1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
|
/**
* \file MillePedeAlignmentAlgorithm.cc
*
* \author : Gero Flucke
* date : October 2006
* $Revision: 1.80 $
* $Date: 2013/01/07 20:21:32 $
* (last update by $Author: wmtan $)
*/
#include "MillePedeAlignmentAlgorithm.h"
#include "FWCore/Framework/interface/ESHandle.h"
#include "FWCore/Framework/interface/EventSetup.h"
#include "FWCore/Framework/interface/Run.h"
#include "FWCore/MessageLogger/interface/MessageLogger.h"
#include "TrackingTools/PatternTools/interface/Trajectory.h"
#include "Alignment/MillePedeAlignmentAlgorithm/interface/MillePedeFileReader.h"
#include "Alignment/MillePedeAlignmentAlgorithm/interface/MillePedeMonitor.h"
#include "Alignment/MillePedeAlignmentAlgorithm/interface/MillePedeVariables.h"
#include "Alignment/MillePedeAlignmentAlgorithm/interface/MillePedeVariablesIORoot.h"
#include "Alignment/MillePedeAlignmentAlgorithm/src/Mille.h" // 'unpublished' interface located in src
#include "Alignment/MillePedeAlignmentAlgorithm/src/PedeSteerer.h" // ditto
#include "Alignment/MillePedeAlignmentAlgorithm/src/PedeReader.h" // ditto
#include "Alignment/MillePedeAlignmentAlgorithm/interface/PedeLabelerBase.h"
#include "Alignment/MillePedeAlignmentAlgorithm/interface/PedeLabelerPluginFactory.h"
#include "Alignment/ReferenceTrajectories/interface/TrajectoryFactoryBase.h"
#include "Alignment/ReferenceTrajectories/interface/TrajectoryFactoryPlugin.h"
#include "Alignment/CommonAlignmentAlgorithm/interface/AlignmentParameterStore.h"
#include "Alignment/CommonAlignmentAlgorithm/interface/AlignmentIORoot.h"
#include "Alignment/CommonAlignmentAlgorithm/interface/IntegratedCalibrationBase.h"
#include "Alignment/CommonAlignment/interface/AlignmentParameters.h"
#include "Alignment/CommonAlignment/interface/AlignableNavigator.h"
#include "Alignment/CommonAlignment/interface/AlignableDetOrUnitPtr.h"
// includes to make known that they inherit from Alignable:
#include "Alignment/TrackerAlignment/interface/AlignableTracker.h"
#include "Alignment/MuonAlignment/interface/AlignableMuon.h"
#include "Alignment/CommonAlignment/interface/AlignableExtras.h"
#include "CondFormats/AlignmentRecord/interface/GlobalPositionRcd.h"
#include "CondFormats/AlignmentRecord/interface/TrackerAlignmentRcd.h"
#include "CondFormats/AlignmentRecord/interface/TrackerAlignmentErrorExtendedRcd.h"
#include "CondFormats/AlignmentRecord/interface/TrackerSurfaceDeformationRcd.h"
#include "DataFormats/CLHEP/interface/AlgebraicObjects.h"
#include "DataFormats/TrackReco/interface/Track.h"
#include "DataFormats/SiStripDetId/interface/SiStripDetId.h"
#include "DataFormats/Alignment/interface/TkFittedLasBeam.h"
#include "Alignment/LaserAlignment/interface/TsosVectorCollection.h"
#include "Geometry/CommonDetUnit/interface/GeomDet.h"
#include "Geometry/CommonDetUnit/interface/GeomDetType.h"
#include "Geometry/Records/interface/IdealGeometryRecord.h"
#include "DataFormats/TrackerRecHit2D/interface/ProjectedSiStripRecHit2D.h"
#include <fstream>
#include <sstream>
#include <algorithm>
#include <sys/stat.h>
#include <TMath.h>
typedef TransientTrackingRecHit::ConstRecHitContainer ConstRecHitContainer;
typedef TransientTrackingRecHit::ConstRecHitPointer ConstRecHitPointer;
typedef TrajectoryFactoryBase::ReferenceTrajectoryCollection RefTrajColl;
// Includes for PXB survey
#include "Alignment/SurveyAnalysis/interface/SurveyPxbImage.h"
#include "Alignment/SurveyAnalysis/interface/SurveyPxbImageLocalFit.h"
#include "Alignment/SurveyAnalysis/interface/SurveyPxbImageReader.h"
#include "Alignment/SurveyAnalysis/interface/SurveyPxbDicer.h"
#include "DataFormats/GeometryVector/interface/LocalPoint.h"
#include "DataFormats/GeometryVector/interface/GlobalPoint.h"
#include "Alignment/CommonAlignmentParametrization/interface/AlignmentParametersFactory.h"
using namespace gbl;
// Constructor ----------------------------------------------------------------
//____________________________________________________
MillePedeAlignmentAlgorithm::MillePedeAlignmentAlgorithm(const edm::ParameterSet &cfg, edm::ConsumesCollector &iC)
: AlignmentAlgorithmBase(cfg, iC),
topoToken_(iC.esConsumes<TrackerTopology, TrackerTopologyRcd, edm::Transition::BeginRun>()),
aliThrToken_(iC.esConsumes<AlignPCLThresholdsHG, AlignPCLThresholdsHGRcd, edm::Transition::BeginRun>()),
siPixelQualityToken_(iC.esConsumes<SiPixelQuality, SiPixelQualityFromDbRcd, edm::Transition::BeginRun>()),
geomToken_(iC.esConsumes<TrackerGeometry, TrackerDigiGeometryRecord, edm::Transition::BeginRun>()),
theConfig(cfg),
theMode(this->decodeMode(theConfig.getUntrackedParameter<std::string>("mode"))),
theDir(theConfig.getUntrackedParameter<std::string>("fileDir")),
theAlignmentParameterStore(nullptr),
theAlignables(),
theTrajectoryFactory(
TrajectoryFactoryPlugin::get()->create(theConfig.getParameter<edm::ParameterSet>("TrajectoryFactory")
.getParameter<std::string>("TrajectoryFactoryName"),
theConfig.getParameter<edm::ParameterSet>("TrajectoryFactory"),
iC)),
theMinNumHits(cfg.getParameter<unsigned int>("minNumHits")),
theMaximalCor2D(cfg.getParameter<double>("max2Dcorrelation")),
firstIOV_(cfg.getUntrackedParameter<AlignmentAlgorithmBase::RunNumber>("firstIOV")),
ignoreFirstIOVCheck_(cfg.getUntrackedParameter<bool>("ignoreFirstIOVCheck")),
enableAlignableUpdates_(cfg.getUntrackedParameter<bool>("enableAlignableUpdates")),
theLastWrittenIov(0),
theGblDoubleBinary(cfg.getParameter<bool>("doubleBinary")),
runAtPCL_(cfg.getParameter<bool>("runAtPCL")),
ignoreHitsWithoutGlobalDerivatives_(cfg.getParameter<bool>("ignoreHitsWithoutGlobalDerivatives")),
skipGlobalPositionRcdCheck_(cfg.getParameter<bool>("skipGlobalPositionRcdCheck")),
uniqueRunRanges_(align::makeUniqueRunRanges(cfg.getUntrackedParameter<edm::VParameterSet>("RunRangeSelection"),
cond::timeTypeSpecs[cond::runnumber].beginValue)),
enforceSingleIOVInput_(!(enableAlignableUpdates_ && areIOVsSpecified())),
lastProcessedRun_(cond::timeTypeSpecs[cond::runnumber].beginValue) {
pixelQuality = nullptr;
if (!theDir.empty() && theDir.find_last_of('/') != theDir.size() - 1)
theDir += '/'; // may need '/'
edm::LogInfo("Alignment") << "@SUB=MillePedeAlignmentAlgorithm"
<< "Start in mode '" << theConfig.getUntrackedParameter<std::string>("mode")
<< "' with output directory '" << theDir << "'.";
if (this->isMode(myMilleBit)) {
theMille = std::make_unique<Mille>(
(theDir + theConfig.getParameter<std::string>("binaryFile")).c_str()); // add ', false);' for text output);
// use same file for GBL
theBinary = std::make_unique<MilleBinary>((theDir + theConfig.getParameter<std::string>("binaryFile")).c_str(),
theGblDoubleBinary);
}
}
// Destructor ----------------------------------------------------------------
//____________________________________________________
MillePedeAlignmentAlgorithm::~MillePedeAlignmentAlgorithm() {}
// Call at beginning of job ---------------------------------------------------
//____________________________________________________
void MillePedeAlignmentAlgorithm::initialize(const edm::EventSetup &setup,
AlignableTracker *tracker,
AlignableMuon *muon,
AlignableExtras *extras,
AlignmentParameterStore *store) {
if (muon) {
edm::LogWarning("Alignment") << "@SUB=MillePedeAlignmentAlgorithm::initialize"
<< "Running with AlignabeMuon not yet tested.";
}
if (!runAtPCL_ && enforceSingleIOVInput_) {
const auto MIN_VAL = cond::timeTypeSpecs[cond::runnumber].beginValue;
const auto MAX_VAL = cond::timeTypeSpecs[cond::runnumber].endValue;
const auto &iov_alignments = setup.get<TrackerAlignmentRcd>().validityInterval();
const auto &iov_surfaces = setup.get<TrackerSurfaceDeformationRcd>().validityInterval();
const auto &iov_errors = setup.get<TrackerAlignmentErrorExtendedRcd>().validityInterval();
std::ostringstream message;
bool throwException{false};
if (iov_alignments.first().eventID().run() != MIN_VAL || iov_alignments.last().eventID().run() != MAX_VAL) {
message << "\nTrying to apply " << setup.get<TrackerAlignmentRcd>().key().name()
<< " with multiple IOVs in tag without specifying 'RunRangeSelection'.\n"
<< "Validity range is " << iov_alignments.first().eventID().run() << " - "
<< iov_alignments.last().eventID().run() << "\n";
throwException = true;
}
if (iov_surfaces.first().eventID().run() != MIN_VAL || iov_surfaces.last().eventID().run() != MAX_VAL) {
message << "\nTrying to apply " << setup.get<TrackerSurfaceDeformationRcd>().key().name()
<< " with multiple IOVs in tag without specifying 'RunRangeSelection'.\n"
<< "Validity range is " << iov_surfaces.first().eventID().run() << " - "
<< iov_surfaces.last().eventID().run() << "\n";
throwException = true;
}
if (iov_errors.first().eventID().run() != MIN_VAL || iov_errors.last().eventID().run() != MAX_VAL) {
message << "\nTrying to apply " << setup.get<TrackerAlignmentErrorExtendedRcd>().key().name()
<< " with multiple IOVs in tag without specifying 'RunRangeSelection'.\n"
<< "Validity range is " << iov_errors.first().eventID().run() << " - "
<< iov_errors.last().eventID().run() << "\n";
throwException = true;
}
if (throwException) {
throw cms::Exception("DatabaseError") << "@SUB=MillePedeAlignmentAlgorithm::initialize" << message.str();
}
}
//Retrieve tracker topology from geometry
const TrackerTopology *const tTopo = &setup.getData(topoToken_);
//Retrieve the thresolds cuts from DB for the PCL
if (runAtPCL_) {
const auto &th = &setup.getData(aliThrToken_);
theThresholds = std::make_shared<AlignPCLThresholdsHG>();
storeThresholds(th->getNrecords(), th->getThreshold_Map(), th->getFloatMap());
// Retrieve the SiPixelQuality object from setup
const SiPixelQuality &qual = setup.getData(siPixelQualityToken_);
// Create a new SiPixelQuality object on the heap using the copy constructor
pixelQuality = std::make_shared<SiPixelQuality>(qual);
//Retrieve tracker geometry
const TrackerGeometry *tGeom = &setup.getData(geomToken_);
//Retrieve PixelTopologyMap
pixelTopologyMap = std::make_shared<PixelTopologyMap>(tGeom, tTopo);
}
theAlignableNavigator = std::make_unique<AlignableNavigator>(extras, tracker, muon);
theAlignmentParameterStore = store;
theAlignables = theAlignmentParameterStore->alignables();
edm::ParameterSet pedeLabelerCfg(theConfig.getParameter<edm::ParameterSet>("pedeLabeler"));
edm::VParameterSet RunRangeSelectionVPSet(theConfig.getUntrackedParameter<edm::VParameterSet>("RunRangeSelection"));
pedeLabelerCfg.addUntrackedParameter<edm::VParameterSet>("RunRangeSelection", RunRangeSelectionVPSet);
std::string labelerPlugin = "PedeLabeler";
if (!RunRangeSelectionVPSet.empty()) {
labelerPlugin = "RunRangeDependentPedeLabeler";
if (pedeLabelerCfg.exists("plugin")) {
std::string labelerPluginCfg = pedeLabelerCfg.getParameter<std::string>("plugin");
if ((labelerPluginCfg != "PedeLabeler" && labelerPluginCfg != "RunRangeDependentPedeLabeler") ||
!pedeLabelerCfg.getUntrackedParameter<edm::VParameterSet>("parameterInstances").empty()) {
throw cms::Exception("BadConfig") << "MillePedeAlignmentAlgorithm::initialize"
<< "both RunRangeSelection and generic labeler specified in config file. "
<< "Please get rid of either one of them.\n";
}
}
} else {
if (pedeLabelerCfg.exists("plugin")) {
labelerPlugin = pedeLabelerCfg.getParameter<std::string>("plugin");
}
}
if (!pedeLabelerCfg.exists("plugin")) {
pedeLabelerCfg.addUntrackedParameter<std::string>("plugin", labelerPlugin);
}
edm::LogInfo("Alignment") << "@SUB=MillePedeAlignmentAlgorithm::initialize"
<< "Using plugin '" << labelerPlugin << "' to generate labels.";
thePedeLabels = std::shared_ptr<PedeLabelerBase>(PedeLabelerPluginFactory::get()->create(
labelerPlugin, PedeLabelerBase::TopLevelAlignables(tracker, muon, extras), pedeLabelerCfg));
// 1) Create PedeSteerer: correct alignable positions for coordinate system selection
edm::ParameterSet pedeSteerCfg(theConfig.getParameter<edm::ParameterSet>("pedeSteerer"));
thePedeSteer = std::make_unique<PedeSteerer>(tracker,
muon,
extras,
theAlignmentParameterStore,
thePedeLabels.get(),
pedeSteerCfg,
theDir,
!this->isMode(myPedeSteerBit));
// 2) If requested, directly read in and apply result of previous pede run,
// assuming that correction from 1) was also applied to create the result:
const std::vector<edm::ParameterSet> mprespset(
theConfig.getParameter<std::vector<edm::ParameterSet> >("pedeReaderInputs"));
if (!mprespset.empty()) {
edm::LogInfo("Alignment") << "@SUB=MillePedeAlignmentAlgorithm::initialize"
<< "Apply " << mprespset.end() - mprespset.begin()
<< " previous MillePede constants from 'pedeReaderInputs'.";
}
// FIXME: add selection of run range via 'pedeReaderInputs'
// Note: Results for parameters of IntegratedCalibration's cannot be treated...
RunRange runrange(cond::timeTypeSpecs[cond::runnumber].beginValue, cond::timeTypeSpecs[cond::runnumber].endValue);
for (std::vector<edm::ParameterSet>::const_iterator iSet = mprespset.begin(), iE = mprespset.end(); iSet != iE;
++iSet) {
// This read will ignore calibrations as long as they are not yet passed to Millepede
// during/before initialize(..) - currently addCalibrations(..) is called later in AlignmentProducer
if (!this->readFromPede((*iSet), false, runrange)) { // false: do not erase SelectionUserVariables
throw cms::Exception("BadConfig")
<< "MillePedeAlignmentAlgorithm::initialize: Problems reading input constants of "
<< "pedeReaderInputs entry " << iSet - mprespset.begin() << '.';
}
theAlignmentParameterStore->applyParameters();
// Needed to shut up later warning from checkAliParams:
theAlignmentParameterStore->resetParameters();
}
// 3) Now create steerings with 'final' start position:
thePedeSteer->buildSubSteer(tracker, muon, extras);
// After (!) 1-3 of PedeSteerer which uses the SelectionUserVariables attached to the parameters:
this->buildUserVariables(theAlignables); // for hit statistics and/or pede result
if (this->isMode(myMilleBit)) {
if (!theConfig.getParameter<std::vector<std::string> >("mergeBinaryFiles").empty() ||
!theConfig.getParameter<std::vector<std::string> >("mergeTreeFiles").empty()) {
throw cms::Exception("BadConfig") << "'vstring mergeTreeFiles' and 'vstring mergeBinaryFiles' must be empty for "
<< "modes running mille.";
}
const std::string moniFile(theConfig.getUntrackedParameter<std::string>("monitorFile"));
if (!moniFile.empty())
theMonitor = std::make_unique<MillePedeMonitor>(tTopo, (theDir + moniFile).c_str());
// Get trajectory factory. In case nothing found, FrameWork will throw...
}
if (this->isMode(myPedeSteerBit)) {
// Get config for survey and set flag accordingly
const edm::ParameterSet pxbSurveyCfg(theConfig.getParameter<edm::ParameterSet>("surveyPixelBarrel"));
theDoSurveyPixelBarrel = pxbSurveyCfg.getParameter<bool>("doSurvey");
if (theDoSurveyPixelBarrel)
this->addPxbSurvey(pxbSurveyCfg);
}
}
//____________________________________________________
bool MillePedeAlignmentAlgorithm::supportsCalibrations() { return true; }
//____________________________________________________
bool MillePedeAlignmentAlgorithm::addCalibrations(const std::vector<IntegratedCalibrationBase *> &iCals) {
theCalibrations.insert(theCalibrations.end(), iCals.begin(), iCals.end());
thePedeLabels->addCalibrations(iCals);
return true;
}
//____________________________________________________
bool MillePedeAlignmentAlgorithm::storeThresholds(const int &nRecords,
const AlignPCLThresholdsHG::threshold_map &thresholdMap,
const AlignPCLThresholdsHG::param_map &floatMap) {
theThresholds->setAlignPCLThresholds(nRecords, thresholdMap);
theThresholds->setFloatMap(floatMap);
return true;
}
//_____________________________________________________________________________
bool MillePedeAlignmentAlgorithm::processesEvents() {
if (isMode(myMilleBit)) {
return true;
} else {
return false;
}
}
//_____________________________________________________________________________
bool MillePedeAlignmentAlgorithm::storeAlignments() {
if (isMode(myPedeReadBit)) {
if (runAtPCL_) {
MillePedeFileReader mpReader(theConfig.getParameter<edm::ParameterSet>("MillePedeFileReader"),
thePedeLabels,
theThresholds,
pixelTopologyMap,
pixelQuality);
mpReader.read();
return mpReader.storeAlignments();
} else {
return true;
}
} else {
return false;
}
}
//____________________________________________________
bool MillePedeAlignmentAlgorithm::setParametersForRunRange(const RunRange &runrange) {
if (this->isMode(myPedeReadBit)) {
if (not theAlignmentParameterStore) {
return false;
}
// restore initial positions, rotations and deformations
if (enableAlignableUpdates_) {
theAlignmentParameterStore->restoreCachedTransformations(runrange.first);
} else {
theAlignmentParameterStore->restoreCachedTransformations();
}
// Needed to shut up later warning from checkAliParams:
theAlignmentParameterStore->resetParameters();
// To avoid that they keep values from previous IOV if no new one in pede result
this->buildUserVariables(theAlignables);
if (!this->readFromPede(theConfig.getParameter<edm::ParameterSet>("pedeReader"), true, runrange)) {
edm::LogError("Alignment") << "@SUB=MillePedeAlignmentAlgorithm::setParametersForRunRange"
<< "Problems reading pede result, but applying!";
}
theAlignmentParameterStore->applyParameters();
this->doIO(++theLastWrittenIov); // pre-increment!
}
return true;
}
// Call at end of job ---------------------------------------------------------
//____________________________________________________
void MillePedeAlignmentAlgorithm::terminate(const edm::EventSetup &iSetup) { terminate(); }
void MillePedeAlignmentAlgorithm::terminate() {
theMille.reset(); // delete to close binary before running pede below (flush would be enough...)
theBinary.reset();
std::vector<std::string> files;
if (this->isMode(myMilleBit) || !theConfig.getParameter<std::string>("binaryFile").empty()) {
files.push_back(theDir + theConfig.getParameter<std::string>("binaryFile"));
} else {
const std::vector<std::string> plainFiles(theConfig.getParameter<std::vector<std::string> >("mergeBinaryFiles"));
files = getExistingFormattedFiles(plainFiles, theDir);
// Do some logging:
std::string filesForLogOutput;
for (const auto &file : files)
filesForLogOutput += " " + file + ",";
if (!filesForLogOutput.empty())
filesForLogOutput.pop_back();
edm::LogInfo("Alignment") << "Based on the config parameter mergeBinaryFiles, using the following "
<< "files as input (assigned weights are indicated by ' -- <weight>'):"
<< filesForLogOutput;
}
if (not theAlignmentParameterStore)
return;
// cache all positions, rotations and deformations
theAlignmentParameterStore->cacheTransformations();
if (this->isMode(myPedeReadBit) && enableAlignableUpdates_) {
if (lastProcessedRun_ < uniqueRunRanges_.back().first) {
throw cms::Exception("BadConfig") << "@SUB=MillePedeAlignmentAlgorithm::terminate\n"
<< "Last IOV of 'RunRangeSelection' has not been processed. "
<< "Please reconfigure your source to process the runs at least up to "
<< uniqueRunRanges_.back().first << ".";
}
auto lastCachedRun = uniqueRunRanges_.front().first;
for (const auto &runRange : uniqueRunRanges_) {
const auto run = runRange.first;
if (std::find(cachedRuns_.begin(), cachedRuns_.end(), run) == cachedRuns_.end()) {
theAlignmentParameterStore->restoreCachedTransformations(lastCachedRun);
theAlignmentParameterStore->cacheTransformations(run);
} else {
lastCachedRun = run;
}
}
theAlignmentParameterStore->restoreCachedTransformations();
}
const std::string masterSteer(thePedeSteer->buildMasterSteer(files)); // do only if myPedeSteerBit?
if (this->isMode(myPedeRunBit)) {
thePedeSteer->runPede(masterSteer);
}
// parameters from pede are not yet applied,
// so we can still write start positions (but with hit statistics in case of mille):
this->doIO(0);
theLastWrittenIov = 0;
}
std::vector<std::string> MillePedeAlignmentAlgorithm::getExistingFormattedFiles(
const std::vector<std::string> &plainFiles, const std::string &theDir) {
std::vector<std::string> files;
for (const auto &plainFile : plainFiles) {
const std::string &theInputFileName = plainFile;
int theNumber = 0;
while (true) {
// Create a formatted version of the filename, with growing numbers
// If the parameter doesn't contain a formatting directive, it just stays unchanged
char theNumberedInputFileName[200];
sprintf(theNumberedInputFileName, theInputFileName.c_str(), theNumber);
std::string theCompleteInputFileName = theDir + theNumberedInputFileName;
const auto endOfStrippedFileName = theCompleteInputFileName.rfind(" --");
const auto strippedInputFileName = theCompleteInputFileName.substr(0, endOfStrippedFileName);
// Check if the file exists
struct stat buffer;
if (stat(strippedInputFileName.c_str(), &buffer) == 0) {
// If the file exists, add it to the list
files.push_back(theCompleteInputFileName);
if (theNumberedInputFileName == theInputFileName) {
// If the filename didn't contain a formatting directive, no reason to look any further, break out of the loop
break;
} else {
// Otherwise look for the next number
theNumber++;
}
} else {
// The file doesn't exist, break out of the loop
break;
}
}
// warning if unformatted (-> theNumber stays at 0) does not exist
if (theNumber == 0 && (files.empty() || files.back() != plainFile)) {
edm::LogWarning("Alignment") << "The input file '" << plainFile << "' does not exist.";
}
}
return files;
}
// Run the algorithm on trajectories and tracks -------------------------------
//____________________________________________________
void MillePedeAlignmentAlgorithm::run(const edm::EventSetup &setup, const EventInfo &eventInfo) {
if (!this->isMode(myMilleBit))
return; // no theMille created...
const auto &tracks = eventInfo.trajTrackPairs();
if (theMonitor) { // monitor input tracks
for (const auto &iTrajTrack : tracks) {
theMonitor->fillTrack(iTrajTrack.second);
}
}
const RefTrajColl trajectories(theTrajectoryFactory->trajectories(setup, tracks, eventInfo.beamSpot()));
// Now loop over ReferenceTrajectoryCollection
unsigned int refTrajCount = 0; // counter for track monitoring
const auto tracksPerTraj = theTrajectoryFactory->tracksPerTrajectory();
for (auto iRefTraj = trajectories.cbegin(), iRefTrajE = trajectories.cend(); iRefTraj != iRefTrajE;
++iRefTraj, ++refTrajCount) {
const RefTrajColl::value_type &refTrajPtr = *iRefTraj;
if (theMonitor)
theMonitor->fillRefTrajectory(refTrajPtr);
const auto nHitXy = this->addReferenceTrajectory(setup, eventInfo, refTrajPtr);
if (theMonitor && (nHitXy.first || nHitXy.second)) {
// if trajectory used (i.e. some hits), fill monitoring
const auto offset = tracksPerTraj * refTrajCount;
for (unsigned int iTrack = 0; iTrack < tracksPerTraj; ++iTrack) {
theMonitor->fillUsedTrack(tracks[offset + iTrack].second, nHitXy.first, nHitXy.second);
}
}
} // end of reference trajectory and track loop
}
//____________________________________________________
std::pair<unsigned int, unsigned int> MillePedeAlignmentAlgorithm::addReferenceTrajectory(
const edm::EventSetup &setup, const EventInfo &eventInfo, const RefTrajColl::value_type &refTrajPtr) {
std::pair<unsigned int, unsigned int> hitResultXy(0, 0);
if (refTrajPtr->isValid()) {
// GblTrajectory?
if (!refTrajPtr->gblInput().empty()) {
// by construction: number of GblPoints == number of recHits or == zero !!!
unsigned int iHit = 0;
unsigned int numPointsWithMeas = 0;
std::vector<GblPoint>::iterator itPoint;
auto theGblInput = refTrajPtr->gblInput();
for (unsigned int iTraj = 0; iTraj < refTrajPtr->gblInput().size(); ++iTraj) {
for (itPoint = refTrajPtr->gblInput()[iTraj].first.begin(); itPoint < refTrajPtr->gblInput()[iTraj].first.end();
++itPoint) {
if (this->addGlobalData(setup, eventInfo, refTrajPtr, iHit++, *itPoint) < 0)
return hitResultXy;
if (itPoint->numMeasurements() >= 1)
++numPointsWithMeas;
}
}
hitResultXy.first = numPointsWithMeas;
// check #hits criterion
if (hitResultXy.first == 0 || hitResultXy.first < theMinNumHits)
return hitResultXy;
// construct GBL trajectory
if (refTrajPtr->gblInput().size() == 1) {
// from single track
GblTrajectory aGblTrajectory(refTrajPtr->gblInput()[0].first, refTrajPtr->nominalField() != 0);
// GBL fit trajectory
/*double Chi2;
int Ndf;
double lostWeight;
aGblTrajectory.fit(Chi2, Ndf, lostWeight);
std::cout << " GblFit: " << Chi2 << ", " << Ndf << ", " << lostWeight << std::endl; */
// write to MP binary file
if (aGblTrajectory.isValid() && aGblTrajectory.getNumPoints() >= theMinNumHits)
aGblTrajectory.milleOut(*theBinary);
}
if (refTrajPtr->gblInput().size() == 2) {
// from TwoBodyDecay
GblTrajectory aGblTrajectory(refTrajPtr->gblInput(),
refTrajPtr->gblExtDerivatives(),
refTrajPtr->gblExtMeasurements(),
refTrajPtr->gblExtPrecisions());
// write to MP binary file
if (aGblTrajectory.isValid() && aGblTrajectory.getNumPoints() >= theMinNumHits)
aGblTrajectory.milleOut(*theBinary);
}
} else {
// to add hits if all fine:
std::vector<AlignmentParameters *> parVec(refTrajPtr->recHits().size());
// collect hit statistics, assuming that there are no y-only hits
std::vector<bool> validHitVecY(refTrajPtr->recHits().size(), false);
// Use recHits from ReferenceTrajectory (since they have the right order!):
for (unsigned int iHit = 0; iHit < refTrajPtr->recHits().size(); ++iHit) {
const int flagXY = this->addMeasurementData(setup, eventInfo, refTrajPtr, iHit, parVec[iHit]);
if (flagXY < 0) { // problem
hitResultXy.first = 0;
break;
} else { // hit is fine, increase x/y statistics
if (flagXY >= 1)
++hitResultXy.first;
validHitVecY[iHit] = (flagXY >= 2);
}
} // end loop on hits
// add virtual measurements
for (unsigned int iVirtualMeas = 0; iVirtualMeas < refTrajPtr->numberOfVirtualMeas(); ++iVirtualMeas) {
this->addVirtualMeas(refTrajPtr, iVirtualMeas);
}
// kill or end 'track' for mille, depends on #hits criterion
if (hitResultXy.first == 0 || hitResultXy.first < theMinNumHits) {
theMille->kill();
hitResultXy.first = hitResultXy.second = 0; //reset
} else {
theMille->end();
// add x/y hit count to MillePedeVariables of parVec,
// returning number of y-hits of the reference trajectory
hitResultXy.second = this->addHitCount(parVec, validHitVecY);
//
}
}
} // end if valid trajectory
return hitResultXy;
}
//____________________________________________________
unsigned int MillePedeAlignmentAlgorithm::addHitCount(const std::vector<AlignmentParameters *> &parVec,
const std::vector<bool> &validHitVecY) const {
// Loop on all hit information in the input arrays and count valid y-hits:
unsigned int nHitY = 0;
for (unsigned int iHit = 0; iHit < validHitVecY.size(); ++iHit) {
Alignable *ali = (parVec[iHit] ? parVec[iHit]->alignable() : nullptr);
// Loop upwards on hierarchy of alignables to add hits to all levels
// that are currently aligned. If only a non-selected alignable was hit,
// (i.e. flagXY == 0 in addReferenceTrajectory(..)), there is no loop at all...
while (ali) {
AlignmentParameters *pars = ali->alignmentParameters();
if (pars) { // otherwise hierarchy level not selected
// cast ensured by previous checks:
MillePedeVariables *mpVar = static_cast<MillePedeVariables *>(pars->userVariables());
// every hit has an x-measurement, cf. addReferenceTrajectory(..):
mpVar->increaseHitsX();
if (validHitVecY[iHit]) {
mpVar->increaseHitsY();
if (pars == parVec[iHit])
++nHitY; // do not count hits twice
}
}
ali = ali->mother();
}
}
return nHitY;
}
void MillePedeAlignmentAlgorithm::beginRun(const edm::Run &run, const edm::EventSetup &setup, bool changed) {
if (run.run() < firstIOV_ && !ignoreFirstIOVCheck_) {
throw cms::Exception("Alignment") << "@SUB=MillePedeAlignmentAlgorithm::beginRun\n"
<< "Using data (run = " << run.run() << ") prior to the first defined IOV ("
<< firstIOV_ << ").";
}
lastProcessedRun_ = run.run();
if (changed && enableAlignableUpdates_) {
const auto runNumber = run.run();
auto firstRun = cond::timeTypeSpecs[cond::runnumber].beginValue;
for (auto runRange = uniqueRunRanges_.crbegin(); runRange != uniqueRunRanges_.crend(); ++runRange) {
if (runNumber >= runRange->first) {
firstRun = runRange->first;
break;
}
}
if (std::find(cachedRuns_.begin(), cachedRuns_.end(), firstRun) != cachedRuns_.end()) {
const auto &geometryRcd = setup.get<IdealGeometryRecord>();
const auto &globalPosRcd = setup.get<GlobalPositionRcd>();
const auto &alignmentRcd = setup.get<TrackerAlignmentRcd>();
const auto &surfaceRcd = setup.get<TrackerSurfaceDeformationRcd>();
const auto &errorRcd = setup.get<TrackerAlignmentErrorExtendedRcd>();
std::ostringstream message;
bool throwException{false};
message << "Trying to cache tracker alignment payloads for a run (" << runNumber << ") in an IOV (" << firstRun
<< ") that was already cached.\n"
<< "The following records in your input database tag have an IOV "
<< "boundary that does not match your IOV definition:\n";
if (geometryRcd.validityInterval().first().eventID().run() > firstRun) {
message << " - IdealGeometryRecord '" << geometryRcd.key().name() << "' (since "
<< geometryRcd.validityInterval().first().eventID().run() << ")\n";
throwException = true;
}
if (globalPosRcd.validityInterval().first().eventID().run() > firstRun) {
message << " - GlobalPositionRecord '" << globalPosRcd.key().name() << "' (since "
<< globalPosRcd.validityInterval().first().eventID().run() << ")";
if (skipGlobalPositionRcdCheck_) {
message << " --> ignored\n";
} else {
message << "\n";
throwException = true;
}
}
if (alignmentRcd.validityInterval().first().eventID().run() > firstRun) {
message << " - TrackerAlignmentRcd '" << alignmentRcd.key().name() << "' (since "
<< alignmentRcd.validityInterval().first().eventID().run() << ")\n";
throwException = true;
}
if (surfaceRcd.validityInterval().first().eventID().run() > firstRun) {
message << " - TrackerSurfaceDeformationRcd '" << surfaceRcd.key().name() << "' (since "
<< surfaceRcd.validityInterval().first().eventID().run() << ")\n";
throwException = true;
}
if (errorRcd.validityInterval().first().eventID().run() > firstRun) {
message << " - TrackerAlignmentErrorExtendedRcd '" << errorRcd.key().name() << "' (since "
<< errorRcd.validityInterval().first().eventID().run() << ")\n";
throwException = true;
}
if (throwException) {
throw cms::Exception("Alignment") << "@SUB=MillePedeAlignmentAlgorithm::beginRun\n" << message.str();
}
} else {
cachedRuns_.push_back(firstRun);
theAlignmentParameterStore->cacheTransformations(firstRun);
}
}
}
//____________________________________________________
void MillePedeAlignmentAlgorithm::endRun(const EventInfo &eventInfo,
const EndRunInfo &runInfo,
const edm::EventSetup &setup) {
if (runInfo.tkLasBeams() && runInfo.tkLasBeamTsoses()) {
// LAS beam treatment
this->addLaserData(eventInfo, *(runInfo.tkLasBeams()), *(runInfo.tkLasBeamTsoses()));
}
if (this->isMode(myMilleBit))
theMille->flushOutputFile();
}
// Implementation of endRun that DOES get called. (Because we need it.)
void MillePedeAlignmentAlgorithm::endRun(const EndRunInfo &runInfo, const edm::EventSetup &setup) {
if (this->isMode(myMilleBit))
theMille->flushOutputFile();
}
//____________________________________________________
void MillePedeAlignmentAlgorithm::beginLuminosityBlock(const edm::EventSetup &) {
if (!runAtPCL_)
return;
if (this->isMode(myMilleBit)) {
theMille->resetOutputFile();
theBinary.reset(); // GBL output has to be considered since same binary file is used
theBinary = std::make_unique<MilleBinary>((theDir + theConfig.getParameter<std::string>("binaryFile")).c_str(),
theGblDoubleBinary);
}
}
//____________________________________________________
void MillePedeAlignmentAlgorithm::endLuminosityBlock(const edm::EventSetup &) {
if (!runAtPCL_)
return;
if (this->isMode(myMilleBit))
theMille->flushOutputFile();
}
//____________________________________________________
int MillePedeAlignmentAlgorithm::addMeasurementData(const edm::EventSetup &setup,
const EventInfo &eventInfo,
const ReferenceTrajectoryBase::ReferenceTrajectoryPtr &refTrajPtr,
unsigned int iHit,
AlignmentParameters *¶ms) {
params = nullptr;
theFloatBufferX.clear();
theFloatBufferY.clear();
theIntBuffer.clear();
const TrajectoryStateOnSurface &tsos = refTrajPtr->trajectoryStates()[iHit];
const ConstRecHitPointer &recHitPtr = refTrajPtr->recHits()[iHit];
// ignore invalid hits
if (!recHitPtr->isValid())
return 0;
// First add the derivatives from IntegratedCalibration's,
// should even be OK if problems for "usual" derivatives from Alignables
this->globalDerivativesCalibration(recHitPtr,
tsos,
setup,
eventInfo, // input
theFloatBufferX,
theFloatBufferY,
theIntBuffer); // output
// get AlignableDet/Unit for this hit
AlignableDetOrUnitPtr alidet(theAlignableNavigator->alignableFromDetId(recHitPtr->geographicalId()));
if (!this->globalDerivativesHierarchy(eventInfo,
tsos,
alidet,
alidet,
theFloatBufferX, // 2x alidet, sic!
theFloatBufferY,
theIntBuffer,
params)) {
return -1; // problem
} else if (theFloatBufferX.empty() && ignoreHitsWithoutGlobalDerivatives_) {
return 0; // empty for X: no alignable for hit, nor calibrations
} else {
// store measurement even if no alignable or calibrations
// -> measurement used for pede-internal track-fit
return this->callMille(refTrajPtr, iHit, theIntBuffer, theFloatBufferX, theFloatBufferY);
}
}
//____________________________________________________
int MillePedeAlignmentAlgorithm::addGlobalData(const edm::EventSetup &setup,
const EventInfo &eventInfo,
const ReferenceTrajectoryBase::ReferenceTrajectoryPtr &refTrajPtr,
unsigned int iHit,
GblPoint &gblPoint) {
AlignmentParameters *params = nullptr;
std::vector<double> theDoubleBufferX, theDoubleBufferY;
theDoubleBufferX.clear();
theDoubleBufferY.clear();
theIntBuffer.clear();
int iret = 0;
const TrajectoryStateOnSurface &tsos = refTrajPtr->trajectoryStates()[iHit];
const ConstRecHitPointer &recHitPtr = refTrajPtr->recHits()[iHit];
// ignore invalid hits
if (!recHitPtr->isValid())
return 0;
// get AlignableDet/Unit for this hit
AlignableDetOrUnitPtr alidet(theAlignableNavigator->alignableFromDetId(recHitPtr->geographicalId()));
if (!this->globalDerivativesHierarchy(eventInfo,
tsos,
alidet,
alidet,
theDoubleBufferX, // 2x alidet, sic!
theDoubleBufferY,
theIntBuffer,
params)) {
return -1; // problem
}
//calibration parameters
int globalLabel;
std::vector<IntegratedCalibrationBase::ValuesIndexPair> derivs;
for (auto iCalib = theCalibrations.begin(); iCalib != theCalibrations.end(); ++iCalib) {
// get all derivatives of this calibration // const unsigned int num =
(*iCalib)->derivatives(derivs, *recHitPtr, tsos, setup, eventInfo);
for (auto iValuesInd = derivs.begin(); iValuesInd != derivs.end(); ++iValuesInd) {
// transfer label and x/y derivatives
globalLabel = thePedeLabels->calibrationLabel(*iCalib, iValuesInd->second);
if (globalLabel > 0 && globalLabel <= 2147483647) {
theIntBuffer.push_back(globalLabel);
theDoubleBufferX.push_back(iValuesInd->first.first);
theDoubleBufferY.push_back(iValuesInd->first.second);
} else {
edm::LogError("Alignment") << "@SUB=MillePedeAlignmentAlgorithm::addGlobalData"
<< "Invalid label " << globalLabel << " <= 0 or > 2147483647";
}
}
}
unsigned int numGlobals = theIntBuffer.size();
if (numGlobals > 0) {
Eigen::Matrix<double, 2, Eigen::Dynamic> globalDer{2, numGlobals};
for (unsigned int i = 0; i < numGlobals; ++i) {
globalDer(0, i) = theDoubleBufferX[i];
globalDer(1, i) = theDoubleBufferY[i];
}
gblPoint.addGlobals(theIntBuffer, globalDer);
iret = 1;
}
return iret;
}
//____________________________________________________
bool MillePedeAlignmentAlgorithm ::globalDerivativesHierarchy(const EventInfo &eventInfo,
const TrajectoryStateOnSurface &tsos,
Alignable *ali,
const AlignableDetOrUnitPtr &alidet,
std::vector<float> &globalDerivativesX,
std::vector<float> &globalDerivativesY,
std::vector<int> &globalLabels,
AlignmentParameters *&lowestParams) const {
// derivatives and labels are recursively attached
if (!ali)
return true; // no mother might be OK
if (false && theMonitor && alidet != ali)
theMonitor->fillFrameToFrame(alidet, ali);
AlignmentParameters *params = ali->alignmentParameters();
if (params) {
if (!lowestParams)
lowestParams = params; // set parameters of lowest level
bool hasSplitParameters = thePedeLabels->hasSplitParameters(ali);
const unsigned int alignableLabel = thePedeLabels->alignableLabel(ali);
if (0 == alignableLabel) { // FIXME: what about regardAllHits in Markus' code?
edm::LogWarning("Alignment") << "@SUB=MillePedeAlignmentAlgorithm::globalDerivativesHierarchy"
<< "Label not found, skip Alignable.";
return false;
}
const std::vector<bool> &selPars = params->selector();
const AlgebraicMatrix derivs(params->derivatives(tsos, alidet));
// cols: 2, i.e. x&y, rows: parameters, usually RigidBodyAlignmentParameters::N_PARAM
for (unsigned int iSel = 0; iSel < selPars.size(); ++iSel) {
if (selPars[iSel]) {
globalDerivativesX.push_back(derivs[iSel][kLocalX] / thePedeSteer->cmsToPedeFactor(iSel));
if (hasSplitParameters == true) {
globalLabels.push_back(thePedeLabels->parameterLabel(ali, iSel, eventInfo, tsos));
} else {
globalLabels.push_back(thePedeLabels->parameterLabel(alignableLabel, iSel));
}
globalDerivativesY.push_back(derivs[iSel][kLocalY] / thePedeSteer->cmsToPedeFactor(iSel));
}
}
// Exclude mothers if Alignable selected to be no part of a hierarchy:
if (thePedeSteer->isNoHiera(ali))
return true;
}
// Call recursively for mother, will stop if mother == 0:
return this->globalDerivativesHierarchy(
eventInfo, tsos, ali->mother(), alidet, globalDerivativesX, globalDerivativesY, globalLabels, lowestParams);
}
//____________________________________________________
bool MillePedeAlignmentAlgorithm ::globalDerivativesHierarchy(const EventInfo &eventInfo,
const TrajectoryStateOnSurface &tsos,
Alignable *ali,
const AlignableDetOrUnitPtr &alidet,
std::vector<double> &globalDerivativesX,
std::vector<double> &globalDerivativesY,
std::vector<int> &globalLabels,
AlignmentParameters *&lowestParams) const {
// derivatives and labels are recursively attached
if (!ali)
return true; // no mother might be OK
if (false && theMonitor && alidet != ali)
theMonitor->fillFrameToFrame(alidet, ali);
AlignmentParameters *params = ali->alignmentParameters();
if (params) {
if (!lowestParams)
lowestParams = params; // set parameters of lowest level
bool hasSplitParameters = thePedeLabels->hasSplitParameters(ali);
const unsigned int alignableLabel = thePedeLabels->alignableLabel(ali);
if (0 == alignableLabel) { // FIXME: what about regardAllHits in Markus' code?
edm::LogWarning("Alignment") << "@SUB=MillePedeAlignmentAlgorithm::globalDerivativesHierarchy"
<< "Label not found, skip Alignable.";
return false;
}
const std::vector<bool> &selPars = params->selector();
const AlgebraicMatrix derivs(params->derivatives(tsos, alidet));
int globalLabel;
// cols: 2, i.e. x&y, rows: parameters, usually RigidBodyAlignmentParameters::N_PARAM
for (unsigned int iSel = 0; iSel < selPars.size(); ++iSel) {
if (selPars[iSel]) {
if (hasSplitParameters == true) {
globalLabel = thePedeLabels->parameterLabel(ali, iSel, eventInfo, tsos);
} else {
globalLabel = thePedeLabels->parameterLabel(alignableLabel, iSel);
}
if (globalLabel > 0 && globalLabel <= 2147483647) {
globalLabels.push_back(globalLabel);
globalDerivativesX.push_back(derivs[iSel][kLocalX] / thePedeSteer->cmsToPedeFactor(iSel));
globalDerivativesY.push_back(derivs[iSel][kLocalY] / thePedeSteer->cmsToPedeFactor(iSel));
} else {
edm::LogError("Alignment") << "@SUB=MillePedeAlignmentAlgorithm::globalDerivativesHierarchy"
<< "Invalid label " << globalLabel << " <= 0 or > 2147483647";
}
}
}
// Exclude mothers if Alignable selected to be no part of a hierarchy:
if (thePedeSteer->isNoHiera(ali))
return true;
}
// Call recursively for mother, will stop if mother == 0:
return this->globalDerivativesHierarchy(
eventInfo, tsos, ali->mother(), alidet, globalDerivativesX, globalDerivativesY, globalLabels, lowestParams);
}
//____________________________________________________
void MillePedeAlignmentAlgorithm::globalDerivativesCalibration(const TransientTrackingRecHit::ConstRecHitPointer &recHit,
const TrajectoryStateOnSurface &tsos,
const edm::EventSetup &setup,
const EventInfo &eventInfo,
std::vector<float> &globalDerivativesX,
std::vector<float> &globalDerivativesY,
std::vector<int> &globalLabels) const {
std::vector<IntegratedCalibrationBase::ValuesIndexPair> derivs;
for (auto iCalib = theCalibrations.begin(); iCalib != theCalibrations.end(); ++iCalib) {
// get all derivatives of this calibration // const unsigned int num =
(*iCalib)->derivatives(derivs, *recHit, tsos, setup, eventInfo);
for (auto iValuesInd = derivs.begin(); iValuesInd != derivs.end(); ++iValuesInd) {
// transfer label and x/y derivatives
globalLabels.push_back(thePedeLabels->calibrationLabel(*iCalib, iValuesInd->second));
globalDerivativesX.push_back(iValuesInd->first.first);
globalDerivativesY.push_back(iValuesInd->first.second);
}
}
}
// //____________________________________________________
// void MillePedeAlignmentAlgorithm
// ::callMille(const ReferenceTrajectoryBase::ReferenceTrajectoryPtr &refTrajPtr,
// unsigned int iTrajHit, MeasurementDirection xOrY,
// const std::vector<float> &globalDerivatives, const std::vector<int> &globalLabels)
// {
// const unsigned int xyIndex = iTrajHit*2 + xOrY;
// // FIXME: here for residuum and sigma we could use KALMAN-Filter results
// const float residuum =
// refTrajPtr->measurements()[xyIndex] - refTrajPtr->trajectoryPositions()[xyIndex];
// const float covariance = refTrajPtr->measurementErrors()[xyIndex][xyIndex];
// const float sigma = (covariance > 0. ? TMath::Sqrt(covariance) : 0.);
// const AlgebraicMatrix &locDerivMatrix = refTrajPtr->derivatives();
// std::vector<float> localDerivs(locDerivMatrix.num_col());
// for (unsigned int i = 0; i < localDerivs.size(); ++i) {
// localDerivs[i] = locDerivMatrix[xyIndex][i];
// }
// // &(vector[0]) is valid - as long as vector is not empty
// // cf. http://www.parashift.com/c++-faq-lite/containers.html#faq-34.3
// theMille->mille(localDerivs.size(), &(localDerivs[0]),
// globalDerivatives.size(), &(globalDerivatives[0]), &(globalLabels[0]),
// residuum, sigma);
// if (theMonitor) {
// theMonitor->fillDerivatives(refTrajPtr->recHits()[iTrajHit],localDerivs, globalDerivatives,
// (xOrY == kLocalY));
// theMonitor->fillResiduals(refTrajPtr->recHits()[iTrajHit],
// refTrajPtr->trajectoryStates()[iTrajHit],
// iTrajHit, residuum, sigma, (xOrY == kLocalY));
// }
// }
//____________________________________________________
bool MillePedeAlignmentAlgorithm::is2D(const ConstRecHitPointer &recHit) const {
// FIXME: Check whether this is a reliable and recommended way to find out...
if (recHit->dimension() < 2) {
return false; // some muon and TIB/TOB stuff really has RecHit1D
} else if (recHit->detUnit()) { // detunit in strip is 1D, in pixel 2D
return recHit->detUnit()->type().isTrackerPixel();
} else { // stereo strips (FIXME: endcap trouble due to non-parallel strips (wedge sensors)?)
if (dynamic_cast<const ProjectedSiStripRecHit2D *>(recHit->hit())) { // check persistent hit
// projected: 1D measurement on 'glued' module
return false;
} else {
return true;
}
}
}
//__________________________________________________________________________________________________
bool MillePedeAlignmentAlgorithm::readFromPede(const edm::ParameterSet &mprespset,
bool setUserVars,
const RunRange &runrange) {
bool allEmpty = this->areEmptyParams(theAlignables);
PedeReader reader(mprespset, *thePedeSteer, *thePedeLabels, runrange);
align::Alignables alis;
bool okRead = reader.read(alis, setUserVars); // also may set params of IntegratedCalibration's
bool numMatch = true;
std::stringstream out;
out << "Read " << alis.size() << " alignables";
if (alis.size() != theAlignables.size()) {
out << " while " << theAlignables.size() << " in store";
numMatch = false; // FIXME: Should we check one by one? Or transfer 'alis' to the store?
}
if (!okRead)
out << ", but problems in reading";
if (!allEmpty)
out << ", possibly overwriting previous settings";
out << ".";
if (okRead && allEmpty) {
if (numMatch) { // as many alignables with result as trying to align
edm::LogInfo("Alignment") << "@SUB=MillePedeAlignmentAlgorithm::readFromPede" << out.str();
} else if (!alis.empty()) { // dead module do not get hits and no pede result
edm::LogWarning("Alignment") << "@SUB=MillePedeAlignmentAlgorithm::readFromPede" << out.str();
} else { // serious problem: no result read - and not all modules can be dead...
edm::LogError("Alignment") << "@SUB=MillePedeAlignmentAlgorithm::readFromPede" << out.str();
return false;
}
return true;
}
// the rest is not OK:
edm::LogError("Alignment") << "@SUB=MillePedeAlignmentAlgorithm::readFromPede" << out.str();
return false;
}
//__________________________________________________________________________________________________
bool MillePedeAlignmentAlgorithm::areEmptyParams(const align::Alignables &alignables) const {
for (const auto &iAli : alignables) {
const AlignmentParameters *params = iAli->alignmentParameters();
if (params) {
const auto &parVec(params->parameters());
const auto &parCov(params->covariance());
for (int i = 0; i < parVec.num_row(); ++i) {
if (parVec[i] != 0.)
return false;
for (int j = i; j < parCov.num_col(); ++j) {
if (parCov[i][j] != 0.)
return false;
}
}
}
}
return true;
}
//__________________________________________________________________________________________________
unsigned int MillePedeAlignmentAlgorithm::doIO(int loop) const {
unsigned int result = 0;
const std::string outFilePlain(theConfig.getParameter<std::string>("treeFile"));
if (outFilePlain.empty()) {
edm::LogInfo("Alignment") << "@SUB=MillePedeAlignmentAlgorithm::doIO"
<< "treeFile parameter empty => skip writing for 'loop' " << loop;
return result;
}
const std::string outFile(theDir + outFilePlain);
AlignmentIORoot aliIO;
int ioerr = 0;
if (loop == 0) {
aliIO.writeAlignableOriginalPositions(theAlignables, outFile.c_str(), loop, false, ioerr);
if (ioerr) {
edm::LogError("Alignment") << "@SUB=MillePedeAlignmentAlgorithm::doIO"
<< "Problem " << ioerr << " in writeAlignableOriginalPositions";
++result;
}
} else if (loop == 1) {
// only for first iov add hit counts, else 2x, 3x,... number of hits in IOV 2, 3,...
const std::vector<std::string> inFiles(theConfig.getParameter<std::vector<std::string> >("mergeTreeFiles"));
const std::vector<std::string> binFiles(theConfig.getParameter<std::vector<std::string> >("mergeBinaryFiles"));
if (inFiles.size() != binFiles.size()) {
edm::LogWarning("Alignment") << "@SUB=MillePedeAlignmentAlgorithm::doIO"
<< "'vstring mergeTreeFiles' and 'vstring mergeBinaryFiles' "
<< "differ in size";
}
this->addHitStatistics(0, outFile, inFiles); // add hit info from tree 0 in 'infiles'
}
MillePedeVariablesIORoot millePedeIO;
millePedeIO.writeMillePedeVariables(theAlignables, outFile.c_str(), loop, false, ioerr);
if (ioerr) {
edm::LogError("Alignment") << "@SUB=MillePedeAlignmentAlgorithm::doIO"
<< "Problem " << ioerr << " writing MillePedeVariables";
++result;
}
aliIO.writeOrigRigidBodyAlignmentParameters(theAlignables, outFile.c_str(), loop, false, ioerr);
if (ioerr) {
edm::LogError("Alignment") << "@SUB=MillePedeAlignmentAlgorithm::doIO"
<< "Problem " << ioerr << " in writeOrigRigidBodyAlignmentParameters, " << loop;
++result;
}
aliIO.writeAlignableAbsolutePositions(theAlignables, outFile.c_str(), loop, false, ioerr);
if (ioerr) {
edm::LogError("Alignment") << "@SUB=MillePedeAlignmentAlgorithm::doIO"
<< "Problem " << ioerr << " in writeAlignableAbsolutePositions, " << loop;
++result;
}
return result;
}
//__________________________________________________________________________________________________
void MillePedeAlignmentAlgorithm::buildUserVariables(const align::Alignables &alis) const {
for (const auto &iAli : alis) {
AlignmentParameters *params = iAli->alignmentParameters();
if (!params) {
throw cms::Exception("Alignment") << "@SUB=MillePedeAlignmentAlgorithm::buildUserVariables"
<< "No parameters for alignable";
}
MillePedeVariables *userVars = dynamic_cast<MillePedeVariables *>(params->userVariables());
if (userVars) { // Just re-use existing, keeping label and numHits:
for (unsigned int iPar = 0; iPar < userVars->size(); ++iPar) {
// if (params->hierarchyLevel() > 0) {
//std::cout << params->hierarchyLevel() << "\nBefore: " << userVars->parameter()[iPar];
// }
userVars->setAllDefault(iPar);
//std::cout << "\nAfter: " << userVars->parameter()[iPar] << std::endl;
}
} else { // Nothing yet or erase wrong type:
userVars = new MillePedeVariables(
params->size(),
thePedeLabels->alignableLabel(iAli),
thePedeLabels->alignableTracker()->objectIdProvider().typeToName(iAli->alignableObjectId()));
params->setUserVariables(userVars);
}
}
}
//__________________________________________________________________________________________________
unsigned int MillePedeAlignmentAlgorithm::decodeMode(const std::string &mode) const {
if (mode == "full") {
return myMilleBit + myPedeSteerBit + myPedeRunBit + myPedeReadBit;
} else if (mode == "mille") {
return myMilleBit; // + myPedeSteerBit; // sic! Including production of steerig file. NO!
} else if (mode == "pede") {
return myPedeSteerBit + myPedeRunBit + myPedeReadBit;
} else if (mode == "pedeSteer") {
return myPedeSteerBit;
} else if (mode == "pedeRun") {
return myPedeSteerBit + myPedeRunBit + myPedeReadBit; // sic! Including steering and reading of result.
} else if (mode == "pedeRead") {
return myPedeReadBit;
}
throw cms::Exception("BadConfig") << "Unknown mode '" << mode
<< "', use 'full', 'mille', 'pede', 'pedeRun', 'pedeSteer' or 'pedeRead'.";
return 0;
}
//__________________________________________________________________________________________________
bool MillePedeAlignmentAlgorithm::addHitStatistics(int fromIov,
const std::string &outFile,
const std::vector<std::string> &inFiles) const {
bool allOk = true;
int ierr = 0;
MillePedeVariablesIORoot millePedeIO;
for (std::vector<std::string>::const_iterator iFile = inFiles.begin(); iFile != inFiles.end(); ++iFile) {
const std::string inFile(theDir + *iFile);
const std::vector<AlignmentUserVariables *> mpVars =
millePedeIO.readMillePedeVariables(theAlignables, inFile.c_str(), fromIov, ierr);
if (ierr || !this->addHits(theAlignables, mpVars)) {
edm::LogError("Alignment") << "@SUB=MillePedeAlignmentAlgorithm::addHitStatistics"
<< "Error " << ierr << " reading from " << inFile << ", tree " << fromIov
<< ", or problems in addHits";
allOk = false;
}
for (std::vector<AlignmentUserVariables *>::const_iterator i = mpVars.begin(); i != mpVars.end(); ++i) {
delete *i; // clean created objects
}
}
return allOk;
}
//__________________________________________________________________________________________________
bool MillePedeAlignmentAlgorithm::addHits(const align::Alignables &alis,
const std::vector<AlignmentUserVariables *> &mpVars) const {
bool allOk = (mpVars.size() == alis.size());
std::vector<AlignmentUserVariables *>::const_iterator iUser = mpVars.begin();
for (auto iAli = alis.cbegin(); iAli != alis.cend() && iUser != mpVars.end(); ++iAli, ++iUser) {
MillePedeVariables *mpVarNew = dynamic_cast<MillePedeVariables *>(*iUser);
AlignmentParameters *ps = (*iAli)->alignmentParameters();
MillePedeVariables *mpVarOld = (ps ? dynamic_cast<MillePedeVariables *>(ps->userVariables()) : nullptr);
if (!mpVarNew || !mpVarOld || mpVarOld->size() != mpVarNew->size()) {
allOk = false;
continue; // FIXME error etc.?
}
mpVarOld->increaseHitsX(mpVarNew->hitsX());
mpVarOld->increaseHitsY(mpVarNew->hitsY());
}
return allOk;
}
//__________________________________________________________________________________________________
template <typename GlobalDerivativeMatrix>
void MillePedeAlignmentAlgorithm::makeGlobDerivMatrix(const std::vector<float> &globalDerivativesx,
const std::vector<float> &globalDerivativesy,
Eigen::MatrixBase<GlobalDerivativeMatrix> &aGlobalDerivativesM) {
static_assert(GlobalDerivativeMatrix::RowsAtCompileTime == 2, "global derivative matrix must have two rows");
for (size_t i = 0; i < globalDerivativesx.size(); ++i) {
aGlobalDerivativesM(0, i) = globalDerivativesx[i];
aGlobalDerivativesM(1, i) = globalDerivativesy[i];
}
}
//__________________________________________________________________________________________________
template <typename CovarianceMatrix,
typename LocalDerivativeMatrix,
typename ResidualMatrix,
typename GlobalDerivativeMatrix>
void MillePedeAlignmentAlgorithm::diagonalize(Eigen::MatrixBase<CovarianceMatrix> &aHitCovarianceM,
Eigen::MatrixBase<LocalDerivativeMatrix> &aLocalDerivativesM,
Eigen::MatrixBase<ResidualMatrix> &aHitResidualsM,
Eigen::MatrixBase<GlobalDerivativeMatrix> &aGlobalDerivativesM) const {
static_assert(std::is_same<typename LocalDerivativeMatrix::Scalar, typename ResidualMatrix::Scalar>::value,
"'aLocalDerivativesM' and 'aHitResidualsM' must have the "
"same underlying scalar type");
static_assert(std::is_same<typename LocalDerivativeMatrix::Scalar, typename GlobalDerivativeMatrix::Scalar>::value,
"'aLocalDerivativesM' and 'aGlobalDerivativesM' must have the "
"same underlying scalar type");
Eigen::SelfAdjointEigenSolver<typename CovarianceMatrix::PlainObject> myDiag{aHitCovarianceM};
// eigenvectors of real symmetric matrices are orthogonal, i.e. invert == transpose
auto aTranfoToDiagonalSystemInv =
myDiag.eigenvectors().transpose().template cast<typename LocalDerivativeMatrix::Scalar>();
aHitCovarianceM = myDiag.eigenvalues().asDiagonal();
aLocalDerivativesM = aTranfoToDiagonalSystemInv * aLocalDerivativesM;
aHitResidualsM = aTranfoToDiagonalSystemInv * aHitResidualsM;
if (aGlobalDerivativesM.size() > 0) {
// diagonalize only if measurement depends on alignables or calibrations
aGlobalDerivativesM = aTranfoToDiagonalSystemInv * aGlobalDerivativesM;
}
}
//__________________________________________________________________________________________________
template <typename CovarianceMatrix, typename ResidualMatrix, typename LocalDerivativeMatrix>
void MillePedeAlignmentAlgorithm ::addRefTrackVirtualMeas1D(
const ReferenceTrajectoryBase::ReferenceTrajectoryPtr &refTrajPtr,
unsigned int iVirtualMeas,
Eigen::MatrixBase<CovarianceMatrix> &aHitCovarianceM,
Eigen::MatrixBase<ResidualMatrix> &aHitResidualsM,
Eigen::MatrixBase<LocalDerivativeMatrix> &aLocalDerivativesM) {
// This Method is valid for 1D measurements only
const unsigned int xIndex = iVirtualMeas + refTrajPtr->numberOfHitMeas();
aHitCovarianceM(0, 0) = refTrajPtr->measurementErrors()[xIndex][xIndex];
aHitResidualsM(0, 0) = refTrajPtr->measurements()[xIndex];
const auto &locDerivMatrix = refTrajPtr->derivatives();
for (int i = 0; i < locDerivMatrix.num_col(); ++i) {
aLocalDerivativesM(0, i) = locDerivMatrix[xIndex][i];
}
}
//__________________________________________________________________________________________________
template <typename CovarianceMatrix, typename ResidualMatrix, typename LocalDerivativeMatrix>
void MillePedeAlignmentAlgorithm ::addRefTrackData2D(const ReferenceTrajectoryBase::ReferenceTrajectoryPtr &refTrajPtr,
unsigned int iTrajHit,
Eigen::MatrixBase<CovarianceMatrix> &aHitCovarianceM,
Eigen::MatrixBase<ResidualMatrix> &aHitResidualsM,
Eigen::MatrixBase<LocalDerivativeMatrix> &aLocalDerivativesM) {
// This Method is valid for 2D measurements only
const unsigned int xIndex = iTrajHit * 2;
const unsigned int yIndex = iTrajHit * 2 + 1;
aHitCovarianceM(0, 0) = refTrajPtr->measurementErrors()[xIndex][xIndex];
aHitCovarianceM(0, 1) = refTrajPtr->measurementErrors()[xIndex][yIndex];
aHitCovarianceM(1, 0) = refTrajPtr->measurementErrors()[yIndex][xIndex];
aHitCovarianceM(1, 1) = refTrajPtr->measurementErrors()[yIndex][yIndex];
aHitResidualsM(0, 0) = refTrajPtr->measurements()[xIndex] - refTrajPtr->trajectoryPositions()[xIndex];
aHitResidualsM(1, 0) = refTrajPtr->measurements()[yIndex] - refTrajPtr->trajectoryPositions()[yIndex];
const auto &locDerivMatrix = refTrajPtr->derivatives();
for (int i = 0; i < locDerivMatrix.num_col(); ++i) {
aLocalDerivativesM(0, i) = locDerivMatrix[xIndex][i];
aLocalDerivativesM(1, i) = locDerivMatrix[yIndex][i];
}
}
//__________________________________________________________________________________________________
int MillePedeAlignmentAlgorithm ::callMille(const ReferenceTrajectoryBase::ReferenceTrajectoryPtr &refTrajPtr,
unsigned int iTrajHit,
const std::vector<int> &globalLabels,
const std::vector<float> &globalDerivativesX,
const std::vector<float> &globalDerivativesY) {
const ConstRecHitPointer aRecHit(refTrajPtr->recHits()[iTrajHit]);
if ((aRecHit)->dimension() == 1) {
return this->callMille1D(refTrajPtr, iTrajHit, globalLabels, globalDerivativesX);
} else {
return this->callMille2D(refTrajPtr, iTrajHit, globalLabels, globalDerivativesX, globalDerivativesY);
}
}
//__________________________________________________________________________________________________
int MillePedeAlignmentAlgorithm ::callMille1D(const ReferenceTrajectoryBase::ReferenceTrajectoryPtr &refTrajPtr,
unsigned int iTrajHit,
const std::vector<int> &globalLabels,
const std::vector<float> &globalDerivativesX) {
const ConstRecHitPointer aRecHit(refTrajPtr->recHits()[iTrajHit]);
const unsigned int xIndex = iTrajHit * 2; // the even ones are local x
// local derivatives
const AlgebraicMatrix &locDerivMatrix = refTrajPtr->derivatives();
const int nLocal = locDerivMatrix.num_col();
std::vector<float> localDerivatives(nLocal);
for (unsigned int i = 0; i < localDerivatives.size(); ++i) {
localDerivatives[i] = locDerivMatrix[xIndex][i];
}
// residuum and error
float residX = refTrajPtr->measurements()[xIndex] - refTrajPtr->trajectoryPositions()[xIndex];
float hitErrX = TMath::Sqrt(refTrajPtr->measurementErrors()[xIndex][xIndex]);
// number of global derivatives
const int nGlobal = globalDerivativesX.size();
// &(localDerivatives[0]) etc. are valid - as long as vector is not empty
// cf. http://www.parashift.com/c++-faq-lite/containers.html#faq-34.3
theMille->mille(
nLocal, &(localDerivatives[0]), nGlobal, &(globalDerivativesX[0]), &(globalLabels[0]), residX, hitErrX);
if (theMonitor) {
theMonitor->fillDerivatives(
aRecHit, &(localDerivatives[0]), nLocal, &(globalDerivativesX[0]), nGlobal, &(globalLabels[0]));
theMonitor->fillResiduals(aRecHit, refTrajPtr->trajectoryStates()[iTrajHit], iTrajHit, residX, hitErrX, false);
}
return 1;
}
//__________________________________________________________________________________________________
int MillePedeAlignmentAlgorithm ::callMille2D(const ReferenceTrajectoryBase::ReferenceTrajectoryPtr &refTrajPtr,
unsigned int iTrajHit,
const std::vector<int> &globalLabels,
const std::vector<float> &globalDerivativesx,
const std::vector<float> &globalDerivativesy) {
const ConstRecHitPointer aRecHit(refTrajPtr->recHits()[iTrajHit]);
if ((aRecHit)->dimension() != 2) {
edm::LogError("Alignment") << "@SUB=MillePedeAlignmentAlgorithm::callMille2D"
<< "You try to call method for 2D hits for a " << (aRecHit)->dimension()
<< "D Hit. Hit gets ignored!";
return -1;
}
Eigen::Matrix<double, 2, 2> aHitCovarianceM;
Eigen::Matrix<float, 2, 1> aHitResidualsM;
Eigen::Matrix<float, 2, Eigen::Dynamic> aLocalDerivativesM{2, refTrajPtr->derivatives().num_col()};
// below method fills above 3 matrices
this->addRefTrackData2D(refTrajPtr, iTrajHit, aHitCovarianceM, aHitResidualsM, aLocalDerivativesM);
Eigen::Matrix<float, 2, Eigen::Dynamic> aGlobalDerivativesM{2, globalDerivativesx.size()};
this->makeGlobDerivMatrix(globalDerivativesx, globalDerivativesy, aGlobalDerivativesM);
// calculates correlation between Hit measurements
// FIXME: Should take correlation (and resulting transformation) from original hit,
// not 2x2 matrix from ReferenceTrajectory: That can come from error propagation etc.!
const double corr = aHitCovarianceM(0, 1) / sqrt(aHitCovarianceM(0, 0) * aHitCovarianceM(1, 1));
if (theMonitor)
theMonitor->fillCorrelations2D(corr, aRecHit);
bool diag = false; // diagonalise only tracker TID, TEC
switch (aRecHit->geographicalId().subdetId()) {
case SiStripDetId::TID:
case SiStripDetId::TEC:
if (aRecHit->geographicalId().det() == DetId::Tracker && TMath::Abs(corr) > theMaximalCor2D) {
this->diagonalize(aHitCovarianceM, aLocalDerivativesM, aHitResidualsM, aGlobalDerivativesM);
diag = true;
}
break;
default:;
}
float newResidX = aHitResidualsM(0, 0);
float newResidY = aHitResidualsM(1, 0);
float newHitErrX = TMath::Sqrt(aHitCovarianceM(0, 0));
float newHitErrY = TMath::Sqrt(aHitCovarianceM(1, 1));
// change from column major (Eigen default) to row major to have row entries
// in continuous memory
std::vector<float> newLocalDerivs(aLocalDerivativesM.size());
Eigen::Map<Eigen::Matrix<float, 2, Eigen::Dynamic, Eigen::RowMajor> >(
newLocalDerivs.data(), aLocalDerivativesM.rows(), aLocalDerivativesM.cols()) = aLocalDerivativesM;
float *newLocalDerivsX = &(newLocalDerivs[0]);
float *newLocalDerivsY = &(newLocalDerivs[aLocalDerivativesM.cols()]);
// change from column major (Eigen default) to row major to have row entries
// in continuous memory
std::vector<float> newGlobDerivs(aGlobalDerivativesM.size());
Eigen::Map<Eigen::Matrix<float, 2, Eigen::Dynamic, Eigen::RowMajor> >(
newGlobDerivs.data(), aGlobalDerivativesM.rows(), aGlobalDerivativesM.cols()) = aGlobalDerivativesM;
float *newGlobDerivsX = &(newGlobDerivs[0]);
float *newGlobDerivsY = &(newGlobDerivs[aGlobalDerivativesM.cols()]);
const int nLocal = aLocalDerivativesM.cols();
const int nGlobal = aGlobalDerivativesM.cols();
if (diag && (newHitErrX > newHitErrY)) { // also for 2D hits?
// measurement with smaller error is x-measurement (for !is2D do not fill y-measurement):
std::swap(newResidX, newResidY);
std::swap(newHitErrX, newHitErrY);
std::swap(newLocalDerivsX, newLocalDerivsY);
std::swap(newGlobDerivsX, newGlobDerivsY);
}
// &(globalLabels[0]) is valid - as long as vector is not empty
// cf. http://www.parashift.com/c++-faq-lite/containers.html#faq-34.3
theMille->mille(nLocal, newLocalDerivsX, nGlobal, newGlobDerivsX, &(globalLabels[0]), newResidX, newHitErrX);
if (theMonitor) {
theMonitor->fillDerivatives(aRecHit, newLocalDerivsX, nLocal, newGlobDerivsX, nGlobal, &(globalLabels[0]));
theMonitor->fillResiduals(
aRecHit, refTrajPtr->trajectoryStates()[iTrajHit], iTrajHit, newResidX, newHitErrX, false);
}
const bool isReal2DHit = this->is2D(aRecHit); // strip is 1D (except matched hits)
if (isReal2DHit) {
theMille->mille(nLocal, newLocalDerivsY, nGlobal, newGlobDerivsY, &(globalLabels[0]), newResidY, newHitErrY);
if (theMonitor) {
theMonitor->fillDerivatives(aRecHit, newLocalDerivsY, nLocal, newGlobDerivsY, nGlobal, &(globalLabels[0]));
theMonitor->fillResiduals(
aRecHit, refTrajPtr->trajectoryStates()[iTrajHit], iTrajHit, newResidY, newHitErrY, true); // true: y
}
}
return (isReal2DHit ? 2 : 1);
}
//__________________________________________________________________________________________________
void MillePedeAlignmentAlgorithm ::addVirtualMeas(const ReferenceTrajectoryBase::ReferenceTrajectoryPtr &refTrajPtr,
unsigned int iVirtualMeas) {
Eigen::Matrix<double, 1, 1> aHitCovarianceM;
Eigen::Matrix<float, 1, 1> aHitResidualsM;
Eigen::Matrix<float, 1, Eigen::Dynamic> aLocalDerivativesM{1, refTrajPtr->derivatives().num_col()};
// below method fills above 3 'matrices'
this->addRefTrackVirtualMeas1D(refTrajPtr, iVirtualMeas, aHitCovarianceM, aHitResidualsM, aLocalDerivativesM);
// no global parameters (use dummy 0)
auto aGlobalDerivativesM = Eigen::Matrix<float, 1, 1>::Zero();
float newResidX = aHitResidualsM(0, 0);
float newHitErrX = TMath::Sqrt(aHitCovarianceM(0, 0));
std::vector<float> newLocalDerivsX(aLocalDerivativesM.size());
Eigen::Map<Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> >(
newLocalDerivsX.data(), aLocalDerivativesM.rows(), aLocalDerivativesM.cols()) = aLocalDerivativesM;
std::vector<float> newGlobDerivsX(aGlobalDerivativesM.size());
Eigen::Map<Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> >(
newGlobDerivsX.data(), aGlobalDerivativesM.rows(), aGlobalDerivativesM.cols()) = aGlobalDerivativesM;
const int nLocal = aLocalDerivativesM.cols();
const int nGlobal = 0;
theMille->mille(nLocal, newLocalDerivsX.data(), nGlobal, newGlobDerivsX.data(), &nGlobal, newResidX, newHitErrX);
}
//____________________________________________________
void MillePedeAlignmentAlgorithm::addLaserData(const EventInfo &eventInfo,
const TkFittedLasBeamCollection &lasBeams,
const TsosVectorCollection &lasBeamTsoses) {
TsosVectorCollection::const_iterator iTsoses = lasBeamTsoses.begin();
for (TkFittedLasBeamCollection::const_iterator iBeam = lasBeams.begin(), iEnd = lasBeams.end(); iBeam != iEnd;
++iBeam, ++iTsoses) { // beam/tsoses parallel!
edm::LogInfo("Alignment") << "@SUB=MillePedeAlignmentAlgorithm::addLaserData"
<< "Beam " << iBeam->getBeamId() << " with " << iBeam->parameters().size()
<< " parameters and " << iBeam->getData().size() << " hits.\n There are "
<< iTsoses->size() << " TSOSes.";
this->addLasBeam(eventInfo, *iBeam, *iTsoses);
}
}
//____________________________________________________
void MillePedeAlignmentAlgorithm::addLasBeam(const EventInfo &eventInfo,
const TkFittedLasBeam &lasBeam,
const std::vector<TrajectoryStateOnSurface> &tsoses) {
AlignmentParameters *dummyPtr = nullptr; // for globalDerivativesHierarchy()
std::vector<float> lasLocalDerivsX; // buffer for local derivatives
const unsigned int beamLabel = thePedeLabels->lasBeamLabel(lasBeam.getBeamId()); // for global par
for (unsigned int iHit = 0; iHit < tsoses.size(); ++iHit) {
if (!tsoses[iHit].isValid())
continue;
// clear buffer
theFloatBufferX.clear();
theFloatBufferY.clear();
theIntBuffer.clear();
lasLocalDerivsX.clear();
// get alignables and global parameters
const SiStripLaserRecHit2D &hit = lasBeam.getData()[iHit];
AlignableDetOrUnitPtr lasAli(theAlignableNavigator->alignableFromDetId(hit.getDetId()));
this->globalDerivativesHierarchy(
eventInfo, tsoses[iHit], lasAli, lasAli, theFloatBufferX, theFloatBufferY, theIntBuffer, dummyPtr);
// fill derivatives vector from derivatives matrix
for (unsigned int nFitParams = 0; nFitParams < static_cast<unsigned int>(lasBeam.parameters().size());
++nFitParams) {
const float derivative = lasBeam.derivatives()[iHit][nFitParams];
if (nFitParams < lasBeam.firstFixedParameter()) { // first local beam parameters
lasLocalDerivsX.push_back(derivative);
} else { // now global ones
const unsigned int numPar = nFitParams - lasBeam.firstFixedParameter();
theIntBuffer.push_back(thePedeLabels->parameterLabel(beamLabel, numPar));
theFloatBufferX.push_back(derivative);
}
} // end loop over parameters
const float residual = hit.localPosition().x() - tsoses[iHit].localPosition().x();
// error from file or assume 0.003
const float error = 0.003; // hit.localPositionError().xx(); sqrt???
theMille->mille(lasLocalDerivsX.size(),
&(lasLocalDerivsX[0]),
theFloatBufferX.size(),
&(theFloatBufferX[0]),
&(theIntBuffer[0]),
residual,
error);
} // end of loop over hits
theMille->end();
}
void MillePedeAlignmentAlgorithm::addPxbSurvey(const edm::ParameterSet &pxbSurveyCfg) {
// do some printing, if requested
const bool doOutputOnStdout(pxbSurveyCfg.getParameter<bool>("doOutputOnStdout"));
if (doOutputOnStdout) {
edm::LogInfo("Alignment") << "@SUB=MillePedeAlignmentAlgorithm::addPxbSurvey"
<< "# Output from addPxbSurvey follows below because "
<< "doOutputOnStdout is set to True";
}
// instantiate a dicer object
SurveyPxbDicer dicer(pxbSurveyCfg.getParameter<std::vector<edm::ParameterSet> >("toySurveyParameters"),
pxbSurveyCfg.getParameter<unsigned int>("toySurveySeed"));
std::ofstream outfile(pxbSurveyCfg.getUntrackedParameter<std::string>("toySurveyFile").c_str());
// read data from file
std::vector<SurveyPxbImageLocalFit> measurements;
std::string filename(pxbSurveyCfg.getParameter<edm::FileInPath>("infile").fullPath());
SurveyPxbImageReader<SurveyPxbImageLocalFit> reader(filename, measurements, 800);
// loop over photographs (=measurements) and perform the fit
for (std::vector<SurveyPxbImageLocalFit>::size_type i = 0; i != measurements.size(); i++) {
if (doOutputOnStdout) {
edm::LogInfo("Alignment") << "@SUB=MillePedeAlignmentAlgorithm::addPxbSurvey"
<< "Module " << i << ": ";
}
// get the Alignables and their surfaces
AlignableDetOrUnitPtr mod1(theAlignableNavigator->alignableFromDetId(measurements[i].getIdFirst()));
AlignableDetOrUnitPtr mod2(theAlignableNavigator->alignableFromDetId(measurements[i].getIdSecond()));
const AlignableSurface &surf1 = mod1->surface();
const AlignableSurface &surf2 = mod2->surface();
// the position of the fiducial points in local frame of a PXB module
const LocalPoint fidpoint0(-0.91, +3.30);
const LocalPoint fidpoint1(+0.91, +3.30);
const LocalPoint fidpoint2(+0.91, -3.30);
const LocalPoint fidpoint3(-0.91, -3.30);
// We choose the local frame of the first module as reference,
// so take the fidpoints of the second module and calculate their
// positions in the reference frame
const GlobalPoint surf2point0(surf2.toGlobal(fidpoint0));
const GlobalPoint surf2point1(surf2.toGlobal(fidpoint1));
const LocalPoint fidpoint0inSurf1frame(surf1.toLocal(surf2point0));
const LocalPoint fidpoint1inSurf1frame(surf1.toLocal(surf2point1));
// Create the vector for the fit
SurveyPxbImageLocalFit::fidpoint_t fidpointvec;
fidpointvec.push_back(fidpoint0inSurf1frame);
fidpointvec.push_back(fidpoint1inSurf1frame);
fidpointvec.push_back(fidpoint2);
fidpointvec.push_back(fidpoint3);
// if toy survey is requested, dice the values now
if (pxbSurveyCfg.getParameter<bool>("doToySurvey")) {
dicer.doDice(fidpointvec, measurements[i].getIdPair(), outfile);
}
// do the fit
measurements[i].doFit(fidpointvec, thePedeLabels->alignableLabel(mod1), thePedeLabels->alignableLabel(mod2));
SurveyPxbImageLocalFit::localpars_t a; // local pars from fit
a = measurements[i].getLocalParameters();
const SurveyPxbImageLocalFit::value_t chi2 = measurements[i].getChi2();
// do some reporting, if requested
if (doOutputOnStdout) {
edm::LogInfo("Alignment") << "@SUB=MillePedeAlignmentAlgorithm::addPxbSurvey"
<< "a: " << a[0] << ", " << a[1] << ", " << a[2] << ", " << a[3]
<< " S= " << sqrt(a[2] * a[2] + a[3] * a[3]) << " phi= " << atan(a[3] / a[2])
<< " chi2= " << chi2 << std::endl;
}
if (theMonitor) {
theMonitor->fillPxbSurveyHistsChi2(chi2);
theMonitor->fillPxbSurveyHistsLocalPars(a[0], a[1], sqrt(a[2] * a[2] + a[3] * a[3]), atan(a[3] / a[2]));
}
// pass the results from the local fit to mille
for (SurveyPxbImageLocalFit::count_t j = 0; j != SurveyPxbImageLocalFit::nMsrmts; j++) {
theMille->mille((int)measurements[i].getLocalDerivsSize(),
measurements[i].getLocalDerivsPtr(j),
(int)measurements[i].getGlobalDerivsSize(),
measurements[i].getGlobalDerivsPtr(j),
measurements[i].getGlobalDerivsLabelPtr(j),
measurements[i].getResiduum(j),
measurements[i].getSigma(j));
}
theMille->end();
}
outfile.close();
}
bool MillePedeAlignmentAlgorithm::areIOVsSpecified() const {
const auto runRangeSelection = theConfig.getUntrackedParameter<edm::VParameterSet>("RunRangeSelection");
if (runRangeSelection.empty())
return false;
const auto runRanges =
align::makeNonOverlappingRunRanges(runRangeSelection, cond::timeTypeSpecs[cond::runnumber].beginValue);
return !(runRanges.empty());
}
|