1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
|
import os
import math
import numpy as np
# reference: https://www.kennethmoreland.com/color-maps/ColorMapsExpanded.pdf
# RGB to XYZ matrix
# 0.4124 | 0.2126 | 0.0193
# 0.3576 | 0.7152 | 0.1192
# 0.1805 | 0.0722 | 0.9505
# Inverse
# 3.24063 | -0.968931 | 0.0557101
# -1.53721 | 1.87576 | -0.204021
# -0.498629 | 0.0415175 | 1.057
def fRGB(x):
if x > 0.00313080495356037152: val = math.pow(x, 1./2.4)*1.055 - 0.055
else: val = x*12.92
return val*255.
def fRGBinv(x):
if x > 0.04045: val = math.pow((x + 0.055)/1.055, 2.4)
else: val = (x+0.)/12.92
return val*100
def lRGB2sRGB(r, g, b):
#def rgb_lin(x):
# if x > 0.00313080495356037152: val = math.pow(x, 1./2.4)*1.055 - 0.055
# else: val = x*12.92
# return val*255.
#return rgb_lin((r+0.)/100.), rgb_lin((g+0.)/100.), rgb_lin((b+0.)/100.)
return fRGB((r+0.)/100.), fRGB((g+0.)/100.), fRGB((b+0.)/100.)
def sRGB2lRGB(r, g, b):
#def srgb_lrgb(x):
# if x > 0.04045: val = math.pow((x + 0.055)/1.055, 2.4)
# else: val = (x+0.)/12.92
# return val*100
#return srgb_lrgb((r+0.)/255.), srgb_lrgb((g+0.)/255.), srgb_lrgb((b+0.)/255.)
return fRGBinv((r+0.)/255.), fRGBinv((g+0.)/255.), fRGBinv((b+0.)/255.)
def rgb2xyz(r, g, b):
sr, sg, sb = sRGB2lRGB(r, g, b)
x = 0.4124*sr + 0.3576*sg + 0.1805*sb
y = 0.2126*sr + 0.7152*sg + 0.0722*sb
z = 0.0193*sr + 0.1192*sg + 0.9505*sb
return x, y, z
def xyz2rgb(x, y, z):
r = 3.24063*x - 1.53721*y - 0.498629*z
g = -0.968931*x + 1.87576*y + 0.0415175*z
b = 0.0557101*x - 0.204021*y + 1.057*z
#m = max(max(r, g), b)
#if m > 1.:
# r = (r+0.)/(m+0.)
# g = (g+0.)/(m+0.)
# b = (b+0.)/(m+0.)
return lRGB2sRGB(r, g, b)
def F(v):
if v > 0.008856: return math.pow(v, 1./3.)
else: return 7.787*v + 16./116.
def Finv(v):
if v > 0.20689270648: return math.pow(v, 3)
else: return (v - 16./116.)/7.787
def xyz2Lab(x, y, z, refW):
xn = refW[0]
yn = refW[1]
zn = refW[2]
#xn, yn, zn = [95.047, 100.0, 108.883]
#def F(v):
# if v > 0.008856: return math.pow(v, 1./3.)
# else: return 7.787*v + 16./116.
L = 116*(F((y+0.)/(yn +0.)) - 16./116.)
a = 500*(F((x+0.)/(xn+0.)) - F((y+0.)/(yn+0.)))
b = 200*(F((y+0.)/(yn+0.)) - F((z+0.)/(zn+0.)))
return L, a, b
def Lab2xyz(L, a, b, refW):
xn = refW[0]
yn = refW[1]
zn = refW[2]
#xn, yn, zn = [95.047, 100.0, 108.883]
#def Finv(v):
# if v > 0.20689270648: return math.pow(v, 3)
# else: return (v - 16./116.)/7.787
x = Finv((a+0.)/500. + (L + 16.)/116.)*xn
y = Finv((L + 16.)/116.)*yn
z = Finv((L + 16.)/116. - (b+0.)/200.)*zn
return x, y, z
def Lab2Msh(L, a, b):
M = math.sqrt(math.pow(L,2) + math.pow(a,2) + math.pow(b,2))
s = math.acos((L+0.)/(M+0.))
h = math.atan2(b,a)
return M, s, h
def Msh2Lab(M, s, h):
L = M*math.cos(s)
a = M*math.sin(s)*math.cos(h)
b = M*math.sin(s)*math.sin(h)
return L, a, b
def rgb2Msh(r, g, b, refW):
x, y, z = rgb2xyz(r, g, b)
xr, yr, zr = rgb2xyz(refW[0], refW[1], refW[2])
L, a, b = xyz2Lab(x, y, z, [xr, yr, zr])
return Lab2Msh(L, a, b)
def Msh2rgb(M, s, h, refW):
xr, yr, zr = rgb2xyz(refW[0], refW[1], refW[2])
L, a, b = Msh2Lab(M, s, h)
x, y, z = Lab2xyz(L, a, b, [xr, yr, zr])
return xyz2rgb(x, y, z)
def AdjustHue(Ms, ss, hs, Mu):
#print('Adjusting Hue')
if Ms >= Mu: return hs
h = ss*math.sqrt(math.pow(Mu, 2.) - math.pow(Ms, 2.))/(Ms*math.sin(ss)+0.)
if hs > -math.pi/3.: return hs + h
else: return hs - h
def radDiff(a1, a2):
diff = abs(a1 - a2)
if diff > math.pi: return abs(diff - 2*math.pi)
else: return diff
#('red: ', (117.34353643868656, 1.099939672641069, 0.698178814103516))
#('blue: ', (137.64998152940237, 1.333915268336423, -0.9374394027523394))
def DivergingColor(col1, col2, white, frac):
M1, s1, h1 = rgb2Msh(col1[0], col1[1], col1[2], white)
M2, s2, h2 = rgb2Msh(col2[0], col2[1], col2[2], white)
#if s1 > 0.05 and s2 > 0.05 and radDiff(h1,h2) > math.pi/3.:
if s1 > 0.05 and s2 > 0.05 and abs(h1 - h2) > math.pi/3.:
Mmid = max(max(M1,M2),88.)
if frac < .5:
M2 = Mmid
s2 = 0.
h2 = 0.
frac = 2*frac
else:
M1 = Mmid
s1 = 0.
h1 = 0.
frac = 2*frac - 1
if s1 < 0.05 and s2 > 0.05: h1 = AdjustHue(M2, s2, h2, M1)
elif s2 < 0.05 and s1 > 0.05: h2 = AdjustHue(M1, s1, h1, M2)
M = (1 - frac)*M1 + frac*M2
s = (1 - frac)*s1 + frac*s2
h = (1 - frac)*h1 + frac*h2
#print('temp', M, s, h, h1, h2, frac)
return Msh2rgb(M, s, h, white)
if __name__ == '__main__':
Msh = [83.9912098 , 0.54009147, -0.18776355]
Msh_np = np.array(Msh)
#red = [243.59789395465015, 146.5213165050506, 192.51678151291404]
red = [59, 76, 192]
blue = [180, 4, 38]
white = [1, 1, 1]
frac = 0.75
print('my val: ', DivergingColor(blue, red, white, frac))
print(xyz2rgb(95.047, 100.0, 108.883))
|