZPrimePrimeSinTheta.at(aHalfbarrel) * sumOverZPrimeZPrimePrime.at(aHalfbarrel) * sumOverCosTheta *
sumOverSinTheta +
sumOverPhiZPrimeSinTheta.at(aHalfbarrel) * sumOverZPrimePrimeSquared.at(aHalfbarrel) * sumOverCosTheta *
sumOverSinTheta +
sumOverPhiZPrimePrimeSinTheta.at(aHalfbarrel) * sumOverZPrimeZPrimePrime.at(aHalfbarrel) * numberOfBeams *
sumOverCosThetaSinTheta -
sumOverPhiZPrimeSinTheta.at(aHalfbarrel) * sumOverZPrimePrimeSquared.at(aHalfbarrel) * numberOfBeams *
sumOverCosThetaSinTheta) /
alignmentDenominator.at(aHalfbarrel) * beamRadii.at(aHalfbarrel);
}
// another loop is needed here to calculate some terms for the beam parameters
double vsumA = 0., vsumB = 0., vsumC = 0., vsumD = 0., vsumE = 0., vsumF = 0.;
for (unsigned int aHalfbarrel = 0; aHalfbarrel < 6; ++aHalfbarrel) {
vsumA += theResult.GetParameter(aHalfbarrel, 1, 2).first * termA.at(aHalfbarrel) +
theResult.GetParameter(aHalfbarrel, 0, 2).first * termB.at(aHalfbarrel);
vsumB += theResult.GetParameter(aHalfbarrel, 1, 1).first * termA.at(aHalfbarrel) +
theResult.GetParameter(aHalfbarrel, 0, 1).first * termB.at(aHalfbarrel);
vsumC += beamRadii.at(aHalfbarrel) * (theResult.GetParameter(aHalfbarrel, 1, 0).first * termA.at(aHalfbarrel) +
theResult.GetParameter(aHalfbarrel, 0, 0).first * termB.at(aHalfbarrel));
vsumD += theResult.GetParameter(aHalfbarrel, 1, 2).first * termC.at(aHalfbarrel) +
theResult.GetParameter(aHalfbarrel, 0, 2).first * termD.at(aHalfbarrel);
vsumE += theResult.GetParameter(aHalfbarrel, 1, 1).first * termC.at(aHalfbarrel) +
theResult.GetParameter(aHalfbarrel, 0, 1).first * termD.at(aHalfbarrel);
vsumF += beamRadii.at(aHalfbarrel) * (theResult.GetParameter(aHalfbarrel, 1, 0).first * termC.at(aHalfbarrel) +
theResult.GetParameter(aHalfbarrel, 0, 0).first * termD.at(aHalfbarrel));
}
// calculate the beam parameters
for (unsigned int beam = 0; beam < 8; ++beam) {
// parameter A, defined at lower z
theResult.GetBeamParameter(beam, 0).first =
(cos(beamPhiPositions.at(beam)) * vsumA - sin(beamPhiPositions.at(beam)) * vsumB - vsumC +
sumOverPhiZTPrime.at(beam) * sumOverZTPrimeZTPrimePrime -
sumOverPhiZTPrimePrime.at(beam) * sumOverZTPrimeSquared) /
beamDenominator;
///////////////////////////////////////////////////////////////////////////////////////////////////
std::cout << "BBBBBBBB: " << cos(beamPhiPositions.at(beam)) * vsumA << " "
<< -1. * sin(beamPhiPositions.at(beam)) * vsumB << " " << -1. * vsumC << " "
<< sumOverPhiZTPrime.at(beam) * sumOverZTPrimeZTPrimePrime -
sumOverPhiZTPrimePrime.at(beam) * sumOverZTPrimeSquared
<< " " << beamDenominator << std::endl;
///////////////////////////////////////////////////////////////////////////////////////////////////
// parameter B, defined at upper z
theResult.GetBeamParameter(beam, 1).first =
(cos(beamPhiPositions.at(beam)) * vsumD - sin(beamPhiPositions.at(beam)) * vsumE - vsumF +
sumOverPhiZTPrimePrime.at(beam) * sumOverZTPrimeZTPrimePrime -
sumOverPhiZTPrime.at(beam) * sumOverZTPrimePrimeSquared) /
beamDenominator;
}
return theResult;
}
///
/// get global phi correction from alignment parameters
/// for an alignment tube module in TIB/TOB
///
double LASAlignmentTubeAlgorithm::GetTIBTOBAlignmentParameterCorrection(
int det,
int beam,
int pos,
LASGlobalData<LASCoordinateSet>& nominalCoordinates,
LASBarrelAlignmentParameterSet& alignmentParameters) {
// INITIALIZATION;
// ALL THIS IS DUPLICATED FOR THE MOMENT, SHOULD FINALLY BE CALCULATED ONLY ONCE
// AND HARD CODED NUMBERS SHOULD CENTRALLY BE IMPORTED FROM src/LASConstants.h
// the z positions of the halfbarrel_end_faces / outer_TEC_disks (in mm);
// parameters are: det, side(0=+/1=-), z(0=lowerZ/1=higherZ). TECs have no side (use side = 0)
std::vector<std::vector<std::vector<double> > > endFaceZPositions(
4, std::vector<std::vector<double> >(2, std::vector<double>(2, 0.)));
endFaceZPositions.at(0).at(0).at(0) = 1322.5; // TEC+, *, disk1 ///
endFaceZPositions.at(0).at(0).at(1) = 2667.5; // TEC+, *, disk9 /// SIDE INFORMATION
endFaceZPositions.at(1).at(0).at(0) = -2667.5; // TEC-, *, disk9 /// MEANINGLESS FOR TEC -> USE .at(0)!
endFaceZPositions.at(1).at(0).at(1) = -1322.5; // TEC-, *, disk1 ///
endFaceZPositions.at(2).at(1).at(0) = -700.; // TIB, -, outer
endFaceZPositions.at(2).at(1).at(1) = -300.; // TIB, -, inner
endFaceZPositions.at(2).at(0).at(0) = 300.; // TIB, +, inner
endFaceZPositions.at(2).at(0).at(1) = 700.; // TIB, +, outer
endFaceZPositions.at(3).at(1).at(0) = -1090.; // TOB, -, outer
endFaceZPositions.at(3).at(1).at(1) = -300.; // TOB, -, inner
endFaceZPositions.at(3).at(0).at(0) = 300.; // TOB, +, inner
endFaceZPositions.at(3).at(0).at(1) = 1090.; // TOB, +, outer
// the z positions of the virtual planes at which the beam parameters are measured
std::vector<double> disk9EndFaceZPositions(2, 0.);
disk9EndFaceZPositions.at(0) = -2667.5; // TEC- disk9
disk9EndFaceZPositions.at(1) = 2667.5; // TEC+ disk9
// define the side: 0 for TIB+/TOB+ and 1 for TIB-/TOB-
const int theSide = pos < 3 ? 0 : 1;
// define the halfbarrel number from det/side
const int halfbarrel = det == 2 ? det + theSide : det + 1 + theSide; // TIB:TOB
// this is the path the beam has to travel radially after being reflected
// by the AT mirrors (TIB:50mm, TOB:36mm) -> used for beam parameters
const double radialOffset = det == 2 ? 50. : 36.;
// phi positions of the AT beams in rad
const double phiPositions[8] = {0.392699, 1.289799, 1.851794, 2.748894, 3.645995, 4.319690, 5.216791, 5.778784};
std::vector<double> beamPhiPositions(8, 0.);
for (unsigned int aBeam = 0; aBeam < 8; ++aBeam)
beamPhiPositions.at(aBeam) = phiPositions[aBeam];
// the radii of the alignment tube beams for each halfbarrel.
// the halfbarrels 1-6 are (see TkLasATModel TWiki): TEC+, TEC-, TIB+, TIB-. TOB+, TOB-
// in TIB/TOB modules these radii differ from the beam radius..
// ..due to the radial offsets (after the semitransparent mirrors)
const double radii[6] = {564., 564., 514., 514., 600., 600.};
std::vector<double> beamRadii(6, 0.);
for (int aHalfbarrel = 0; aHalfbarrel < 6; ++aHalfbarrel)
beamRadii.at(aHalfbarrel) = radii[aHalfbarrel];
// reduced z positions of the beam spots ( z'_{k,j}, z"_{k,j} )
double detReducedZ[2] = {0., 0.};
// reduced beam splitter positions ( zt'_{k,j}, zt"_{k,j} )
double beamReducedZ[2] = {0., 0.};
// reduced module's z position with respect to the subdetector endfaces (zPrime, zPrimePrime)
detReducedZ[0] = nominalCoordinates.GetTIBTOBEntry(det, beam, pos).GetZ() -
endFaceZPositions.at(det).at(theSide).at(0); // = zPrime
detReducedZ[0] /= (endFaceZPositions.at(det).at(theSide).at(1) - endFaceZPositions.at(det).at(theSide).at(0));
detReducedZ[1] = endFaceZPositions.at(det).at(theSide).at(1) -
nominalCoordinates.GetTIBTOBEntry(det, beam, pos).GetZ(); // = zPrimePrime
detReducedZ[1] /= (endFaceZPositions.at(det).at(theSide).at(1) - endFaceZPositions.at(det).at(theSide).at(0));
// reduced module's z position with respect to the tec disks +-9 (for the beam parameters)
beamReducedZ[0] = (nominalCoordinates.GetTIBTOBEntry(det, beam, pos).GetZ() - radialOffset) -
disk9EndFaceZPositions.at(0); // = ZTPrime
beamReducedZ[0] /= (disk9EndFaceZPositions.at(1) - disk9EndFaceZPositions.at(0));
beamReducedZ[1] = disk9EndFaceZPositions.at(1) -
(nominalCoordinates.GetTIBTOBEntry(det, beam, pos).GetZ() - radialOffset); // ZTPrimePrime
beamReducedZ[1] /= (disk9EndFaceZPositions.at(1) - disk9EndFaceZPositions.at(0));
// the correction to phi from the endcap algorithm;
// it is defined such that the correction is to be subtracted ///////////////////////////////// ???
double phiCorrection = 0.;
// contribution from phi rotation of first end face
phiCorrection += detReducedZ[1] * alignmentParameters.GetParameter(halfbarrel, 0, 0).first;
// contribution from phi rotation of second end face
phiCorrection += detReducedZ[0] * alignmentParameters.GetParameter(halfbarrel, 1, 0).first;
// contribution from translation along x of first endface
phiCorrection += detReducedZ[1] * sin(beamPhiPositions.at(beam)) *
alignmentParameters.GetParameter(halfbarrel, 0, 1).first / beamRadii.at(halfbarrel);
// contribution from translation along x of second endface
phiCorrection += detReducedZ[0] * sin(beamPhiPositions.at(beam)) *
alignmentParameters.GetParameter(halfbarrel, 1, 1).first / beamRadii.at(halfbarrel);
// contribution from translation along y of first endface
phiCorrection -= detReducedZ[1] * cos(beamPhiPositions.at(beam)) *
alignmentParameters.GetParameter(halfbarrel, 0, 2).first / beamRadii.at(halfbarrel);
// contribution from translation along y of second endface
phiCorrection -= detReducedZ[0] * cos(beamPhiPositions.at(beam)) *
alignmentParameters.GetParameter(halfbarrel, 1, 2).first / beamRadii.at(halfbarrel);
// contribution from beam parameters;
// originally, the contribution in meter is proportional to the radius of the beams: beamRadii.at( 0 )
// the additional factor: beamRadii.at( halfbarrel ) converts from meter to radian on the module
phiCorrection += beamReducedZ[1] * alignmentParameters.GetBeamParameter(beam, 0).first * beamRadii.at(0) /
beamRadii.at(halfbarrel);
phiCorrection += beamReducedZ[0] * alignmentParameters.GetBeamParameter(beam, 1).first * beamRadii.at(0) /
beamRadii.at(halfbarrel);
return phiCorrection;
}
///
/// get global phi correction from alignment parameters
/// for an alignment tube module in TEC(AT)
///
double LASAlignmentTubeAlgorithm::GetTEC2TECAlignmentParameterCorrection(
int det,
int beam,
int disk,
LASGlobalData<LASCoordinateSet>& nominalCoordinates,
LASBarrelAlignmentParameterSet& alignmentParameters) {
// INITIALIZATION;
// ALL THIS IS DUPLICATED FOR THE MOMENT, SHOULD FINALLY BE CALCULATED ONLY ONCE
// AND HARD CODED NUMBERS SHOULD CENTRALLY BE IMPORTED FROM src/LASConstants.h
// the z positions of the halfbarrel_end_faces / outer_TEC_disks (in mm);
// parameters are: det, side(0=+/1=-), z(0=lowerZ/1=higherZ). TECs have no side (use side = 0)
std::vector<std::vector<std::vector<double> > > endFaceZPositions(
4, std::vector<std::vector<double> >(2, std::vector<double>(2, 0.)));
endFaceZPositions.at(0).at(0).at(0) = 1322.5; // TEC+, *, disk1 ///
endFaceZPositions.at(0).at(0).at(1) = 2667.5; // TEC+, *, disk9 /// SIDE INFORMATION
endFaceZPositions.at(1).at(0).at(0) = -2667.5; // TEC-, *, disk9 /// MEANINGLESS FOR TEC -> USE .at(0)!
endFaceZPositions.at(1).at(0).at(1) = -1322.5; // TEC-, *, disk1 ///
endFaceZPositions.at(2).at(1).at(0) = -700.; // TIB, -, outer
endFaceZPositions.at(2).at(1).at(1) = -300.; // TIB, -, inner
endFaceZPositions.at(2).at(0).at(0) = 300.; // TIB, +, inner
endFaceZPositions.at(2).at(0).at(1) = 700.; // TIB, +, outer
endFaceZPositions.at(3).at(1).at(0) = -1090.; // TOB, -, outer
endFaceZPositions.at(3).at(1).at(1) = -300.; // TOB, -, inner
endFaceZPositions.at(3).at(0).at(0) = 300.; // TOB, +, inner
endFaceZPositions.at(3).at(0).at(1) = 1090.; // TOB, +, outer
// the z positions of the virtual planes at which the beam parameters are measured
std::vector<double> disk9EndFaceZPositions(2, 0.);
disk9EndFaceZPositions.at(0) = -2667.5; // TEC- disk9
disk9EndFaceZPositions.at(1) = 2667.5; // TEC+ disk9
// for the tec, the halfbarrel numbers are equal to the det numbers...
const int halfbarrel = det;
// ...so there's no side distinction for the TEC
const int theSide = 0;
// also, there's no radial offset for the TEC
const double radialOffset = 0.;
// phi positions of the AT beams in rad
const double phiPositions[8] = {0.392699, 1.289799, 1.851794, 2.748894, 3.645995, 4.319690, 5.216791, 5.778784};
std::vector<double> beamPhiPositions(8, 0.);
for (unsigned int aBeam = 0; aBeam < 8; ++aBeam)
beamPhiPositions.at(aBeam) = phiPositions[aBeam];
// the radii of the alignment tube beams for each halfbarrel.
// the halfbarrels 1-6 are (see TkLasATModel TWiki): TEC+, TEC-, TIB+, TIB-. TOB+, TOB-
// in TIB/TOB modules these radii differ from the beam radius..
// ..due to the radial offsets (after the semitransparent mirrors)
const double radii[6] = {564., 564., 514., 514., 600., 600.};
std::vector<double> beamRadii(6, 0.);
for (int aHalfbarrel = 0; aHalfbarrel < 6; ++aHalfbarrel)
beamRadii.at(aHalfbarrel) = radii[aHalfbarrel];
// reduced z positions of the beam spots ( z'_{k,j}, z"_{k,j} )
double detReducedZ[2] = {0., 0.};
// reduced beam splitter positions ( zt'_{k,j}, zt"_{k,j} )
double beamReducedZ[2] = {0., 0.};
// reduced module's z position with respect to the subdetector endfaces (zPrime, zPrimePrime)
detReducedZ[0] = nominalCoordinates.GetTEC2TECEntry(det, beam, disk).GetZ() -
endFaceZPositions.at(det).at(theSide).at(0); // = zPrime
detReducedZ[0] /= (endFaceZPositions.at(det).at(theSide).at(1) - endFaceZPositions.at(det).at(theSide).at(0));
detReducedZ[1] = endFaceZPositions.at(det).at(theSide).at(1) -
nominalCoordinates.GetTEC2TECEntry(det, beam, disk).GetZ(); // = zPrimePrime
detReducedZ[1] /= (endFaceZPositions.at(det).at(theSide).at(1) - endFaceZPositions.at(det).at(theSide).at(0));
// reduced module's z position with respect to the tec disks +-9 (for the beam parameters)
beamReducedZ[0] = (nominalCoordinates.GetTEC2TECEntry(det, beam, disk).GetZ() - radialOffset) -
disk9EndFaceZPositions.at(0); // = ZTPrime
beamReducedZ[0] /= (disk9EndFaceZPositions.at(1) - disk9EndFaceZPositions.at(0));
beamReducedZ[1] = disk9EndFaceZPositions.at(1) -
(nominalCoordinates.GetTEC2TECEntry(det, beam, disk).GetZ() - radialOffset); // ZTPrimePrime
beamReducedZ[1] /= (disk9EndFaceZPositions.at(1) - disk9EndFaceZPositions.at(0));
// the correction to phi from the endcap algorithm;
// it is defined such that the correction is to be subtracted ///////////////////////////////// ???
double phiCorrection = 0.;
// contribution from phi rotation of first end face
phiCorrection += detReducedZ[1] * alignmentParameters.GetParameter(halfbarrel, 0, 0).first;
// contribution from phi rotation of second end face
phiCorrection += detReducedZ[0] * alignmentParameters.GetParameter(halfbarrel, 1, 0).first;
// contribution from translation along x of first endface
phiCorrection += detReducedZ[1] * sin(beamPhiPositions.at(beam)) *
alignmentParameters.GetParameter(halfbarrel, 0, 1).first / beamRadii.at(halfbarrel);
// contribution from translation along x of second endface
phiCorrection += detReducedZ[0] * sin(beamPhiPositions.at(beam)) *
alignmentParameters.GetParameter(halfbarrel, 1, 1).first / beamRadii.at(halfbarrel);
// contribution from translation along y of first endface
phiCorrection -= detReducedZ[1] * cos(beamPhiPositions.at(beam)) *
alignmentParameters.GetParameter(halfbarrel, 0, 2).first / beamRadii.at(halfbarrel);
// contribution from translation along y of second endface
phiCorrection -= detReducedZ[0] * cos(beamPhiPositions.at(beam)) *
alignmentParameters.GetParameter(halfbarrel, 1, 2).first / beamRadii.at(halfbarrel);
// contribution from beam parameters;
// originally, the contribution in meter is proportional to the radius of the beams: beamRadii.at( 0 )
// the additional factor: beamRadii.at( halfbarrel ) converts from meter to radian on the module
phiCorrection += beamReducedZ[1] * alignmentParameters.GetBeamParameter(beam, 0).first * beamRadii.at(0) /
beamRadii.at(halfbarrel);
phiCorrection += beamReducedZ[0] * alignmentParameters.GetBeamParameter(beam, 1).first * beamRadii.at(0) /
beamRadii.at(halfbarrel);
return phiCorrection;
}
///
/// allows to push in a simple simulated misalignment for quick internal testing purposes;
/// overwrites LASGlobalData<LASCoordinateSet>& measuredCoordinates;
/// call at beginning of LASBarrelAlgorithm::CalculateParameters method
///
/// one line per module,
/// format for TEC: det ring beam disk phi phiErr
/// format for TEC(at) & TIBTOB: det beam z "-1" phi phiErr
///
void LASAlignmentTubeAlgorithm::ReadMisalignmentFromFile(const char* filename,
LASGlobalData<LASCoordinateSet>& measuredCoordinates,
LASGlobalData<LASCoordinateSet>& nominalCoordinates) {
std::ifstream file(filename);
if (file.bad()) {
std::cerr << " [LASAlignmentTubeAlgorithm::ReadMisalignmentFromFile] ** ERROR: cannot open file \"" << filename
<< "\"." << std::endl;
return;
}
std::cerr << " @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@"
"@@@@@@@@@@@"
<< std::endl;
std::cerr << " @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@"
"@@@@@@@@@@@"
<< std::endl;
std::cerr << " [LASAlignmentTubeAlgorithm::ReadMisalignmentFromFile] ** WARNING: you are reading a fake measurement "
"from a file!"
<< std::endl;
std::cerr << " @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@"
"@@@@@@@@@@@"
<< std::endl;
std::cerr << " @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@"
"@@@@@@@@@@@"
<< std::endl;
// the measured coordinates will finally be overwritten;
// first, set them to the nominal values
measuredCoordinates = nominalCoordinates;
// and put large errors on all values;
{
LASGlobalLoop moduleLoop;
int det, ring, beam, disk, pos;
det = 0;
ring = 0;
beam = 0;
disk = 0;
do {
measuredCoordinates.GetTECEntry(det, ring, beam, disk).SetPhiError(1000.);
} while (moduleLoop.TECLoop(det, ring, beam, disk));
det = 2;
beam = 0;
pos = 0;
do {
measuredCoordinates.GetTIBTOBEntry(det, beam, pos).SetPhiError(1000.);
} while (moduleLoop.TIBTOBLoop(det, beam, pos));
det = 0;
beam = 0;
disk = 0;
do {
measuredCoordinates.GetTEC2TECEntry(det, beam, disk).SetPhiError(1000.);
} while (moduleLoop.TEC2TECLoop(det, beam, disk));
}
// buffers for read-in
int det, beam, z, ring;
double phi, phiError;
while (!file.eof()) {
file >> det;
if (file.eof())
break; // do not read the last line twice, do not fill trash if file empty
file >> beam;
file >> z;
file >> ring;
file >> phi;
file >> phiError;
if (det > 1) { // TIB/TOB
measuredCoordinates.GetTIBTOBEntry(det, beam, z).SetPhi(phi);
measuredCoordinates.GetTIBTOBEntry(det, beam, z).SetPhiError(phiError);
} else { // TEC or TEC(at)
if (ring > -1) { // TEC
measuredCoordinates.GetTECEntry(det, ring, beam, z).SetPhi(phi);
measuredCoordinates.GetTECEntry(det, ring, beam, z).SetPhiError(phiError);
} else { // TEC(at)
measuredCoordinates.GetTEC2TECEntry(det, beam, z).SetPhi(phi);
measuredCoordinates.GetTEC2TECEntry(det, beam, z).SetPhiError(phiError);
}
}
}
file.close();
}
|