1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
|
#include <iomanip>
#include "TrackingTools/TrackFitters/interface/TrajectoryStateCombiner.h"
#include "FWCore/ServiceRegistry/interface/Service.h"
#include "CommonTools/UtilAlgos/interface/TFileService.h"
#include "TrackingTools/PatternTools/interface/Trajectory.h"
#include "Alignment/MuonAlignmentAlgorithms/plugins/CSCOverlapsAlignmentAlgorithm.h"
#include "Alignment/MuonAlignmentAlgorithms/plugins/CSCPairResidualsConstraint.h"
double CSCPairResidualsConstraint::value() const {
double delta = (m_sum1 * m_sumxx) - (m_sumx * m_sumx);
assert(delta > 0.);
if (m_parent->m_mode == kModePhiy || m_parent->m_mode == kModePhiPos || m_parent->m_mode == kModeRadius) {
return ((m_sumxx * m_sumy) - (m_sumx * m_sumxy)) / delta;
} else if (m_parent->m_mode == kModePhiz) {
return ((m_sum1 * m_sumxy) - (m_sumx * m_sumy)) / delta;
} else
assert(false);
}
double CSCPairResidualsConstraint::error() const {
if (m_parent->m_errorFromRMS) {
assert(m_sum1 > 0.);
return sqrt((m_sumyy / m_sum1) - pow(m_sumy / m_sum1, 2)) / sqrt(m_sumN);
} else {
double delta = (m_sum1 * m_sumxx) - (m_sumx * m_sumx);
assert(delta > 0.);
if (m_parent->m_mode == kModePhiy || m_parent->m_mode == kModePhiPos || m_parent->m_mode == kModeRadius) {
return sqrt(m_sumxx / delta);
} else if (m_parent->m_mode == kModePhiz) {
return sqrt(m_sum1 / delta);
} else
assert(false);
}
}
bool CSCPairResidualsConstraint::valid() const { return (m_sumN >= m_parent->m_minTracksPerOverlap); }
void CSCPairResidualsConstraint::configure(CSCOverlapsAlignmentAlgorithm *parent) {
m_parent = parent;
if (m_parent->m_makeHistograms) {
edm::Service<TFileService> tFileService;
std::stringstream name, name2, name3, title;
title << "i =" << m_id_i << " j =" << m_id_j;
name << "slopeResiduals_" << m_identifier;
m_slopeResiduals = tFileService->make<TH1F>(name.str().c_str(), title.str().c_str(), 300, -30., 30.);
name2 << "offsetResiduals_" << m_identifier;
m_offsetResiduals = tFileService->make<TH1F>(name2.str().c_str(), title.str().c_str(), 300, -30., 30.);
name3 << "radial_" << m_identifier;
m_radial = tFileService->make<TH1F>(name3.str().c_str(), title.str().c_str(), 700, 0., 700.);
} else {
m_slopeResiduals = nullptr;
m_offsetResiduals = nullptr;
m_radial = nullptr;
}
}
void CSCPairResidualsConstraint::setZplane(const CSCGeometry *cscGeometry) {
m_cscGeometry = cscGeometry;
m_Zplane = (m_cscGeometry->idToDet(m_id_i)->surface().position().z() +
m_cscGeometry->idToDet(m_id_j)->surface().position().z()) /
2.;
m_averageRadius = (m_cscGeometry->idToDet(m_id_i)->surface().position().perp() +
m_cscGeometry->idToDet(m_id_j)->surface().position().perp()) /
2.;
m_iZ = m_cscGeometry->idToDet(m_id_i)->surface().position().z();
m_jZ = m_cscGeometry->idToDet(m_id_j)->surface().position().z();
CSCDetId i1(m_id_i.endcap(), m_id_i.station(), m_id_i.ring(), m_id_i.chamber(), 1);
CSCDetId i6(m_id_i.endcap(), m_id_i.station(), m_id_i.ring(), m_id_i.chamber(), 6);
CSCDetId j1(m_id_j.endcap(), m_id_j.station(), m_id_j.ring(), m_id_j.chamber(), 1);
CSCDetId j6(m_id_j.endcap(), m_id_j.station(), m_id_j.ring(), m_id_j.chamber(), 6);
m_iZ1 = m_cscGeometry->idToDet(m_id_i)->surface().toLocal(m_cscGeometry->idToDet(i1)->surface().position()).z();
m_iZ6 = m_cscGeometry->idToDet(m_id_i)->surface().toLocal(m_cscGeometry->idToDet(i6)->surface().position()).z();
m_jZ1 = m_cscGeometry->idToDet(m_id_j)->surface().toLocal(m_cscGeometry->idToDet(j1)->surface().position()).z();
m_jZ6 = m_cscGeometry->idToDet(m_id_j)->surface().toLocal(m_cscGeometry->idToDet(j6)->surface().position()).z();
m_Zsurface = Plane::build(Plane::PositionType(0., 0., m_Zplane), Plane::RotationType());
}
void CSCPairResidualsConstraint::setPropagator(const Propagator *propagator) { m_propagator = propagator; }
bool CSCPairResidualsConstraint::addTrack(const std::vector<TrajectoryMeasurement> &measurements,
const reco::TransientTrack &track,
const TrackTransformer *trackTransformer) {
std::vector<const TransientTrackingRecHit *> hits_i;
std::vector<const TransientTrackingRecHit *> hits_j;
for (std::vector<TrajectoryMeasurement>::const_iterator measurement = measurements.begin();
measurement != measurements.end();
++measurement) {
const TransientTrackingRecHit *hit = &*(measurement->recHit());
DetId id = hit->geographicalId();
if (id.det() == DetId::Muon && id.subdetId() == MuonSubdetId::CSC) {
CSCDetId cscid(id.rawId());
CSCDetId chamberId(cscid.endcap(), cscid.station(), cscid.ring(), cscid.chamber(), 0);
if (m_parent->m_combineME11 && cscid.station() == 1 && cscid.ring() == 4)
chamberId = CSCDetId(cscid.endcap(), 1, 1, cscid.chamber(), 0);
if (chamberId == m_id_i)
hits_i.push_back(hit);
if (chamberId == m_id_j)
hits_j.push_back(hit);
}
}
if (m_parent->m_makeHistograms) {
m_parent->m_hitsPerChamber->Fill(hits_i.size());
m_parent->m_hitsPerChamber->Fill(hits_j.size());
}
// require minimum number of hits (if the requirement is too low (~2), some NANs might result...)
if (int(hits_i.size()) < m_parent->m_minHitsPerChamber || int(hits_j.size()) < m_parent->m_minHitsPerChamber)
return false;
// maybe require segments to be fiducial
if (m_parent->m_fiducial && !(isFiducial(hits_i, true) && isFiducial(hits_j, false)))
return false;
double intercept_i = 0.;
double interceptError2_i = 0.;
double slope_i = 0.;
double slopeError2_i = 0.;
double intercept_j = 0.;
double interceptError2_j = 0.;
double slope_j = 0.;
double slopeError2_j = 0.;
// if slopeFromTrackRefit, then you'll need to refit the whole track without this station's hits;
// need at least two other stations for that to be reliable
if (m_parent->m_slopeFromTrackRefit) {
double dphidz;
if (dphidzFromTrack(measurements, track, trackTransformer, dphidz)) {
double sum1_i = 0.;
double sumy_i = 0.;
for (std::vector<const TransientTrackingRecHit *>::const_iterator hit = hits_i.begin(); hit != hits_i.end();
++hit) {
double phi, phierr2;
calculatePhi(*hit, phi, phierr2, false, true);
double z = (*hit)->globalPosition().z() - m_Zplane;
double weight = 1.;
if (m_parent->m_useHitWeights)
weight = 1. / phierr2;
sum1_i += weight;
sumy_i += weight * (phi - z * dphidz);
}
double sum1_j = 0.;
double sumy_j = 0.;
for (std::vector<const TransientTrackingRecHit *>::const_iterator hit = hits_j.begin(); hit != hits_j.end();
++hit) {
double phi, phierr2;
calculatePhi(*hit, phi, phierr2, false, true);
double z = (*hit)->globalPosition().z() - m_Zplane;
double weight = 1.;
if (m_parent->m_useHitWeights)
weight = 1. / phierr2;
sum1_j += weight;
sumy_j += weight * (phi - z * dphidz);
}
if (sum1_i != 0. && sum1_j != 0.) {
slope_i = slope_j = dphidz;
intercept_i = sumy_i / sum1_i;
interceptError2_i = 1. / sum1_i;
intercept_j = sumy_j / sum1_j;
interceptError2_j = 1. / sum1_j;
} else
return false;
}
}
else { // not slopeFromTrackRefit
double sum1_i = 0.;
double sumx_i = 0.;
double sumy_i = 0.;
double sumxx_i = 0.;
double sumxy_i = 0.;
for (std::vector<const TransientTrackingRecHit *>::const_iterator hit = hits_i.begin(); hit != hits_i.end();
++hit) {
double phi, phierr2;
calculatePhi(*hit, phi, phierr2, false, true);
double z = (*hit)->globalPosition().z() - m_Zplane;
double weight = 1.;
if (m_parent->m_useHitWeights)
weight = 1. / phierr2;
sum1_i += weight;
sumx_i += weight * z;
sumy_i += weight * phi;
sumxx_i += weight * z * z;
sumxy_i += weight * z * phi;
}
double sum1_j = 0.;
double sumx_j = 0.;
double sumy_j = 0.;
double sumxx_j = 0.;
double sumxy_j = 0.;
for (std::vector<const TransientTrackingRecHit *>::const_iterator hit = hits_j.begin(); hit != hits_j.end();
++hit) {
double phi, phierr2;
calculatePhi(*hit, phi, phierr2, false, true);
double z = (*hit)->globalPosition().z() - m_Zplane;
double weight = 1.;
if (m_parent->m_useHitWeights)
weight = 1. / phierr2;
sum1_j += weight;
sumx_j += weight * z;
sumy_j += weight * phi;
sumxx_j += weight * z * z;
sumxy_j += weight * z * phi;
}
double delta_i = (sum1_i * sumxx_i) - (sumx_i * sumx_i);
double delta_j = (sum1_j * sumxx_j) - (sumx_j * sumx_j);
if (delta_i != 0. && delta_j != 0.) {
intercept_i = ((sumxx_i * sumy_i) - (sumx_i * sumxy_i)) / delta_i;
interceptError2_i = sumxx_i / delta_i;
slope_i = ((sum1_i * sumxy_i) - (sumx_i * sumy_i)) / delta_i;
slopeError2_i = sum1_i / delta_i;
intercept_j = ((sumxx_j * sumy_j) - (sumx_j * sumxy_j)) / delta_j;
interceptError2_j = sumxx_j / delta_j;
slope_j = ((sum1_j * sumxy_j) - (sumx_j * sumy_j)) / delta_j;
slopeError2_j = sum1_j / delta_j;
} else
return false;
}
// from hits on the two chambers, determine radial_intercepts separately and radial_slope together
double sum1_ri = 0.;
double sumx_ri = 0.;
double sumy_ri = 0.;
double sumxx_ri = 0.;
double sumxy_ri = 0.;
for (std::vector<const TransientTrackingRecHit *>::const_iterator hit = hits_i.begin(); hit != hits_i.end(); ++hit) {
double r = (*hit)->globalPosition().perp();
double z = (*hit)->globalPosition().z() - m_Zplane;
sum1_ri += 1.;
sumx_ri += z;
sumy_ri += r;
sumxx_ri += z * z;
sumxy_ri += z * r;
}
double radial_delta_i = (sum1_ri * sumxx_ri) - (sumx_ri * sumx_ri);
if (radial_delta_i == 0.)
return false;
double radial_slope_i = ((sum1_ri * sumxy_ri) - (sumx_ri * sumy_ri)) / radial_delta_i;
double radial_intercept_i =
((sumxx_ri * sumy_ri) - (sumx_ri * sumxy_ri)) / radial_delta_i + radial_slope_i * (m_iZ - m_Zplane);
double sum1_rj = 0.;
double sumx_rj = 0.;
double sumy_rj = 0.;
double sumxx_rj = 0.;
double sumxy_rj = 0.;
for (std::vector<const TransientTrackingRecHit *>::const_iterator hit = hits_j.begin(); hit != hits_j.end(); ++hit) {
double r = (*hit)->globalPosition().perp();
double z = (*hit)->globalPosition().z() - m_Zplane;
sum1_rj += 1.;
sumx_rj += z;
sumy_rj += r;
sumxx_rj += z * z;
sumxy_rj += z * r;
}
double radial_delta_j = (sum1_rj * sumxx_rj) - (sumx_rj * sumx_rj);
if (radial_delta_j == 0.)
return false;
double radial_slope_j = ((sum1_rj * sumxy_rj) - (sumx_rj * sumy_rj)) / radial_delta_j;
double radial_intercept_j =
((sumxx_rj * sumy_rj) - (sumx_rj * sumxy_rj)) / radial_delta_j + radial_slope_j * (m_jZ - m_Zplane);
double radial_delta = ((sum1_ri + sum1_rj) * (sumxx_ri + sumxx_rj)) - ((sumx_ri + sumx_rj) * (sumx_ri + sumx_rj));
if (radial_delta == 0.)
return false;
double radial_intercept =
(((sumxx_ri + sumxx_rj) * (sumy_ri + sumy_rj)) - ((sumx_ri + sumx_rj) * (sumxy_ri + sumxy_rj))) / radial_delta;
double radial_slope =
(((sum1_ri + sum1_rj) * (sumxy_ri + sumxy_rj)) - ((sumx_ri + sumx_rj) * (sumy_ri + sumy_rj))) / radial_delta;
if (m_parent->m_makeHistograms) {
m_parent->m_drdz->Fill(radial_slope);
}
if (m_parent->m_maxdrdz > 0. && fabs(radial_slope) > m_parent->m_maxdrdz)
return false;
double quantity = 0.;
double quantityError2 = 0.;
if (m_parent->m_mode == kModePhiy) { // phiy comes from track d(rphi)/dz
quantity = (slope_i * radial_intercept_i) - (slope_j * radial_intercept_j);
quantityError2 = (slopeError2_i)*pow(radial_intercept_i, 2) + (slopeError2_j)*pow(radial_intercept_j, 2);
} else if (m_parent->m_mode == kModePhiPos || m_parent->m_mode == kModeRadius) { // phipos comes from phi intercepts
quantity = intercept_i - intercept_j;
quantityError2 = interceptError2_i + interceptError2_j;
} else if (m_parent->m_mode == kModePhiz) { // phiz comes from the slope of rphi intercepts
quantity = (intercept_i - intercept_j) * radial_intercept;
quantityError2 = (interceptError2_i + interceptError2_j) * pow(radial_intercept, 2);
} else
assert(false);
if (quantityError2 == 0.)
return false;
double slopeResid = ((slope_i * radial_intercept_i) - (slope_j * radial_intercept_j)) * 1000.;
double slopeResidError2 =
((slopeError2_i)*pow(radial_intercept_i, 2) + (slopeError2_j)*pow(radial_intercept_j, 2)) * 1000. * 1000.;
double offsetResid = (intercept_i - intercept_j) * radial_intercept * 10.;
double offsetResidError2 = (interceptError2_i + interceptError2_j) * pow(radial_intercept, 2) * 10. * 10.;
if (m_parent->m_truncateSlopeResid > 0. && fabs(slopeResid) > m_parent->m_truncateSlopeResid)
return false;
if (m_parent->m_truncateOffsetResid > 0. && fabs(offsetResid) > m_parent->m_truncateOffsetResid)
return false;
double weight = 1.;
if (m_parent->m_useTrackWeights)
weight = 1. / quantityError2;
// fill the running sums for this CSCPairResidualsConstraint
m_sumN += 1;
m_sum1 += weight;
m_sumx += weight * (radial_intercept - m_averageRadius);
m_sumy += weight * quantity;
m_sumxx += weight * pow(radial_intercept - m_averageRadius, 2);
m_sumyy += weight * quantity * quantity;
m_sumxy += weight * (radial_intercept - m_averageRadius) * quantity;
if (m_parent->m_makeHistograms) {
double rphi_slope_i = slope_i * radial_intercept_i;
double rphi_slope_j = slope_j * radial_intercept_j;
if (m_parent->m_slopeFromTrackRefit) {
m_parent->m_slope->Fill(rphi_slope_i); // == rphi_slope_j
if (m_id_i.endcap() == 1 && m_id_i.station() == 4)
m_parent->m_slope_MEp4->Fill(rphi_slope_i);
if (m_id_i.endcap() == 1 && m_id_i.station() == 3)
m_parent->m_slope_MEp3->Fill(rphi_slope_i);
if (m_id_i.endcap() == 1 && m_id_i.station() == 2)
m_parent->m_slope_MEp2->Fill(rphi_slope_i);
if (m_id_i.endcap() == 1 && m_id_i.station() == 1)
m_parent->m_slope_MEp1->Fill(rphi_slope_i);
if (m_id_i.endcap() == 2 && m_id_i.station() == 1)
m_parent->m_slope_MEm1->Fill(rphi_slope_i);
if (m_id_i.endcap() == 2 && m_id_i.station() == 2)
m_parent->m_slope_MEm2->Fill(rphi_slope_i);
if (m_id_i.endcap() == 2 && m_id_i.station() == 3)
m_parent->m_slope_MEm3->Fill(rphi_slope_i);
if (m_id_i.endcap() == 2 && m_id_i.station() == 4)
m_parent->m_slope_MEm4->Fill(rphi_slope_i);
} else {
m_parent->m_slope->Fill(rphi_slope_i);
m_parent->m_slope->Fill(rphi_slope_j);
if (m_id_i.endcap() == 1 && m_id_i.station() == 4) {
m_parent->m_slope_MEp4->Fill(rphi_slope_i);
m_parent->m_slope_MEp4->Fill(rphi_slope_j);
}
if (m_id_i.endcap() == 1 && m_id_i.station() == 3) {
m_parent->m_slope_MEp3->Fill(rphi_slope_i);
m_parent->m_slope_MEp3->Fill(rphi_slope_j);
}
if (m_id_i.endcap() == 1 && m_id_i.station() == 2) {
m_parent->m_slope_MEp2->Fill(rphi_slope_i);
m_parent->m_slope_MEp2->Fill(rphi_slope_j);
}
if (m_id_i.endcap() == 1 && m_id_i.station() == 1) {
m_parent->m_slope_MEp1->Fill(rphi_slope_i);
m_parent->m_slope_MEp1->Fill(rphi_slope_j);
}
if (m_id_i.endcap() == 2 && m_id_i.station() == 1) {
m_parent->m_slope_MEm1->Fill(rphi_slope_i);
m_parent->m_slope_MEm1->Fill(rphi_slope_j);
}
if (m_id_i.endcap() == 2 && m_id_i.station() == 2) {
m_parent->m_slope_MEm2->Fill(rphi_slope_i);
m_parent->m_slope_MEm2->Fill(rphi_slope_j);
}
if (m_id_i.endcap() == 2 && m_id_i.station() == 3) {
m_parent->m_slope_MEm3->Fill(rphi_slope_i);
m_parent->m_slope_MEm3->Fill(rphi_slope_j);
}
if (m_id_i.endcap() == 2 && m_id_i.station() == 4) {
m_parent->m_slope_MEm4->Fill(rphi_slope_i);
m_parent->m_slope_MEm4->Fill(rphi_slope_j);
}
}
m_slopeResiduals->Fill(slopeResid);
m_offsetResiduals->Fill(offsetResid);
m_radial->Fill(radial_intercept);
m_parent->m_slopeResiduals->Fill(slopeResid);
m_parent->m_slopeResiduals_weighted->Fill(slopeResid, 1. / slopeResidError2);
m_parent->m_slopeResiduals_normalized->Fill(slopeResid / sqrt(slopeResidError2));
m_parent->m_offsetResiduals->Fill(offsetResid);
m_parent->m_offsetResiduals_weighted->Fill(offsetResid, 1. / offsetResidError2);
m_parent->m_offsetResiduals_normalized->Fill(offsetResid / sqrt(offsetResidError2));
double ringbin = 0;
if (m_id_i.endcap() == 2 && m_id_i.station() == 4 && m_id_i.ring() == 2)
ringbin = 1.5;
else if (m_id_i.endcap() == 2 && m_id_i.station() == 4 && m_id_i.ring() == 1)
ringbin = 2.5;
else if (m_id_i.endcap() == 2 && m_id_i.station() == 3 && m_id_i.ring() == 2)
ringbin = 3.5;
else if (m_id_i.endcap() == 2 && m_id_i.station() == 3 && m_id_i.ring() == 1)
ringbin = 4.5;
else if (m_id_i.endcap() == 2 && m_id_i.station() == 2 && m_id_i.ring() == 2)
ringbin = 5.5;
else if (m_id_i.endcap() == 2 && m_id_i.station() == 2 && m_id_i.ring() == 1)
ringbin = 6.5;
else if (m_id_i.endcap() == 2 && m_id_i.station() == 1 && m_id_i.ring() == 3)
ringbin = 7.5;
else if (m_id_i.endcap() == 2 && m_id_i.station() == 1 && m_id_i.ring() == 2)
ringbin = 8.5;
else if (m_id_i.endcap() == 2 && m_id_i.station() == 1 && m_id_i.ring() == 1)
ringbin = 9.5;
else if (m_id_i.endcap() == 2 && m_id_i.station() == 1 && m_id_i.ring() == 4)
ringbin = 10.5;
else if (m_id_i.endcap() == 1 && m_id_i.station() == 1 && m_id_i.ring() == 4)
ringbin = 11.5;
else if (m_id_i.endcap() == 1 && m_id_i.station() == 1 && m_id_i.ring() == 1)
ringbin = 12.5;
else if (m_id_i.endcap() == 1 && m_id_i.station() == 1 && m_id_i.ring() == 2)
ringbin = 13.5;
else if (m_id_i.endcap() == 1 && m_id_i.station() == 1 && m_id_i.ring() == 3)
ringbin = 14.5;
else if (m_id_i.endcap() == 1 && m_id_i.station() == 2 && m_id_i.ring() == 1)
ringbin = 15.5;
else if (m_id_i.endcap() == 1 && m_id_i.station() == 2 && m_id_i.ring() == 2)
ringbin = 16.5;
else if (m_id_i.endcap() == 1 && m_id_i.station() == 3 && m_id_i.ring() == 1)
ringbin = 17.5;
else if (m_id_i.endcap() == 1 && m_id_i.station() == 3 && m_id_i.ring() == 2)
ringbin = 18.5;
else if (m_id_i.endcap() == 1 && m_id_i.station() == 4 && m_id_i.ring() == 1)
ringbin = 19.5;
else if (m_id_i.endcap() == 1 && m_id_i.station() == 4 && m_id_i.ring() == 2)
ringbin = 20.5;
m_parent->m_occupancy->Fill(m_id_i.chamber() + 0.5, ringbin);
}
return true;
}
bool CSCPairResidualsConstraint::dphidzFromTrack(const std::vector<TrajectoryMeasurement> &measurements,
const reco::TransientTrack &track,
const TrackTransformer *trackTransformer,
double &dphidz) {
// make a list of hits on all chambers *other* than the ones associated with this constraint
std::map<int, int> stations;
TransientTrackingRecHit::ConstRecHitContainer cscHits;
for (std::vector<TrajectoryMeasurement>::const_iterator measurement = measurements.begin();
measurement != measurements.end();
++measurement) {
DetId id = measurement->recHit()->geographicalId();
if (id.det() == DetId::Muon && id.subdetId() == MuonSubdetId::CSC) {
CSCDetId cscid(id.rawId());
CSCDetId chamberId(cscid.endcap(), cscid.station(), cscid.ring(), cscid.chamber(), 0);
if (m_parent->m_combineME11 && cscid.station() == 1 && cscid.ring() == 4)
chamberId = CSCDetId(cscid.endcap(), 1, 1, cscid.chamber(), 0);
if (chamberId != m_id_i && chamberId != m_id_j) {
int station = (cscid.endcap() == 1 ? 1 : -1) * cscid.station();
if (stations.find(station) == stations.end()) {
stations[station] = 0;
}
stations[station]++;
cscHits.push_back(measurement->recHit());
}
}
}
// for the fit to be reliable, it needs to cross multiple stations
int numStations = 0;
for (std::map<int, int>::const_iterator station = stations.begin(); station != stations.end(); ++station) {
if (station->second >= m_parent->m_minHitsPerChamber) {
numStations++;
}
}
if (numStations >= m_parent->m_minStationsInTrackRefits) {
// refit the track with these hits
std::vector<Trajectory> trajectories = trackTransformer->transform(track, cscHits);
if (!trajectories.empty()) {
const std::vector<TrajectoryMeasurement> &measurements2 = trajectories.begin()->measurements();
// find the closest TSOS to the Z plane (on both sides)
bool found_plus = false;
bool found_minus = false;
TrajectoryStateOnSurface tsos_plus, tsos_minus;
for (std::vector<TrajectoryMeasurement>::const_iterator measurement = measurements2.begin();
measurement != measurements2.end();
++measurement) {
double z = measurement->recHit()->globalPosition().z();
if (z > m_Zplane) {
if (!found_plus || fabs(z - m_Zplane) < fabs(tsos_plus.globalPosition().z() - m_Zplane)) {
tsos_plus = TrajectoryStateCombiner().combine(measurement->forwardPredictedState(),
measurement->backwardPredictedState());
}
if (tsos_plus.isValid())
found_plus = true;
} else {
if (!found_minus || fabs(z - m_Zplane) < fabs(tsos_minus.globalPosition().z() - m_Zplane)) {
tsos_minus = TrajectoryStateCombiner().combine(measurement->forwardPredictedState(),
measurement->backwardPredictedState());
}
if (tsos_minus.isValid())
found_minus = true;
}
}
// propagate from the closest TSOS to the Z plane (from both sides, if possible)
TrajectoryStateOnSurface from_plus, from_minus;
if (found_plus) {
from_plus = m_propagator->propagate(tsos_plus, *m_Zsurface);
}
if (found_minus) {
from_minus = m_propagator->propagate(tsos_minus, *m_Zsurface);
}
// if you have two sides, merge them
TrajectoryStateOnSurface merged;
if (found_plus && from_plus.isValid() && found_minus && from_minus.isValid()) {
merged = TrajectoryStateCombiner().combine(from_plus, from_minus);
} else if (found_plus && from_plus.isValid()) {
merged = from_plus;
} else if (found_minus && from_minus.isValid()) {
merged = from_minus;
} else
return false;
// if, after all that, we have a good fit-and-propagation, report the direction
if (merged.isValid()) {
double angle = merged.globalPosition().phi() + M_PI / 2.;
GlobalVector direction = merged.globalDirection();
double dxdz = direction.x() / direction.z();
double dydz = direction.y() / direction.z();
dphidz = (dxdz * cos(angle) + dydz * sin(angle)) / merged.globalPosition().perp();
return true;
}
} // end if refit successful
} // end if enough hits
return false;
}
void CSCPairResidualsConstraint::write(std::ofstream &output) {
output << std::setprecision(14) << std::fixed;
output << "CSCPairResidualsConstraint " << m_identifier << " " << i() << " " << j() << " " << m_sumN << " " << m_sum1
<< " " << m_sumx << " " << m_sumy << " " << m_sumxx << " " << m_sumyy << " " << m_sumxy << " EOLN"
<< std::endl;
}
void CSCPairResidualsConstraint::read(std::vector<std::ifstream *> &input, std::vector<std::string> &filenames) {
m_sumN = 0;
m_sum1 = 0.;
m_sumx = 0.;
m_sumy = 0.;
m_sumxx = 0.;
m_sumyy = 0.;
m_sumxy = 0.;
std::vector<std::ifstream *>::const_iterator inputiter = input.begin();
std::vector<std::string>::const_iterator filename = filenames.begin();
for (; inputiter != input.end(); ++inputiter, ++filename) {
int linenumber = 0;
bool touched = false;
while (!(*inputiter)->eof()) {
linenumber++;
std::string name, eoln;
unsigned int identifier;
int i, j;
int sumN;
double sum1, sumx, sumy, sumxx, sumyy, sumxy;
(**inputiter) >> name >> identifier >> i >> j >> sumN >> sum1 >> sumx >> sumy >> sumxx >> sumyy >> sumxy >> eoln;
if (!(*inputiter)->eof() && (name != "CSCPairResidualsConstraint" || eoln != "EOLN"))
throw cms::Exception("CorruptTempFile")
<< "Temporary file " << *filename << " is incorrectly formatted on line " << linenumber << std::endl;
if (identifier == m_identifier) {
if (i != m_i || j != m_j)
throw cms::Exception("CorruptTempFile")
<< "Wrong (i,j) for CSCPairResidualsConstraint " << m_identifier << " (" << m_i << "," << m_j
<< ") in file " << *filename << " on line " << linenumber << std::endl;
touched = true;
m_sumN += sumN;
m_sum1 += sum1;
m_sumx += sumx;
m_sumy += sumy;
m_sumxx += sumxx;
m_sumyy += sumyy;
m_sumxy += sumxy;
}
}
(*inputiter)->clear();
(*inputiter)->seekg(0, std::ios::beg);
if (!touched)
throw cms::Exception("CorruptTempFile")
<< "CSCPairResidualsConstraint " << m_identifier << " is missing from file " << *filename << std::endl;
}
}
void CSCPairResidualsConstraint::calculatePhi(
const TransientTrackingRecHit *hit, double &phi, double &phierr2, bool doRphi, bool globalPhi) {
align::LocalPoint pos = hit->localPosition();
DetId id = hit->geographicalId();
CSCDetId cscid = CSCDetId(id.rawId());
double r = 0.;
if (globalPhi) {
phi = hit->globalPosition().phi();
r = hit->globalPosition().perp();
// double sinAngle = sin(phi);
// double cosAngle = cos(phi);
// double xx = hit->globalPositionError().cxx();
// double xy = hit->globalPositionError().cyx();
// double yy = hit->globalPositionError().cyy();
// phierr2 = (xx*cosAngle*cosAngle + 2.*xy*sinAngle*cosAngle + yy*sinAngle*sinAngle) / (r*r);
} else {
// these constants are related to the way CSC chambers are built--- really constant!
const double R_ME11 = 181.5;
const double R_ME12 = 369.7;
const double R_ME21 = 242.7;
const double R_ME31 = 252.7;
const double R_ME41 = 262.65;
const double R_MEx2 = 526.5;
double R = 0.;
if (cscid.station() == 1 && (cscid.ring() == 1 || cscid.ring() == 4))
R = R_ME11;
else if (cscid.station() == 1 && cscid.ring() == 2)
R = R_ME12;
else if (cscid.station() == 2 && cscid.ring() == 1)
R = R_ME21;
else if (cscid.station() == 3 && cscid.ring() == 1)
R = R_ME31;
else if (cscid.station() == 4 && cscid.ring() == 1)
R = R_ME41;
else if (cscid.station() > 1 && cscid.ring() == 2)
R = R_MEx2;
else
assert(false);
r = (pos.y() + R);
phi = atan2(pos.x(), r);
if (cscid.endcap() == 1 && cscid.station() >= 3)
phi *= -1;
else if (cscid.endcap() == 2 && cscid.station() <= 2)
phi *= -1;
}
int strip = m_cscGeometry->layer(id)->geometry()->nearestStrip(pos);
double angle = m_cscGeometry->layer(id)->geometry()->stripAngle(strip) - M_PI / 2.;
double sinAngle = sin(angle);
double cosAngle = cos(angle);
double xx = hit->localPositionError().xx();
double xy = hit->localPositionError().xy();
double yy = hit->localPositionError().yy();
phierr2 = (xx * cosAngle * cosAngle + 2. * xy * sinAngle * cosAngle + yy * sinAngle * sinAngle) / (r * r);
if (doRphi) {
phi *= r;
phierr2 *= r * r;
}
}
bool CSCPairResidualsConstraint::isFiducial(std::vector<const TransientTrackingRecHit *> &hits, bool is_i) {
// these constants are related to the way CSC chambers are built--- really constant!
const double cut_ME11 = 0.086;
const double cut_ME12 = 0.090;
const double cut_MEx1 = 0.180;
const double cut_MEx2 = 0.090;
double sum1 = 0.;
double sumx = 0.;
double sumy = 0.;
double sumxx = 0.;
double sumxy = 0.;
for (std::vector<const TransientTrackingRecHit *>::const_iterator hit = hits.begin(); hit != hits.end(); ++hit) {
double phi, phierr2;
calculatePhi(*hit, phi, phierr2);
double z = (is_i ? m_cscGeometry->idToDet(m_id_i)->surface() : m_cscGeometry->idToDet(m_id_j)->surface())
.toLocal((*hit)->globalPosition())
.z();
if (m_parent->m_makeHistograms) {
if (m_id_i.station() == 1 && (m_id_i.ring() == 1 || m_id_i.ring() == 4)) {
m_parent->m_fiducial_ME11->Fill(fabs(phi), sqrt(phierr2));
} else if (m_id_i.station() == 1 && m_id_i.ring() == 2) {
m_parent->m_fiducial_ME12->Fill(fabs(phi), sqrt(phierr2));
} else if (m_id_i.station() > 1 && m_id_i.ring() == 1) {
m_parent->m_fiducial_MEx1->Fill(fabs(phi), sqrt(phierr2));
} else if (m_id_i.station() > 1 && m_id_i.ring() == 2) {
m_parent->m_fiducial_MEx2->Fill(fabs(phi), sqrt(phierr2));
}
}
double weight = 1.;
if (m_parent->m_useHitWeights)
weight = 1. / phierr2;
sum1 += weight;
sumx += weight * z;
sumy += weight * phi;
sumxx += weight * z * z;
sumxy += weight * z * phi;
}
double delta = (sum1 * sumxx) - (sumx * sumx);
if (delta == 0.)
return false;
double intercept = ((sumxx * sumy) - (sumx * sumxy)) / delta;
double slope = ((sum1 * sumxy) - (sumx * sumy)) / delta;
double phi1 = intercept + slope * (is_i ? m_iZ1 : m_jZ1);
double phi6 = intercept + slope * (is_i ? m_iZ6 : m_jZ6);
if (m_id_i.station() == 1 && (m_id_i.ring() == 1 || m_id_i.ring() == 4)) {
return (fabs(phi1) < cut_ME11 && fabs(phi6) < cut_ME11);
} else if (m_id_i.station() == 1 && m_id_i.ring() == 2) {
return (fabs(phi1) < cut_ME12 && fabs(phi6) < cut_ME12);
} else if (m_id_i.station() > 1 && m_id_i.ring() == 1) {
return (fabs(phi1) < cut_MEx1 && fabs(phi6) < cut_MEx1);
} else if (m_id_i.station() > 1 && m_id_i.ring() == 2) {
return (fabs(phi1) < cut_MEx2 && fabs(phi6) < cut_MEx2);
} else
assert(false);
}
|