1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
|
# To use this script:
# it's an ordinary Python script, not a CMSSW configuration file (though it writes and runs CMSSW configuration files)
# * you MUST have an inertGlobalPositionRcd.db in your working directory
# * you MUST NOT have an MCScenario_CRAFT1_22X.db
#
# to make the inertGlobalPositionRcd:
# cmsRun Alignment/MuonAlignment/python/makeGlobalPositionRcd_cfg.py
#
# to get rid of the MCScenario_CRAFT1_22X.db:
# rm MCScenario_CRAFT1_22X.db (naturally)
#
# to run this script:
# python MCScenario_CRAFT1_22X.py
#
# it will create
# * MCScenario_CRAFT1_22X.xml the XML file with randomly-distributed values, created directly by define_scenario()
# * convert_cfg.py the conversion configuration file
# * MCScenario_CRAFT1_22X.db the SQLite database created from the XML
# * check_cfg.py configuration file that converts the SQLite file back into XML
# * MCScenario_CRAFT1_22X_CHECKME.xml converted back, so that we can check the values that were saved to the database
#
# to check the output in Excel, do this
# ./Alignment/MuonAlignment/python/geometryXMLtoCSV.py < MCScenario_CRAFT1_22X_CHECKME.xml > MCScenario_CRAFT1_22X_CHECKME.csv
# and then open MCScenario_CRAFT1_22X_CHECKME.csv in Excel
from builtins import range
import random, os
from math import *
# set the initial seed for reproducibility!
random.seed(123456)
#### called once at the end of this script
def make_scenario_sqlite():
scenario = define_scenario()
write_xml(scenario, "MCScenario_CRAFT1_22X.xml")
write_conversion_cfg("convert_cfg.py", "MCScenario_CRAFT1_22X.xml", "MCScenario_CRAFT1_22X.db")
cmsRun("convert_cfg.py")
write_check_cfg("check_cfg.py", "MCScenario_CRAFT1_22X.db", "MCScenario_CRAFT1_22X_CHECKME.xml")
cmsRun("check_cfg.py")
#### that's it! everything this uses is defined below
def write_conversion_cfg(fileName, xmlFileName, dbFileName):
outfile = file(fileName, "w")
outfile.write("""
from Alignment.MuonAlignment.convertXMLtoSQLite_cfg import *
process.MuonGeometryDBConverter.fileName = "%(xmlFileName)s"
process.PoolDBOutputService.connect = "sqlite_file:%(dbFileName)s"
""" % vars())
def write_check_cfg(fileName, dbFileName, xmlFileName):
outfile = file(fileName, "w")
outfile.write("""
from Alignment.MuonAlignment.convertSQLitetoXML_cfg import *
process.PoolDBESSource.connect = "sqlite_file:%(dbFileName)s"
process.MuonGeometryDBConverter.outputXML.fileName = "%(xmlFileName)s"
process.MuonGeometryDBConverter.outputXML.relativeto = "ideal"
process.MuonGeometryDBConverter.outputXML.suppressDTChambers = False
process.MuonGeometryDBConverter.outputXML.suppressDTSuperLayers = False
process.MuonGeometryDBConverter.outputXML.suppressDTLayers = True
process.MuonGeometryDBConverter.outputXML.suppressCSCChambers = False
process.MuonGeometryDBConverter.outputXML.suppressCSCLayers = False
""" % vars())
def cmsRun(fileName):
os.system("cmsRun %(fileName)s" % vars())
########### writing a scenario in XML ##############################################################
# only needed to make the output XML readable
DTpreferred_order = {"wheel":1, "station":2, "sector":3, "superlayer":4, "layer":5}
CSCpreferred_order = {"endcap":1, "station":2, "ring":3, "chamber":4, "layer":5}
def DTsorter(a, b): return cmp(DTpreferred_order[a], DTpreferred_order[b])
def CSCsorter(a, b): return cmp(CSCpreferred_order[a], CSCpreferred_order[b])
# an instance of this class corresponds to one <DTChamber ... /> or <CSCStation ... />, etc.
class Alignable:
def __init__(self, alignabletype, **location):
self.alignabletype = alignabletype
self.location = location
def writeXML(self):
parameters = self.location.keys()
if self.alignabletype[0:2] == "DT":
parameters.sort(DTsorter)
else:
parameters.sort(CSCsorter)
output = ["<", self.alignabletype, " "]
for parameter in parameters:
output.extend([parameter, "=\"", str(self.location[parameter]), "\" "])
output.append("/>")
return "".join(output)
preferred_order = {"x":1, "y":2, "z":3, "phix":4, "phiy":5, "phiz":6}
def sorter(a, b): return cmp(preferred_order[a], preferred_order[b])
# an instance of this class corresponds to one <setposition ... />
class Position:
def __init__(self, **location):
self.location = location
def writeXML(self):
parameters = self.location.keys()
parameters.sort(sorter)
output = ["<setposition relativeto=\"ideal\" "]
for parameter in parameters:
output.extend([parameter, "=\"", str(self.location[parameter]), "\" "])
output.append("/>")
return "".join(output)
# an instance of this class corresponds to one <operation> ... </operation> in the XML file
class Operation:
def __init__(self, alignable, position):
self.alignable = alignable
self.position = position
def writeXML(self):
output = ["<operation> ", self.alignable.writeXML(), " ", self.position.writeXML(), " </operation>\n"]
return "".join(output)
def write_xml(scenario, fileName):
# a scenario is an ordered list of Operations
XMLlist = ["<MuonAlignment>\n"]
for operation in scenario:
XMLlist.append(operation.writeXML())
XMLlist.append("</MuonAlignment>\n")
XMLstring = "".join(XMLlist)
outfile = file(fileName, "w")
outfile.write(XMLstring)
class DTChamber:
def __init__(self, **location):
self.__dict__.update(location)
class CSCChamber:
def __init__(self, **location):
self.__dict__.update(location)
########### defining the actual scenario ##############################################################
# this is the interesting part: where we define a scenario for CRAFT1 MC
def define_scenario():
# this will be a list of operations to write to an XML file
scenario = []
# Uncertainty in DT chamber positions comes in two parts:
# 1. positions within sectors
# 2. positions of the sector-groups
# Aligned chambers (wheels -1, 0, +1 except sectors 1 and 7)
# uncertainty within sectors:
# x: 0.08 cm (from segment-matching) phix: 0.0007 rad (from MC)
# y: 0.10 cm (from MC) phiy: 0.0007 rad (from segment-matching)
# z: 0.10 cm (from MC) phiz: 0.0003 rad (from MC)
# uncertainty of sector-groups (depends on choice of pT cut, not well understood):
# x: 0.05 cm
# Unaligned chambers uncertainty within sectors:
# x: 0.08 cm (same as above) phix: 0.0016 rad
# y: 0.24 cm phiy: 0.0021 rad
# z: 0.42 cm with a -0.35 cm bias phiz: 0.0010 rad
# uncertainty of sector-groups:
# x: 0.65 cm
# These come from actual alignments measured in the aligned
# chambers (we assume that the unaligned chambers have
# misalignments on the same scale)
# Also, superlayer z uncertainty is 0.054 cm
# Before starting, let's build a list of chambers
DTchambers = []
for wheel in -2, -1, 0, 1, 2:
for station in 1, 2, 3, 4:
if station == 4: nsectors = 14
else: nsectors = 12
for sector in range(1, nsectors+1):
DTchambers.append(DTChamber(wheel = wheel, station = station, sector = sector))
# the superlayers
for dtchamber in DTchambers:
for superlayer in 1, 2, 3:
if superlayer == 2 and dtchamber.station == 4: continue
alignable = Alignable("DTSuperLayer", wheel = dtchamber.wheel, station = dtchamber.station, sector = dtchamber.sector, superlayer = superlayer)
position = Position(x = 0, y = 0, z = random.gauss(0, 0.054), phix = 0, phiy = 0, phiz = 0)
scenario.append(Operation(alignable, position))
sector_errx = {}
# sector-groups for aligned chambers:
for wheel in -1, 0, 1:
for sector in 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14:
sector_errx[wheel, sector] = random.gauss(0., 0.05)
# sector-groups for unaligned chambers:
for wheel in -1, 0, 1:
for sector in 1, 7:
sector_errx[wheel, sector] = random.gauss(0., 0.65)
for wheel in -2, 2:
for sector in 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14:
sector_errx[wheel, sector] = random.gauss(0., 0.65)
for dtchamber in DTchambers:
# within sectors for aligned chambers:
if dtchamber.wheel in (-1, 0, 1) and dtchamber.sector in (2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14):
errx = random.gauss(0, 0.08)
erry = random.gauss(0, 0.10)
errz = random.gauss(0, 0.10)
errphix = random.gauss(0, 0.0007)
errphiy = random.gauss(0, 0.0007)
errphiz = random.gauss(0, 0.0003)
# within sectors for unaligned chambers:
else:
errx = random.gauss(0, 0.08)
erry = random.gauss(0, 0.24)
errz = random.gauss(-0.35, 0.42)
errphix = random.gauss(0, 0.0016)
errphiy = random.gauss(0, 0.0021)
errphiz = random.gauss(0, 0.0010)
errx += sector_errx[dtchamber.wheel, dtchamber.sector]
# now turn this into an operation
alignable = Alignable("DTChamber", wheel = dtchamber.wheel, station = dtchamber.station, sector = dtchamber.sector)
position = Position(x = errx, y = erry, z = errz, phix = errphix, phiy = errphiy, phiz = errphiz)
scenario.append(Operation(alignable, position))
# Uncertainty in CSC chamber positions comes in 5 parts:
# 1. 0.0092 cm layer x misalignments observed with beam-halo tracks
# 2. isotropic photogrammetry uncertainty of 0.03 cm (x, y, z) and 0.00015 rad in phiz
# 3. 0.0023 rad phiy misalignment observed with beam-halo tracks
# 4. 0.1438 cm z and 0.00057 rad phix uncertainty between rings from SLM (from comparison in 0T data with PG)
# 5. 0.05 cm (x, y, z) disk misalignments and 0.0001 rad rotation around beamline
# Before starting, let's build a list of chambers
CSCchambers = []
for endcap in 1, 2:
for station, ring in (1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (3, 1), (3, 2), (4, 1):
if station > 1 and ring == 1:
nchambers = 18
else:
nchambers = 36
for chamber in range(1, nchambers+1):
CSCchambers.append(CSCChamber(endcap = endcap, station = station, ring = ring, chamber = chamber))
# First, the layer uncertainties: x only for simplicity, observed 0.0092 cm in overlaps alignment test
for chamber in CSCchambers:
for layer in 1, 2, 3, 4, 5, 6:
alignable = Alignable("CSCLayer", endcap = chamber.endcap, station = chamber.station, ring = chamber.ring, chamber = chamber.chamber, layer = layer)
position = Position(x = random.gauss(0, 0.0092), y = 0, z = 0, phix = 0, phiy = 0, phiz = 0)
scenario.append(Operation(alignable, position))
# Next, the ring errors from DCOPS (derived from comparison with photogrammetry)
CSCrings = []
for endcap in 1, 2:
for station, ring in (1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (3, 1), (3, 2), (4, 1):
CSCrings.append(CSCChamber(endcap = endcap, station = station, ring = ring, z = random.gauss(0, 0.1438), phix = random.gauss(0, 0.00057)))
# Next, the chamber errors
for chamber in CSCchambers:
errx = random.gauss(0, 0.03)
erry = random.gauss(0, 0.03)
errz = random.gauss(0, 0.03)
errphix = random.gauss(0, 0.00057)
errphiy = random.gauss(0, 0.0023)
errphiz = random.gauss(0, 0.00015)
for ring in CSCrings:
if ring.endcap == chamber.endcap and ring.station == chamber.station and ring.ring == chamber.ring:
errz += ring.z
errphix += ring.phix
break
alignable = Alignable("CSCChamber", endcap = chamber.endcap, station = chamber.station, ring = chamber.ring, chamber = chamber.chamber)
position = Position(x = errx, y = erry, z = errz, phix = errphix, phiy = errphiy, phiz = errphiz)
scenario.append(Operation(alignable, position))
# Finally, the disk errors
for endcap in 1, 2:
for station in 1, 2, 3, 4:
alignable = Alignable("CSCStation", endcap = endcap, station = station)
position = Position(x = random.gauss(0, 0.05), y = random.gauss(0, 0.05), z = random.gauss(0, 0.05), phix = 0., phiy = 0., phiz = random.gauss(0, 0.0001))
scenario.append(Operation(alignable, position))
return scenario
# run it all!
make_scenario_sqlite()
|