1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
|
#include "Alignment/LaserAlignment/interface/LASEndcapAlgorithm.h"
///
///
///
LASEndcapAlgorithm::LASEndcapAlgorithm() {}
///
/// implementation of the analytical solution for the endcap;
/// described in bruno's thesis (Appendix B):
/// http://darwin.bth.rwth-aachen.de/opus3/volltexte/2002/348
/// but extended with the beams' phi positions
///
LASEndcapAlignmentParameterSet LASEndcapAlgorithm::CalculateParameters(
LASGlobalData<LASCoordinateSet>& measuredCoordinates, LASGlobalData<LASCoordinateSet>& nominalCoordinates) {
std::cout << " [LASEndcapAlgorithm::CalculateParameters] -- Starting." << std::endl;
// loop object
LASGlobalLoop globalLoop;
int det, ring, beam, disk;
// vector containing the z positions of the disks in mm;
// outer vector: TEC+/-, inner vector: 9 disks
const double zPositions[9] = {1322.5, 1462.5, 1602.5, 1742.5, 1882.5, 2057.5, 2247.5, 2452.5, 2667.5};
std::vector<std::vector<double> > diskZPositions(2, std::vector<double>(9, 0.));
for (det = 0; det < 2; ++det) {
for (disk = 0; disk < 9; ++disk) {
// sign depends on side of course
diskZPositions.at(det).at(disk) = (det == 0 ? zPositions[disk] : -1. * zPositions[disk]);
}
}
// vector containing the phi positions of the beam in rad;
// outer vector: TEC+/-, inner vector: 8 beams
const double phiPositions[8] = {0.392699, 1.178097, 1.963495, 2.748894, 3.534292, 4.319690, 5.105088, 5.890486};
std::vector<std::vector<double> > beamPhiPositions(2, std::vector<double>(8, 0.));
for (det = 0; det < 2; ++det) {
for (beam = 0; beam < 8; ++beam) {
beamPhiPositions.at(det).at(beam) = phiPositions[beam];
}
}
// vector containing the radius of ring4,ring6 = (0,1)
std::vector<double> radius(2, 0.);
radius.at(0) = 564.;
radius.at(1) = 840.;
// constants
const double endcapLength = 1345.; // mm
// now come some sums which are later used in the formulas for the parameters.
// the rings are implicitly summed over, however, this brings a little complication:
// to make the calculation of the parameters independent of the ring (=radius),
// we define some of the sums twice, once for phi and once for y=r*phi
// sum over r*phi or phi for each endcap and for each disk (both rings)
// outer vector: TEC+/-, inner vector: 9 disks
std::vector<std::vector<double> > sumOverY(2, std::vector<double>(9, 0.));
std::vector<std::vector<double> > sumOverPhi(2, std::vector<double>(9, 0.));
// sum over phi for each endcap and for each beam (both rings)
// outer vector: TEC+/-, inner vector: 8 beams
std::vector<std::vector<double> > kSumOverPhi(2, std::vector<double>(8, 0.));
// double sum over r*phi or phi, for each endcap (both rings)
// outer vector: TEC+/-
std::vector<double> doubleSumOverY(2, 0.);
std::vector<double> doubleSumOverPhi(2, 0.);
// sum over r*phi*z or phi*z, for each endcap and for each beam (both rings)
// outer vector: TEC+/-, inner vector: 8 beams
std::vector<std::vector<double> > kSumOverPhiZ(2, std::vector<double>(8, 0.));
// sum over r*phi*z or phi*z, for each endcap (both rings)
// outer vector: TEC+/-
std::vector<double> doubleSumOverYZ(2, 0.);
std::vector<double> doubleSumOverPhiZ(2, 0.);
// sum over sin(phi_nominal)*R*phi for each endcap and for each disk (both rings)
std::vector<std::vector<double> > sumOverSinThetaY(2, std::vector<double>(9, 0.));
// sum over cos(phi_nominal)*R*phi for each endcap and for each disk (both rings)
std::vector<std::vector<double> > sumOverCosThetaY(2, std::vector<double>(9, 0.));
// double sum over sin or cos(phi_nominal)*phi, for each endcap
std::vector<double> doubleSumOverSinThetaY(2, 0.);
std::vector<double> doubleSumOverCosThetaY(2, 0.);
// double sum over sin or cos(phi_nominal)*phi*z, for each endcap
std::vector<double> doubleSumOverSinThetaYZ(2, 0.);
std::vector<double> doubleSumOverCosThetaYZ(2, 0.);
// sum over z values / sum over z^2 values
std::vector<double> sumOverZ(2, 0.);
std::vector<double> sumOverZSquared(2, 0.);
// now calculate the sums
det = 0;
ring = 0;
beam = 0;
disk = 0;
do {
if (ring == 1)
continue; //################################################################################################### BOUND TO RING6
// current radius, depends on the ring
const double radius = nominalCoordinates.GetTECEntry(det, ring, beam, disk).GetR();
// residual in r*phi (in the formulas this corresponds to y_ik)
const double residual = (measuredCoordinates.GetTECEntry(det, ring, beam, disk).GetPhi() -
nominalCoordinates.GetTECEntry(det, ring, beam, disk).GetPhi()) *
radius;
sumOverY.at(det).at(disk) += residual;
sumOverPhi.at(det).at(disk) += residual / radius;
kSumOverPhi.at(det).at(beam) += residual / radius;
doubleSumOverY.at(det) += residual;
doubleSumOverPhi.at(det) += residual / radius;
kSumOverPhiZ.at(det).at(beam) += diskZPositions.at(det).at(disk) * residual / radius;
doubleSumOverYZ.at(det) += diskZPositions.at(det).at(disk) * residual;
doubleSumOverPhiZ.at(det) += diskZPositions.at(det).at(disk) * residual / radius;
sumOverSinThetaY.at(det).at(disk) += sin(nominalCoordinates.GetTECEntry(det, ring, beam, disk).GetPhi()) * residual;
sumOverCosThetaY.at(det).at(disk) += cos(nominalCoordinates.GetTECEntry(det, ring, beam, disk).GetPhi()) * residual;
doubleSumOverSinThetaY.at(det) += sin(nominalCoordinates.GetTECEntry(det, ring, beam, disk).GetPhi()) * residual;
doubleSumOverCosThetaY.at(det) += cos(nominalCoordinates.GetTECEntry(det, ring, beam, disk).GetPhi()) * residual;
doubleSumOverSinThetaYZ.at(det) += sin(nominalCoordinates.GetTECEntry(det, ring, beam, disk).GetPhi()) *
diskZPositions.at(det).at(disk) * residual;
doubleSumOverCosThetaYZ.at(det) += cos(nominalCoordinates.GetTECEntry(det, ring, beam, disk).GetPhi()) *
diskZPositions.at(det).at(disk) * residual;
} while (globalLoop.TECLoop(det, ring, beam, disk));
// disk-wise sums
for (disk = 0; disk < 9; ++disk) {
sumOverZ.at(0) += diskZPositions.at(0).at(disk);
sumOverZ.at(1) += diskZPositions.at(1).at(disk);
sumOverZSquared.at(0) += pow(diskZPositions.at(0).at(disk), 2);
sumOverZSquared.at(1) += pow(diskZPositions.at(1).at(disk), 2);
}
// now we can calculate the parameters for both TECs simultaneously,
// so they're all vectors( 2 ) for TEC+/- (global parameters), or dim 2*9 (disk parameters),
// or dim 2*8 (beam parameters)
// define them..
// deltaPhi_0
std::vector<double> deltaPhi0(2, 0.);
// deltaPhi_t
std::vector<double> deltaPhiT(2, 0.);
// deltaPhi_k (k=0..8)
std::vector<std::vector<double> > deltaPhiK(2, std::vector<double>(9, 0.));
// deltaX_0
std::vector<double> deltaX0(2, 0.);
// deltaX_t
std::vector<double> deltaXT(2, 0.);
// deltaX_k (k=0..8)
std::vector<std::vector<double> > deltaXK(2, std::vector<double>(9, 0.));
// deltaY_0
std::vector<double> deltaY0(2, 0.);
// deltaY_t
std::vector<double> deltaYT(2, 0.);
// deltaY_k (k=0..8)
std::vector<std::vector<double> > deltaYK(2, std::vector<double>(9, 0.));
// beam parameters: deltaTheta_A, deltaTheta_B (i=0..7)
std::vector<std::vector<double> > deltaTA(2, std::vector<double>(8, 0.));
std::vector<std::vector<double> > deltaTB(2, std::vector<double>(8, 0.));
// ..and fill them;
// the additional divisors "/ 2." come from the fact that we average over both rings
for (det = 0; det < 2; ++det) { // TEC+/- loop
// deltaPhi_0
// here we use the phi-sums to eliminate the radius
deltaPhi0.at(det) =
(sumOverZSquared.at(det) * doubleSumOverPhi.at(det) - sumOverZ.at(det) * doubleSumOverPhiZ.at(det)) /
(8. * (pow(sumOverZ.at(det), 2) - 9. * sumOverZSquared.at(det))); // / 2.; // @@@@@@@
// deltaPhi_t
// again use the phi-sums
deltaPhiT.at(det) = endcapLength * (9. * doubleSumOverPhiZ.at(det) - sumOverZ.at(det) * doubleSumOverPhi.at(det)) /
(8. * (pow(sumOverZ.at(det), 2) - 9. * sumOverZSquared.at(det))); // / 2.; // @@@@@@@
// deltaPhi_k (k=0..8)
// again use the phi-sums
for (disk = 0; disk < 9; ++disk) {
deltaPhiK.at(det).at(disk) = (-1. * diskZPositions.at(det).at(disk) * deltaPhiT.at(det) / endcapLength) -
(deltaPhi0.at(det)) - sumOverPhi.at(det).at(disk) / 8.; // / 2.; // @@@@@@@
}
// deltaX_0
deltaX0.at(det) = 2. *
(sumOverZ.at(det) * doubleSumOverSinThetaYZ.at(det) -
sumOverZSquared.at(det) * doubleSumOverSinThetaY.at(det)) /
(8. * (pow(sumOverZ.at(det), 2) - 9. * sumOverZSquared.at(det))); // / 2.; // @@@@@@@
// deltaX_t
deltaXT.at(det) = 2. * endcapLength *
(sumOverZ.at(det) * doubleSumOverSinThetaY.at(det) - 9. * doubleSumOverSinThetaYZ.at(det)) /
(8. * (pow(sumOverZ.at(det), 2) - 9. * sumOverZSquared.at(det))); // / 2.; // @@@@@@@
// deltaX_k (k=0..8)
for (disk = 0; disk < 9; ++disk) {
deltaXK.at(det).at(disk) = (-1. * diskZPositions.at(det).at(disk) * deltaXT.at(det) / endcapLength) -
(deltaX0.at(det)) + 2. * sumOverSinThetaY.at(det).at(disk) / 8.; // / 2.; // @@@@@@@
}
// deltaY_0
deltaY0.at(det) = 2. *
(sumOverZSquared.at(det) * doubleSumOverCosThetaY.at(det) -
sumOverZ.at(det) * doubleSumOverCosThetaYZ.at(det)) /
(8. * (pow(sumOverZ.at(det), 2) - 9. * sumOverZSquared.at(det))); // / 2.; // @@@@@@@
// deltaY_t
deltaYT.at(det) = 2. * endcapLength *
(9. * doubleSumOverCosThetaYZ.at(det) - sumOverZ.at(det) * doubleSumOverCosThetaY.at(det)) /
(8. * (pow(sumOverZ.at(det), 2) - 9. * sumOverZSquared.at(det))); // / 2.; // @@@@@@@
// deltaY_k (k=0..8)
for (disk = 0; disk < 9; ++disk) {
deltaYK.at(det).at(disk) = (-1. * diskZPositions.at(det).at(disk) * deltaYT.at(det) / endcapLength) -
(deltaY0.at(det)) - 2. * sumOverCosThetaY.at(det).at(disk) / 8.; // / 2.; // @@@@@@@
}
// the beam parameters deltaTA & deltaTB
for (beam = 0; beam < 8; ++beam) {
deltaTA.at(det).at(beam) =
deltaPhi0.at(det) -
(kSumOverPhi.at(det).at(beam) * sumOverZSquared.at(det) - kSumOverPhiZ.at(det).at(beam) * sumOverZ.at(det)) /
(pow(sumOverZ.at(det), 2) - 9. * sumOverZSquared.at(det)) +
(cos(beamPhiPositions.at(det).at(beam)) * deltaY0.at(det) -
sin(beamPhiPositions.at(det).at(beam)) * deltaX0.at(det)) /
radius.at(0); // for ring 4..
// + ( cos( beamPhiPositions.at( det ).at( beam ) ) * deltaY0.at( det ) - sin( beamPhiPositions.at( det ).at( beam ) ) * deltaX0.at( det ) ) / radius.at( 1 ); // ...and ring 6
deltaTB.at(det).at(beam) =
-1. * deltaPhiT.at(det) - deltaPhi0.at(det) -
(kSumOverPhi.at(det).at(beam) * sumOverZ.at(det) - 9. * kSumOverPhiZ.at(det).at(beam)) * endcapLength /
(pow(sumOverZ.at(det), 2) - 9. * sumOverZSquared.at(det)) -
(kSumOverPhiZ.at(det).at(beam) * sumOverZ.at(det) - kSumOverPhi.at(det).at(beam) * sumOverZSquared.at(det)) /
(pow(sumOverZ.at(det), 2) - 9. * sumOverZSquared.at(det)) +
((deltaXT.at(det) + deltaX0.at(det)) * sin(beamPhiPositions.at(det).at(beam)) -
(deltaYT.at(det) + deltaY0.at(det)) * cos(beamPhiPositions.at(det).at(beam))) /
radius.at(0); // for ring4..
// + ( ( deltaXT.at( det ) + deltaX0.at( det ) ) * sin( beamPhiPositions.at( det ).at( beam ) ) - ( deltaYT.at( det ) + deltaY0.at( det ) ) * cos( beamPhiPositions.at( det ).at( beam ) ) )
// / radius.at( 1 ); // ..and ring6
}
}
// fill the result
LASEndcapAlignmentParameterSet theResult;
// for the moment we fill only the values, not the errors
// disk parameters
for (det = 0; det < 2; ++det) {
for (disk = 0; disk < 9; ++disk) {
// the rotation parameters: deltaPhi_k
theResult.GetDiskParameter(det, disk, 0).first = deltaPhiK.at(det).at(disk);
// the x offsets: deltaX_k
theResult.GetDiskParameter(det, disk, 1).first = deltaXK.at(det).at(disk);
// the y offsets: deltaY_k
theResult.GetDiskParameter(det, disk, 2).first = deltaYK.at(det).at(disk);
}
}
// global parameters
for (int det = 0; det < 2; ++det) {
theResult.GetGlobalParameter(det, 0).first = deltaPhi0.at(det);
theResult.GetGlobalParameter(det, 1).first = deltaPhiT.at(det);
theResult.GetGlobalParameter(det, 2).first = deltaX0.at(det);
theResult.GetGlobalParameter(det, 3).first = deltaXT.at(det);
theResult.GetGlobalParameter(det, 4).first = deltaY0.at(det);
theResult.GetGlobalParameter(det, 5).first = deltaYT.at(det);
}
// beam parameters
for (int det = 0; det < 2; ++det) {
for (int beam = 0; beam < 8; ++beam) {
theResult.GetBeamParameter(det, 1 /*R6*/, beam, 0).first =
deltaTA.at(det).at(beam); ////////////////////////////////////////////
theResult.GetBeamParameter(det, 1 /*R6*/, beam, 1).first =
deltaTB.at(det).at(beam); ////////////////////////////////////////////
}
}
std::cout << " [LASEndcapAlgorithm::CalculateParameters] -- Done." << std::endl;
return (theResult);
}
///
/// for a given set of endcap alignment parameters "endcapParameters",
/// this function returns the global phi offset from nominalPosition
/// for a module specified by (det,ring,beam,disk)
///
double LASEndcapAlgorithm::GetAlignmentParameterCorrection(int det,
int ring,
int beam,
int disk,
LASGlobalData<LASCoordinateSet>& nominalCoordinates,
LASEndcapAlignmentParameterSet& endcapParameters) {
// ring dependent radius, to be softcoded...
const double radius = ring == 0 ? 564. : 840.;
const double endcapLength = 1345.; // mm
// the correction to phi from the endcap algorithm;
// it is defined such that the correction is to be subtracted
double phiCorrection = 0.;
// plain disk phi
phiCorrection += endcapParameters.GetDiskParameter(det, disk, 0).first;
// phi component from x deviation
phiCorrection -= sin(nominalCoordinates.GetTECEntry(det, ring, beam, disk).GetPhi()) / radius *
endcapParameters.GetDiskParameter(det, disk, 1).first;
// phi component from y deviation
phiCorrection += cos(nominalCoordinates.GetTECEntry(det, ring, beam, disk).GetPhi()) / radius *
endcapParameters.GetDiskParameter(det, disk, 2).first;
// phi correction from global phi
phiCorrection += endcapParameters.GetGlobalParameter(det, 0).first;
// correction from global x deviation
phiCorrection -= sin(nominalCoordinates.GetTECEntry(det, ring, beam, disk).GetPhi()) / radius *
endcapParameters.GetGlobalParameter(det, 2).first;
// correction from global y deviation
phiCorrection += cos(nominalCoordinates.GetTECEntry(det, ring, beam, disk).GetPhi()) / radius *
endcapParameters.GetGlobalParameter(det, 4).first;
// correction from global torsion
phiCorrection += nominalCoordinates.GetTECEntry(det, ring, beam, disk).GetZ() / endcapLength *
endcapParameters.GetGlobalParameter(det, 1).first;
// correction from global x shear
phiCorrection -= nominalCoordinates.GetTECEntry(det, ring, beam, disk).GetZ() / endcapLength / radius *
sin(nominalCoordinates.GetTECEntry(det, ring, beam, disk).GetPhi()) *
endcapParameters.GetGlobalParameter(det, 3).first;
// correction from global y shear
phiCorrection += nominalCoordinates.GetTECEntry(det, ring, beam, disk).GetZ() / endcapLength / radius *
cos(nominalCoordinates.GetTECEntry(det, ring, beam, disk).GetPhi()) *
endcapParameters.GetGlobalParameter(det, 5).first;
// correction from beam parameters
phiCorrection += (nominalCoordinates.GetTECEntry(det, ring, beam, disk).GetZ() / endcapLength - 1.) *
endcapParameters.GetBeamParameter(det, 1, beam, 0).first;
phiCorrection += nominalCoordinates.GetTECEntry(det, ring, beam, disk).GetZ() / endcapLength *
endcapParameters.GetBeamParameter(det, 1, beam, 1).first;
return phiCorrection;
}
|