1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
|
/** \file LaserBeamsBarrel.cc
*
*
* $Date: 2010/09/09 18:22:48 $
* $Revision: 1.7 $
* \author Maarten Thomas
*/
#include "Alignment/LaserAlignmentSimulation/interface/LaserBeamsBarrel.h"
#include "FWCore/AbstractServices/interface/RandomNumberGenerator.h"
#include "FWCore/MessageLogger/interface/MessageLogger.h"
#include "FWCore/ServiceRegistry/interface/Service.h"
#include <CLHEP/Random/RandGaussQ.h>
#include "G4ParticleDefinition.hh"
#include "G4ParticleGun.hh"
#include <CLHEP/Units/SystemOfUnits.h>
#include "globals.hh" // Global Constants and typedefs
LaserBeamsBarrel::LaserBeamsBarrel() : theParticleGun(nullptr), theDRand48Engine(nullptr) {
G4int nPhotonsGun = 1;
G4int nPhotonsBeam = 1;
G4double Energy = 1.15 * CLHEP::eV;
// call constructor with options
LaserBeamsBarrel(nPhotonsGun, nPhotonsBeam, Energy);
}
LaserBeamsBarrel::LaserBeamsBarrel(G4int nPhotonsInGun, G4int nPhotonsInBeam, G4double PhotonEnergy)
: thenParticleInGun(0), thenParticle(0), thePhotonEnergy(0), theParticleGun(), theDRand48Engine() {
/* *********************************************************************** */
/* initialize and configure the particle gun */
/* *********************************************************************** */
// the Photon energy
thePhotonEnergy = PhotonEnergy;
// number of particles in the Laser beam
thenParticleInGun = nPhotonsInGun;
// number of particles in one beam. ATTENTION: each beam contains
// nParticleInGun with the same startpoint and direction. nParticle gives the
// number of particles in the beam with a different startpoint. They are used
// to simulate the gaussian beamprofile of the Laser Beams.
thenParticle = nPhotonsInBeam;
// create the particle gun
theParticleGun = new G4ParticleGun(thenParticleInGun);
// default kinematics
G4ParticleTable *theParticleTable = G4ParticleTable::GetParticleTable();
G4ParticleDefinition *theOpticalPhoton = theParticleTable->FindParticle("opticalphoton");
theParticleGun->SetParticleDefinition(theOpticalPhoton);
theParticleGun->SetParticleTime(0.0 * CLHEP::ns);
theParticleGun->SetParticlePosition(G4ThreeVector(-500.0 * CLHEP::cm, 0.0 * CLHEP::cm, 0.0 * CLHEP::cm));
theParticleGun->SetParticleMomentumDirection(G4ThreeVector(5.0, 3.0, 0.0));
theParticleGun->SetParticleEnergy(10.0 * CLHEP::keV);
setOptPhotonPolar(90.0);
// initialize the random number engine
theDRand48Engine = new CLHEP::DRand48Engine();
}
LaserBeamsBarrel::~LaserBeamsBarrel() {
if (theParticleGun != nullptr) {
delete theParticleGun;
}
if (theDRand48Engine != nullptr) {
delete theDRand48Engine;
}
}
void LaserBeamsBarrel::GeneratePrimaries(G4Event *myEvent) {
// this function is called at the beginning of an Event in
// LaserAlignment::upDate(const BeginOfEvent * myEvent)
// use the random number generator service of the framework
edm::Service<edm::RandomNumberGenerator> rng;
unsigned int seed = rng->mySeed();
// set the seed
theDRand48Engine->setSeed(seed);
// number of LaserBeams
const G4int nLaserBeams = 8;
// z position of the Laserdiodes (value from design drawings)
G4double LaserPositionZ = 1137.0 * CLHEP::mm;
// Radius of the Laser ring
G4double LaserRingRadius = 564.0 * CLHEP::mm;
// phi positions of the Laserdiodes (from CMS Note 2001/053 or from
// http://abbaneo.home.cern.ch/abbaneo/cms/layout)
G4double LaserPhi[nLaserBeams] = {G4double(7.0 / 112.0) * G4double(2.0 * M_PI),
G4double(23.0 / 112.0) * G4double(2.0 * M_PI),
G4double(33.0 / 112.0) * G4double(2.0 * M_PI),
G4double(49.0 / 112.0) * G4double(2.0 * M_PI),
G4double(65.0 / 112.0) * G4double(2.0 * M_PI),
G4double(77.0 / 112.0) * G4double(2.0 * M_PI),
G4double(93.0 / 112.0) * G4double(2.0 * M_PI),
G4double(103.0 / 112.0) * G4double(2.0 * M_PI)};
// width of the LaserBeams
G4double LaserBeamSigmaX = 0.5 * CLHEP::mm;
G4double LaserBeamSigmaY = 0.5 * CLHEP::mm;
// get the definition of the optical photon
G4ParticleTable *theParticleTable = G4ParticleTable::GetParticleTable();
G4ParticleDefinition *theOpticalPhoton = theParticleTable->FindParticle("opticalphoton");
// loop over the LaserBeams
for (int theBeam = 0; theBeam < nLaserBeams; theBeam++) {
// code for forward and backward beam
// calculate x and y position of the current laser diode
G4double LaserPositionX = cos(LaserPhi[theBeam]) * LaserRingRadius;
G4double LaserPositionY = sin(LaserPhi[theBeam]) * LaserRingRadius;
// loop over all the particles in one beam
for (int theParticle = 0; theParticle < thenParticle; theParticle++) {
// get randomnumbers and calculate the position
CLHEP::RandGaussQ aGaussObjX(*theDRand48Engine, LaserPositionX, LaserBeamSigmaX);
CLHEP::RandGaussQ aGaussObjY(*theDRand48Engine, LaserPositionY, LaserBeamSigmaY);
G4double theXPosition = aGaussObjX.fire();
G4double theYPosition = aGaussObjY.fire();
G4double theZPosition = LaserPositionZ;
// set the properties of the newly created particle
theParticleGun->SetParticleDefinition(theOpticalPhoton);
theParticleGun->SetParticleTime(0.0 * CLHEP::ns);
theParticleGun->SetParticlePosition(G4ThreeVector(theXPosition, theYPosition, theZPosition));
theParticleGun->SetParticleEnergy(thePhotonEnergy);
// loop over both directions of the beam
for (int theDirection = 0; theDirection < 2; theDirection++) {
// shoot in both beam directions ...
if (theDirection == 0) // shoot in forward direction (+z)
{
theParticleGun->SetParticleMomentumDirection(G4ThreeVector(0.0, 0.0, 1.0));
// set the polarization
setOptPhotonPolar(90.0);
// generate the particle
theParticleGun->GeneratePrimaryVertex(myEvent);
} else if (theDirection == 1) // shoot in backward direction (-z)
{
theParticleGun->SetParticleMomentumDirection(G4ThreeVector(0.0, 0.0, -1.0));
// set the polarization
setOptPhotonPolar(90.0);
// generate the particle
theParticleGun->GeneratePrimaryVertex(myEvent);
}
} // end looop over both beam directions
} // end looop over particles in beam
} // end loop over beams
}
void LaserBeamsBarrel::setOptPhotonPolar(G4double Angle) {
/* *********************************************************************** */
/* to get optical processes working properly, you have to make sure *
* that the photon polarisation is defined. */
/* *********************************************************************** */
// first check if we have an optical photon
if (theParticleGun->GetParticleDefinition()->GetParticleName() != "opticalphoton") {
edm::LogWarning("SimLaserAlignment:LaserBeamsBarrel")
<< "<LaserBeamsBarrel::setOptPhotonPolar()>: WARNING! The ParticleGun "
"is not an optical photon";
return;
}
// G4cout << " AC1CMS: The ParticleGun is an " <<
// theParticleGun->GetParticleDefinition()->GetParticleName();
G4ThreeVector normal(1.0, 0.0, 0.0);
G4ThreeVector kphoton = theParticleGun->GetParticleMomentumDirection();
G4ThreeVector product = normal.cross(kphoton);
G4double modul2 = product * product;
G4ThreeVector e_perpendicular(0.0, 0.0, 1.0);
if (modul2 > 0.0) {
e_perpendicular = (1.0 / sqrt(modul2)) * product;
}
G4ThreeVector e_parallel = e_perpendicular.cross(kphoton);
G4ThreeVector polar = cos(Angle) * e_parallel + sin(Angle) * e_perpendicular;
// G4cout << ", the polarization = " << polar << G4endl;
theParticleGun->SetParticlePolarization(polar);
}
|