Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
# To use this script:
#     it's an ordinary Python script, not a CMSSW configuration file (though it writes and runs CMSSW configuration files)
#         * you MUST have an inertGlobalPositionRcd.db in your working directory
#         * you MUST NOT have an MCScenario_CRAFT1_22X.db
#
#     to make the inertGlobalPositionRcd:
#         cmsRun Alignment/MuonAlignment/python/makeGlobalPositionRcd_cfg.py
#
#     to get rid of the MCScenario_CRAFT1_22X.db:
#         rm MCScenario_CRAFT1_22X.db    (naturally)
#
#     to run this script:
#         python MCScenario_CRAFT1_22X.py
#
#     it will create
#         * MCScenario_CRAFT1_22X.xml            the XML file with randomly-distributed values, created directly by define_scenario()
#         * convert_cfg.py                       the conversion configuration file
#         * MCScenario_CRAFT1_22X.db             the SQLite database created from the XML
#         * check_cfg.py                         configuration file that converts the SQLite file back into XML
#         * MCScenario_CRAFT1_22X_CHECKME.xml    converted back, so that we can check the values that were saved to the database
#
#     to check the output in Excel, do this
#         ./Alignment/MuonAlignment/python/geometryXMLtoCSV.py < MCScenario_CRAFT1_22X_CHECKME.xml > MCScenario_CRAFT1_22X_CHECKME.csv
#         and then open MCScenario_CRAFT1_22X_CHECKME.csv in Excel

from builtins import range
import random, os
from math import *

# set the initial seed for reproducibility!
random.seed(123456)

#### called once at the end of this script
def make_scenario_sqlite():
    scenario = define_scenario()
    write_xml(scenario, "MCScenario_CRAFT1_22X.xml")
    write_conversion_cfg("convert_cfg.py", "MCScenario_CRAFT1_22X.xml", "MCScenario_CRAFT1_22X.db")
    cmsRun("convert_cfg.py")
    write_check_cfg("check_cfg.py", "MCScenario_CRAFT1_22X.db", "MCScenario_CRAFT1_22X_CHECKME.xml")
    cmsRun("check_cfg.py")
#### that's it!  everything this uses is defined below

def write_conversion_cfg(fileName, xmlFileName, dbFileName):
    outfile = file(fileName, "w")
    outfile.write("""
from Alignment.MuonAlignment.convertXMLtoSQLite_cfg import *
process.MuonGeometryDBConverter.fileName = "%(xmlFileName)s"
process.PoolDBOutputService.connect = "sqlite_file:%(dbFileName)s"
""" % vars())

def write_check_cfg(fileName, dbFileName, xmlFileName):
    outfile = file(fileName, "w")
    outfile.write("""
from Alignment.MuonAlignment.convertSQLitetoXML_cfg import *
process.PoolDBESSource.connect = "sqlite_file:%(dbFileName)s"
process.MuonGeometryDBConverter.outputXML.fileName = "%(xmlFileName)s"
process.MuonGeometryDBConverter.outputXML.relativeto = "ideal"
process.MuonGeometryDBConverter.outputXML.suppressDTChambers = False
process.MuonGeometryDBConverter.outputXML.suppressDTSuperLayers = False
process.MuonGeometryDBConverter.outputXML.suppressDTLayers = True
process.MuonGeometryDBConverter.outputXML.suppressCSCChambers = False
process.MuonGeometryDBConverter.outputXML.suppressCSCLayers = False
""" % vars())

def cmsRun(fileName):
    os.system("cmsRun %(fileName)s" % vars())

########### writing a scenario in XML ##############################################################

# only needed to make the output XML readable
DTpreferred_order = {"wheel":1, "station":2, "sector":3, "superlayer":4, "layer":5}
CSCpreferred_order = {"endcap":1, "station":2, "ring":3, "chamber":4, "layer":5}
def DTsorter(a, b): return cmp(DTpreferred_order[a], DTpreferred_order[b])
def CSCsorter(a, b): return cmp(CSCpreferred_order[a], CSCpreferred_order[b])

# an instance of this class corresponds to one <DTChamber ... /> or <CSCStation ... />, etc.
class Alignable:
    def __init__(self, alignabletype, **location):
        self.alignabletype = alignabletype
        self.location = location

    def writeXML(self):
        parameters = self.location.keys()
        if self.alignabletype[0:2] == "DT":
            parameters.sort(DTsorter)
        else:
            parameters.sort(CSCsorter)

        output = ["<", self.alignabletype, " "]
        for parameter in parameters:
            output.extend([parameter, "=\"", str(self.location[parameter]), "\" "])
        output.append("/>")

        return "".join(output)

preferred_order = {"x":1, "y":2, "z":3, "phix":4, "phiy":5, "phiz":6}
def sorter(a, b): return cmp(preferred_order[a], preferred_order[b])

# an instance of this class corresponds to one <setposition ... />
class Position:
    def __init__(self, **location):
        self.location = location

    def writeXML(self):
        parameters = self.location.keys()
        parameters.sort(sorter)

        output = ["<setposition relativeto=\"ideal\" "]
        for parameter in parameters:
            output.extend([parameter, "=\"", str(self.location[parameter]), "\" "])
        output.append("/>")

        return "".join(output)

# an instance of this class corresponds to one <operation> ... </operation> in the XML file
class Operation:
    def __init__(self, alignable, position):
        self.alignable = alignable
        self.position = position

    def writeXML(self):
        output = ["<operation> ", self.alignable.writeXML(), " ", self.position.writeXML(), " </operation>\n"]
        return "".join(output)

def write_xml(scenario, fileName):
    # a scenario is an ordered list of Operations
    XMLlist = ["<MuonAlignment>\n"]
    for operation in scenario:
        XMLlist.append(operation.writeXML())
    XMLlist.append("</MuonAlignment>\n")
    XMLstring = "".join(XMLlist)
        
    outfile = file(fileName, "w")
    outfile.write(XMLstring)

class DTChamber:
    def __init__(self, **location):
        self.__dict__.update(location)

class CSCChamber:
    def __init__(self, **location):
        self.__dict__.update(location)

########### defining the actual scenario ##############################################################

# this is the interesting part: where we define a scenario for CRAFT1 MC
def define_scenario():
    # this will be a list of operations to write to an XML file
    scenario = []

    # Uncertainty in DT chamber positions comes in two parts:
    #    1. positions within sectors
    #    2. positions of the sector-groups

    # Aligned chambers (wheels -1, 0, +1 except sectors 1 and 7)
    # uncertainty within sectors:
    #    x: 0.08 cm (from segment-matching)  phix: 0.0007 rad (from MC)
    #    y: 0.10 cm (from MC)                phiy: 0.0007 rad (from segment-matching)
    #    z: 0.10 cm (from MC)                phiz: 0.0003 rad (from MC)
    # uncertainty of sector-groups (depends on choice of pT cut, not well understood):
    #    x: 0.05 cm

    # Unaligned chambers uncertainty within sectors:
    #    x: 0.08 cm (same as above)          phix: 0.0016 rad
    #    y: 0.24 cm                          phiy: 0.0021 rad
    #    z: 0.42 cm with a -0.35 cm bias     phiz: 0.0010 rad
    # uncertainty of sector-groups:
    #    x: 0.65 cm
    # These come from actual alignments measured in the aligned
    # chambers (we assume that the unaligned chambers have
    # misalignments on the same scale)

    # Also, superlayer z uncertainty is 0.054 cm

    # Before starting, let's build a list of chambers
    DTchambers = []
    for wheel in -2, -1, 0, 1, 2:
        for station in 1, 2, 3, 4:
            if station == 4: nsectors = 14
            else: nsectors = 12
            for sector in range(1, nsectors+1):
                DTchambers.append(DTChamber(wheel = wheel, station = station, sector = sector))

    # the superlayers
    for dtchamber in DTchambers:
        for superlayer in 1, 2, 3:
            if superlayer == 2 and dtchamber.station == 4: continue

            alignable = Alignable("DTSuperLayer", wheel = dtchamber.wheel, station = dtchamber.station, sector = dtchamber.sector, superlayer = superlayer)
            position = Position(x = 0, y = 0, z = random.gauss(0, 0.054), phix = 0, phiy = 0, phiz = 0)
            scenario.append(Operation(alignable, position))

    sector_errx = {}

    # sector-groups for aligned chambers:
    for wheel in -1, 0, 1:
        for sector in 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14:
            sector_errx[wheel, sector] = random.gauss(0., 0.05)

    # sector-groups for unaligned chambers:
    for wheel in -1, 0, 1:
        for sector in 1, 7:
            sector_errx[wheel, sector] = random.gauss(0., 0.65)
    for wheel in -2, 2:
        for sector in 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14:
            sector_errx[wheel, sector] = random.gauss(0., 0.65)

    for dtchamber in DTchambers:
        # within sectors for aligned chambers:
        if dtchamber.wheel in (-1, 0, 1) and dtchamber.sector in (2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14):
            errx = random.gauss(0, 0.08)
            erry = random.gauss(0, 0.10)
            errz = random.gauss(0, 0.10)
            errphix = random.gauss(0, 0.0007)
            errphiy = random.gauss(0, 0.0007)
            errphiz = random.gauss(0, 0.0003)

        # within sectors for unaligned chambers:
        else:
            errx = random.gauss(0, 0.08)
            erry = random.gauss(0, 0.24)
            errz = random.gauss(-0.35, 0.42)
            errphix = random.gauss(0, 0.0016)
            errphiy = random.gauss(0, 0.0021)
            errphiz = random.gauss(0, 0.0010)

        errx += sector_errx[dtchamber.wheel, dtchamber.sector]

        # now turn this into an operation
        alignable = Alignable("DTChamber", wheel = dtchamber.wheel, station = dtchamber.station, sector = dtchamber.sector)
        position = Position(x = errx, y = erry, z = errz, phix = errphix, phiy = errphiy, phiz = errphiz)
        scenario.append(Operation(alignable, position))

    # Uncertainty in CSC chamber positions comes in 5 parts:
    #    1. 0.0092 cm layer x misalignments observed with beam-halo tracks
    #    2. isotropic photogrammetry uncertainty of 0.03 cm (x, y, z) and 0.00015 rad in phiz
    #    3. 0.0023 rad phiy misalignment observed with beam-halo tracks
    #    4. 0.1438 cm z and 0.00057 rad phix uncertainty between rings from SLM (from comparison in 0T data with PG)
    #    5. 0.05 cm (x, y, z) disk misalignments and 0.0001 rad rotation around beamline

    # Before starting, let's build a list of chambers
    CSCchambers = []
    for endcap in 1, 2:
        for station, ring in (1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (3, 1), (3, 2), (4, 1):
            if station > 1 and ring == 1:
                nchambers = 18
            else:
                nchambers = 36

            for chamber in range(1, nchambers+1):
                CSCchambers.append(CSCChamber(endcap = endcap, station = station, ring = ring, chamber = chamber))
            
    # First, the layer uncertainties: x only for simplicity, observed 0.0092 cm in overlaps alignment test
    for chamber in CSCchambers:
        for layer in 1, 2, 3, 4, 5, 6:
            alignable = Alignable("CSCLayer", endcap = chamber.endcap, station = chamber.station, ring = chamber.ring, chamber = chamber.chamber, layer = layer)
            position = Position(x = random.gauss(0, 0.0092), y = 0, z = 0, phix = 0, phiy = 0, phiz = 0)
            scenario.append(Operation(alignable, position))

    # Next, the ring errors from DCOPS (derived from comparison with photogrammetry)
    CSCrings = []
    for endcap in 1, 2:
        for station, ring in (1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (3, 1), (3, 2), (4, 1):
            CSCrings.append(CSCChamber(endcap = endcap, station = station, ring = ring, z = random.gauss(0, 0.1438), phix = random.gauss(0, 0.00057)))

    # Next, the chamber errors
    for chamber in CSCchambers:
        errx = random.gauss(0, 0.03)
        erry = random.gauss(0, 0.03)
        errz = random.gauss(0, 0.03)
        errphix = random.gauss(0, 0.00057)
        errphiy = random.gauss(0, 0.0023)
        errphiz = random.gauss(0, 0.00015)
        
        for ring in CSCrings:
            if ring.endcap == chamber.endcap and ring.station == chamber.station and ring.ring == chamber.ring:
                errz += ring.z
                errphix += ring.phix
                break

        alignable = Alignable("CSCChamber", endcap = chamber.endcap, station = chamber.station, ring = chamber.ring, chamber = chamber.chamber)
        position = Position(x = errx, y = erry, z = errz, phix = errphix, phiy = errphiy, phiz = errphiz)
        scenario.append(Operation(alignable, position))

    # Finally, the disk errors
    for endcap in 1, 2:
        for station in 1, 2, 3, 4:
            alignable = Alignable("CSCStation", endcap = endcap, station = station)
            position = Position(x = random.gauss(0, 0.05), y = random.gauss(0, 0.05), z = random.gauss(0, 0.05), phix = 0., phiy = 0., phiz = random.gauss(0, 0.0001))
            scenario.append(Operation(alignable, position))

    return scenario

# run it all!
make_scenario_sqlite()