1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
|
// Author : Gero Flucke (based on code by Edmund Widl replacing ORCA's TkReferenceTrack)
// date : 2006/09/17
// last update: $Date: 2012/12/25 16:42:04 $
// by : $Author: innocent $
#include <memory>
#include <limits>
#include <cmath>
#include <cstdlib>
#include "Alignment/ReferenceTrajectories/interface/ReferenceTrajectory.h"
#include "DataFormats/GeometrySurface/interface/Surface.h"
#include "DataFormats/GeometrySurface/interface/Plane.h"
#include "FWCore/MessageLogger/interface/MessageLogger.h"
#include "DataFormats/CLHEP/interface/AlgebraicObjects.h"
#include "DataFormats/GeometrySurface/interface/LocalError.h"
#include "DataFormats/GeometryVector/interface/LocalPoint.h"
#include "Geometry/CommonDetUnit/interface/TrackerGeomDet.h"
#include "DataFormats/TrajectoryState/interface/LocalTrajectoryParameters.h"
#include "DataFormats/TrackingRecHit/interface/KfComponentsHolder.h"
#include "TrackingTools/AnalyticalJacobians/interface/AnalyticalCurvilinearJacobian.h"
#include "TrackingTools/AnalyticalJacobians/interface/JacobianLocalToCurvilinear.h"
#include "TrackingTools/AnalyticalJacobians/interface/JacobianCurvilinearToLocal.h"
#include "TrackingTools/GeomPropagators/interface/AnalyticalPropagator.h"
#include "TrackPropagation/RungeKutta/interface/defaultRKPropagator.h"
#include "TrackingTools/TrajectoryState/interface/TrajectoryStateOnSurface.h"
#include "TrackingTools/TrajectoryParametrization/interface/GlobalTrajectoryParameters.h"
#include "TrackingTools/MaterialEffects/interface/MultipleScatteringUpdator.h"
#include "TrackingTools/MaterialEffects/interface/EnergyLossUpdator.h"
#include "TrackingTools/MaterialEffects/interface/CombinedMaterialEffectsUpdator.h"
#include <TrackingTools/PatternTools/interface/TSCPBuilderNoMaterial.h>
#include <TrackingTools/PatternTools/interface/TSCBLBuilderNoMaterial.h>
#include "TrackingTools/TrajectoryState/interface/TrajectoryStateClosestToPoint.h"
#include "TrackingTools/TrajectoryState/interface/TrajectoryStateClosestToBeamLine.h"
#include "MagneticField/Engine/interface/MagneticField.h"
#include "Alignment/ReferenceTrajectories/interface/BeamSpotTransientTrackingRecHit.h"
#include "Alignment/ReferenceTrajectories/interface/BeamSpotGeomDet.h"
//__________________________________________________________________________________
using namespace gbl;
ReferenceTrajectory::ReferenceTrajectory(const TrajectoryStateOnSurface &refTsos,
const TransientTrackingRecHit::ConstRecHitContainer &recHits,
const MagneticField *magField,
const reco::BeamSpot &beamSpot,
const ReferenceTrajectoryBase::Config &config)
: ReferenceTrajectoryBase(
(config.materialEffects >= brokenLinesCoarse) ? 1 : refTsos.localParameters().mixedFormatVector().kSize,
(config.useBeamSpot) ? recHits.size() + 1 : recHits.size(),
(config.materialEffects >= brokenLinesCoarse)
? 2 * ((config.useBeamSpot) ? recHits.size() + 1 : recHits.size())
: ((config.materialEffects == breakPoints)
? 2 * ((config.useBeamSpot) ? recHits.size() + 1 : recHits.size()) - 2
: 0),
(config.materialEffects >= brokenLinesCoarse)
? 2 * ((config.useBeamSpot) ? recHits.size() + 1 : recHits.size()) - 4
: ((config.materialEffects == breakPoints)
? 2 * ((config.useBeamSpot) ? recHits.size() + 1 : recHits.size()) - 2
: 0)),
mass_(config.mass),
materialEffects_(config.materialEffects),
propDir_(config.propDir),
useBeamSpot_(config.useBeamSpot),
includeAPEs_(config.includeAPEs),
allowZeroMaterial_(config.allowZeroMaterial) {
// no check against magField == 0
theParameters = asHepVector<5>(refTsos.localParameters().mixedFormatVector());
if (config.hitsAreReverse) {
TransientTrackingRecHit::ConstRecHitContainer fwdRecHits;
fwdRecHits.reserve(recHits.size());
for (TransientTrackingRecHit::ConstRecHitContainer::const_reverse_iterator it = recHits.rbegin();
it != recHits.rend();
++it) {
fwdRecHits.push_back(*it);
}
theValidityFlag = this->construct(refTsos, fwdRecHits, magField, beamSpot);
} else {
theValidityFlag = this->construct(refTsos, recHits, magField, beamSpot);
}
}
//__________________________________________________________________________________
ReferenceTrajectory::ReferenceTrajectory(unsigned int nPar,
unsigned int nHits,
const ReferenceTrajectoryBase::Config &config)
: ReferenceTrajectoryBase((config.materialEffects >= brokenLinesCoarse) ? 1 : nPar,
nHits,
(config.materialEffects >= brokenLinesCoarse)
? 2 * nHits
: ((config.materialEffects == breakPoints) ? 2 * nHits - 2 : 0),
(config.materialEffects >= brokenLinesCoarse)
? 2 * nHits - 4
: ((config.materialEffects == breakPoints) ? 2 * nHits - 2 : 0)),
mass_(config.mass),
materialEffects_(config.materialEffects),
propDir_(config.propDir),
useBeamSpot_(config.useBeamSpot),
includeAPEs_(config.includeAPEs),
allowZeroMaterial_(config.allowZeroMaterial) {}
//__________________________________________________________________________________
bool ReferenceTrajectory::construct(const TrajectoryStateOnSurface &refTsos,
const TransientTrackingRecHit::ConstRecHitContainer &recHits,
const MagneticField *magField,
const reco::BeamSpot &beamSpot) {
TrajectoryStateOnSurface theRefTsos = refTsos;
const SurfaceSide surfaceSide = this->surfaceSide(propDir_);
// auto_ptr to avoid memory leaks in case of not reaching delete at end of method:
std::unique_ptr<MaterialEffectsUpdator> aMaterialEffectsUpdator(this->createUpdator(materialEffects_, mass_));
if (!aMaterialEffectsUpdator.get())
return false; // empty auto_ptr
AlgebraicMatrix fullJacobian(theParameters.num_row(), theParameters.num_row());
std::vector<AlgebraicMatrix> allJacobians;
allJacobians.reserve(theNumberOfHits);
TransientTrackingRecHit::ConstRecHitPointer previousHitPtr;
TrajectoryStateOnSurface previousTsos;
AlgebraicSymMatrix previousChangeInCurvature(theParameters.num_row(), 1);
std::vector<AlgebraicSymMatrix> allCurvatureChanges;
allCurvatureChanges.reserve(theNumberOfHits);
const LocalTrajectoryError zeroErrors(0., 0., 0., 0., 0.);
std::vector<AlgebraicMatrix> allProjections;
allProjections.reserve(theNumberOfHits);
std::vector<AlgebraicSymMatrix> allDeltaParameterCovs;
allDeltaParameterCovs.reserve(theNumberOfHits);
// CHK
std::vector<AlgebraicMatrix> allLocalToCurv;
allLocalToCurv.reserve(theNumberOfHits);
std::vector<double> allSteps;
allSteps.reserve(theNumberOfHits);
std::vector<AlgebraicMatrix> allCurvlinJacobians;
allCurvlinJacobians.reserve(theNumberOfHits);
AlgebraicMatrix firstCurvlinJacobian(5, 5, 1);
unsigned int iRow = 0;
theNomField = magField->nominalValue(); // nominal magnetic field in kGauss
// local storage vector of all rechits (including rechit for beam spot in case it is used)
TransientTrackingRecHit::ConstRecHitContainer allRecHits;
if (useBeamSpot_ && propDir_ == alongMomentum) {
GlobalPoint bs(beamSpot.x0(), beamSpot.y0(), beamSpot.z0());
TrajectoryStateClosestToBeamLine tsctbl(TSCBLBuilderNoMaterial()(*(refTsos.freeState()), beamSpot));
if (!tsctbl.isValid()) {
edm::LogError("Alignment") << "@SUB=ReferenceTrajectory::construct"
<< "TrajectoryStateClostestToBeamLine invalid. Skip track.";
return false;
}
FreeTrajectoryState pcaFts = tsctbl.trackStateAtPCA();
GlobalVector bd(beamSpot.dxdz(), beamSpot.dydz(), 1.0);
//propagation FIXME: Should use same propagator everywhere...
AnalyticalPropagator propagator(magField);
std::pair<TrajectoryStateOnSurface, double> tsosWithPath = propagator.propagateWithPath(pcaFts, refTsos.surface());
if (!tsosWithPath.first.isValid())
return false;
GlobalVector momDir(pcaFts.momentum());
GlobalVector perpDir(bd.cross(momDir));
Plane::RotationType rotation(perpDir, bd);
BeamSpotGeomDet *bsGeom = new BeamSpotGeomDet(Plane::build(bs, rotation));
// There is also a constructor taking the magentic field. Use this one instead?
theRefTsos = TrajectoryStateOnSurface(pcaFts, bsGeom->surface());
TransientTrackingRecHit::ConstRecHitPointer bsRecHit(
new BeamSpotTransientTrackingRecHit(beamSpot, bsGeom, theRefTsos.freeState()->momentum().phi()));
allRecHits.push_back(bsRecHit);
}
// copy all rechits to the local storage vector
TransientTrackingRecHit::ConstRecHitContainer::const_iterator itRecHit;
for (itRecHit = recHits.begin(); itRecHit != recHits.end(); ++itRecHit) {
const TransientTrackingRecHit::ConstRecHitPointer &hitPtr = *itRecHit;
allRecHits.push_back(hitPtr);
}
for (itRecHit = allRecHits.begin(); itRecHit != allRecHits.end(); ++itRecHit) {
const TransientTrackingRecHit::ConstRecHitPointer &hitPtr = *itRecHit;
theRecHits.push_back(hitPtr);
if (0 == iRow) {
// compute the derivatives of the reference-track's parameters w.r.t. the initial ones
// derivative of the initial reference-track parameters w.r.t. themselves is of course the identity
fullJacobian = AlgebraicMatrix(theParameters.num_row(), theParameters.num_row(), 1);
allJacobians.push_back(fullJacobian);
theTsosVec.push_back(theRefTsos);
const JacobianLocalToCurvilinear startTrafo(hitPtr->det()->surface(), theRefTsos.localParameters(), *magField);
const AlgebraicMatrix localToCurvilinear = asHepMatrix<5>(startTrafo.jacobian());
if (materialEffects_ <= breakPoints) {
theInnerTrajectoryToCurvilinear = asHepMatrix<5>(startTrafo.jacobian());
theInnerLocalToTrajectory = AlgebraicMatrix(5, 5, 1);
}
allLocalToCurv.push_back(localToCurvilinear);
allSteps.push_back(0.);
allCurvlinJacobians.push_back(firstCurvlinJacobian);
} else {
AlgebraicMatrix nextJacobian;
AlgebraicMatrix nextCurvlinJacobian;
double nextStep = 0.;
TrajectoryStateOnSurface nextTsos;
if (!this->propagate(previousHitPtr->det()->surface(),
previousTsos,
hitPtr->det()->surface(),
nextTsos,
nextJacobian,
nextCurvlinJacobian,
nextStep,
magField)) {
return false; // stop if problem...// no delete aMaterialEffectsUpdator needed
}
allJacobians.push_back(nextJacobian);
fullJacobian = nextJacobian * previousChangeInCurvature * fullJacobian;
theTsosVec.push_back(nextTsos);
const JacobianLocalToCurvilinear startTrafo(hitPtr->det()->surface(), nextTsos.localParameters(), *magField);
const AlgebraicMatrix localToCurvilinear = asHepMatrix<5>(startTrafo.jacobian());
allLocalToCurv.push_back(localToCurvilinear);
if (nextStep == 0.) {
edm::LogError("Alignment") << "@SUB=ReferenceTrajectory::construct"
<< "step 0. from id " << previousHitPtr->geographicalId() << " to "
<< hitPtr->det()->geographicalId() << ".";
// brokenLinesFine will not work, brokenLinesCoarse combines close by layers
if (materialEffects_ == brokenLinesFine) {
edm::LogError("Alignment") << "@SUB=ReferenceTrajectory::construct"
<< "Skip track.";
return false;
}
}
allSteps.push_back(nextStep);
allCurvlinJacobians.push_back(nextCurvlinJacobian);
}
// take material effects into account. since trajectory-state is constructed with errors equal zero,
// the updated state contains only the uncertainties due to interactions in the current layer.
const TrajectoryStateOnSurface tmpTsos(
theTsosVec.back().localParameters(), zeroErrors, theTsosVec.back().surface(), magField, surfaceSide);
const TrajectoryStateOnSurface updatedTsos = aMaterialEffectsUpdator->updateState(tmpTsos, propDir_);
if (!updatedTsos.isValid())
return false; // no delete aMaterialEffectsUpdator needed
if (theTsosVec.back().localParameters().charge()) {
previousChangeInCurvature[0][0] = updatedTsos.localParameters().signedInverseMomentum() /
theTsosVec.back().localParameters().signedInverseMomentum();
}
// get multiple-scattering covariance-matrix
allDeltaParameterCovs.push_back(asHepMatrix<5>(updatedTsos.localError().matrix()));
allCurvatureChanges.push_back(previousChangeInCurvature);
// projection-matrix tsos-parameters -> measurement-coordinates
allProjections.push_back(this->getHitProjectionMatrix(hitPtr));
// set start-parameters for next propagation. trajectory-state without error
// - no error propagation needed here.
previousHitPtr = hitPtr;
previousTsos = TrajectoryStateOnSurface(updatedTsos.globalParameters(), updatedTsos.surface(), surfaceSide);
if (materialEffects_ < brokenLinesCoarse) {
this->fillDerivatives(allProjections.back(), fullJacobian, iRow);
}
AlgebraicVector mixedLocalParams = asHepVector<5>(theTsosVec.back().localParameters().mixedFormatVector());
this->fillTrajectoryPositions(allProjections.back(), mixedLocalParams, iRow);
if (useRecHit(hitPtr))
this->fillMeasurementAndError(hitPtr, iRow, updatedTsos);
iRow += nMeasPerHit;
} // end of loop on hits
bool msOK = true;
switch (materialEffects_) {
case none:
break;
case multipleScattering:
case energyLoss:
case combined:
msOK = this->addMaterialEffectsCov(allJacobians, allProjections, allCurvatureChanges, allDeltaParameterCovs);
break;
case breakPoints:
msOK = this->addMaterialEffectsBp(
allJacobians, allProjections, allCurvatureChanges, allDeltaParameterCovs, allLocalToCurv);
break;
case brokenLinesCoarse:
msOK = this->addMaterialEffectsBrl(
allProjections, allDeltaParameterCovs, allLocalToCurv, allSteps, refTsos.globalParameters());
break;
case brokenLinesFine:
msOK = this->addMaterialEffectsBrl(allCurvlinJacobians,
allProjections,
allCurvatureChanges,
allDeltaParameterCovs,
allLocalToCurv,
refTsos.globalParameters());
break;
case localGBL:
msOK = this->addMaterialEffectsLocalGbl(allJacobians, allProjections, allCurvatureChanges, allDeltaParameterCovs);
break;
case curvlinGBL:
msOK = this->addMaterialEffectsCurvlinGbl(
allCurvlinJacobians, allProjections, allCurvatureChanges, allDeltaParameterCovs, allLocalToCurv);
}
if (!msOK)
return false;
if (refTsos.hasError()) {
AlgebraicSymMatrix parameterCov = asHepMatrix<5>(refTsos.localError().matrix());
AlgebraicMatrix parDeriv;
if (theNumberOfVirtualPars > 0) {
parDeriv = theDerivatives.sub(1, nMeasPerHit * allJacobians.size(), 1, theParameters.num_row());
} else {
parDeriv = theDerivatives;
}
theTrajectoryPositionCov = parameterCov.similarity(parDeriv);
} else {
theTrajectoryPositionCov = AlgebraicSymMatrix(theDerivatives.num_row(), 1);
}
return true;
}
//__________________________________________________________________________________
MaterialEffectsUpdator *ReferenceTrajectory::createUpdator(MaterialEffects materialEffects, double mass) const {
switch (materialEffects) {
// MultipleScatteringUpdator doesn't change the trajectory-state
// during update and can therefore be used if material effects should be ignored:
case none:
case multipleScattering:
return new MultipleScatteringUpdator(mass);
case energyLoss:
return new EnergyLossUpdator(mass);
case combined:
return new CombinedMaterialEffectsUpdator(mass);
case breakPoints:
return new CombinedMaterialEffectsUpdator(mass);
case brokenLinesCoarse:
case brokenLinesFine:
case localGBL:
case curvlinGBL:
return new CombinedMaterialEffectsUpdator(mass);
}
return nullptr;
}
//__________________________________________________________________________________
bool ReferenceTrajectory::propagate(const Plane &previousSurface,
const TrajectoryStateOnSurface &previousTsos,
const Plane &newSurface,
TrajectoryStateOnSurface &newTsos,
AlgebraicMatrix &newJacobian,
AlgebraicMatrix &newCurvlinJacobian,
double &nextStep,
const MagneticField *magField) const {
// propagate to next layer
/** From TrackingTools/ GeomPropagators/ interface/ AnalyticalPropagator.h
* NB: this propagator assumes constant, non-zero magnetic field parallel to the z-axis!
*/
//AnalyticalPropagator aPropagator(magField, propDir_);
// Hard coded RungeKutta instead Analytical (avoid bias in TEC), but
// work around TrackPropagation/RungeKutta/interface/RKTestPropagator.h and
// http://www.parashift.com/c++-faq-lite/strange-inheritance.html#faq-23.9
defaultRKPropagator::Product rkprod(magField, propDir_); //double tolerance = 5.e-5)
Propagator &aPropagator = rkprod.propagator;
const std::pair<TrajectoryStateOnSurface, double> tsosWithPath =
aPropagator.propagateWithPath(previousTsos, newSurface);
// stop if propagation wasn't successful
if (!tsosWithPath.first.isValid())
return false;
nextStep = tsosWithPath.second;
// calculate derivative of reference-track parameters on the actual layer w.r.t. the ones
// on the previous layer (both in global coordinates)
const AnalyticalCurvilinearJacobian aJacobian(previousTsos.globalParameters(),
tsosWithPath.first.globalPosition(),
tsosWithPath.first.globalMomentum(),
tsosWithPath.second);
const AlgebraicMatrix curvilinearJacobian = asHepMatrix<5, 5>(aJacobian.jacobian());
// jacobian of the track parameters on the previous layer for local->global transformation
const JacobianLocalToCurvilinear startTrafo(previousSurface, previousTsos.localParameters(), *magField);
const AlgebraicMatrix localToCurvilinear = asHepMatrix<5>(startTrafo.jacobian());
// jacobian of the track parameters on the actual layer for global->local transformation
const JacobianCurvilinearToLocal endTrafo(newSurface, tsosWithPath.first.localParameters(), *magField);
const AlgebraicMatrix curvilinearToLocal = asHepMatrix<5>(endTrafo.jacobian());
// compute derivative of reference-track parameters on the actual layer w.r.t. the ones on
// the previous layer (both in their local representation)
newCurvlinJacobian = curvilinearJacobian;
newJacobian = curvilinearToLocal * curvilinearJacobian * localToCurvilinear;
newTsos = tsosWithPath.first;
return true;
}
//__________________________________________________________________________________
void ReferenceTrajectory::fillMeasurementAndError(const TransientTrackingRecHit::ConstRecHitPointer &hitPtr,
unsigned int iRow,
const TrajectoryStateOnSurface &updatedTsos) {
// get the measurements and their errors, use information updated with tsos if improving
// (GF: Also for measurements or only for errors or do the former not change?)
// GF 10/2008: I doubt that it makes sense to update the hit with the tsos here:
// That is an analytical extrapolation and not the best guess of the real
// track state on the module, but the latter should be better to get the best
// hit uncertainty estimate!
// FIXME FIXME CLONE
const auto &newHitPtr = hitPtr;
// TransientTrackingRecHit::ConstRecHitPointer newHitPtr(hitPtr->canImproveWithTrack() ?
// hitPtr->clone(updatedTsos) : hitPtr);
const LocalPoint localMeasurement = newHitPtr->localPosition();
const LocalError localMeasurementCov = newHitPtr->localPositionError(); // CPE+APE
theMeasurements[iRow] = localMeasurement.x();
theMeasurements[iRow + 1] = localMeasurement.y();
theMeasurementsCov[iRow][iRow] = localMeasurementCov.xx();
theMeasurementsCov[iRow][iRow + 1] = localMeasurementCov.xy();
theMeasurementsCov[iRow + 1][iRow + 1] = localMeasurementCov.yy();
if (!includeAPEs_) {
// subtract APEs (if existing) from covariance matrix
auto det = static_cast<const TrackerGeomDet *>(newHitPtr->det());
const auto localAPE = det->localAlignmentError();
if (localAPE.valid()) {
theMeasurementsCov[iRow][iRow] -= localAPE.xx();
theMeasurementsCov[iRow][iRow + 1] -= localAPE.xy();
theMeasurementsCov[iRow + 1][iRow + 1] -= localAPE.yy();
}
}
}
//__________________________________________________________________________________
void ReferenceTrajectory::fillDerivatives(const AlgebraicMatrix &projection,
const AlgebraicMatrix &fullJacobian,
unsigned int iRow) {
// derivatives of the local coordinates of the reference track w.r.t. to the inital track-parameters
const AlgebraicMatrix projectedJacobian(projection * fullJacobian);
for (int i = 0; i < parameters().num_row(); ++i) {
for (int j = 0; j < projectedJacobian.num_row(); ++j) {
theDerivatives[iRow + j][i] = projectedJacobian[j][i];
}
}
}
//__________________________________________________________________________________
void ReferenceTrajectory::fillTrajectoryPositions(const AlgebraicMatrix &projection,
const AlgebraicVector &mixedLocalParams,
unsigned int iRow) {
// get the local coordinates of the reference trajectory
const AlgebraicVector localPosition(projection * mixedLocalParams);
for (int i = 0; i < localPosition.num_row(); ++i) {
theTrajectoryPositions[iRow + i] = localPosition[i];
}
}
//__________________________________________________________________________________
bool ReferenceTrajectory::addMaterialEffectsCov(const std::vector<AlgebraicMatrix> &allJacobians,
const std::vector<AlgebraicMatrix> &allProjections,
const std::vector<AlgebraicSymMatrix> &allCurvatureChanges,
const std::vector<AlgebraicSymMatrix> &allDeltaParameterCovs) {
// the uncertainty due to multiple scattering is 'transferred' to the error matrix of the hits
// GF: Needs update once hit dimension is not hardcoded as nMeasPerHit!
AlgebraicSymMatrix materialEffectsCov(nMeasPerHit * allJacobians.size(), 0);
// additional covariance-matrix of the measurements due to material-effects (single measurement)
AlgebraicSymMatrix deltaMaterialEffectsCov;
// additional covariance-matrix of the parameters due to material-effects
AlgebraicSymMatrix paramMaterialEffectsCov(allDeltaParameterCovs[0]); //initialization
// error-propagation to state after energy loss
//GFback paramMaterialEffectsCov = paramMaterialEffectsCov.similarity(allCurvatureChanges[0]);
AlgebraicMatrix tempParameterCov;
AlgebraicMatrix tempMeasurementCov;
for (unsigned int k = 1; k < allJacobians.size(); ++k) {
// error-propagation to next layer
paramMaterialEffectsCov = paramMaterialEffectsCov.similarity(allJacobians[k]);
// get dependences for the measurements
deltaMaterialEffectsCov = paramMaterialEffectsCov.similarity(allProjections[k]);
materialEffectsCov[nMeasPerHit * k][nMeasPerHit * k] = deltaMaterialEffectsCov[0][0];
materialEffectsCov[nMeasPerHit * k][nMeasPerHit * k + 1] = deltaMaterialEffectsCov[0][1];
materialEffectsCov[nMeasPerHit * k + 1][nMeasPerHit * k] = deltaMaterialEffectsCov[1][0];
materialEffectsCov[nMeasPerHit * k + 1][nMeasPerHit * k + 1] = deltaMaterialEffectsCov[1][1];
// GFback add uncertainties for the following layers due to scattering at this layer
paramMaterialEffectsCov += allDeltaParameterCovs[k];
// end GFback
tempParameterCov = paramMaterialEffectsCov;
// compute "inter-layer-dependencies"
for (unsigned int l = k + 1; l < allJacobians.size(); ++l) {
tempParameterCov = allJacobians[l] * allCurvatureChanges[l] * tempParameterCov;
tempMeasurementCov = allProjections[l] * tempParameterCov * allProjections[k].T();
materialEffectsCov[nMeasPerHit * l][nMeasPerHit * k] = tempMeasurementCov[0][0];
materialEffectsCov[nMeasPerHit * k][nMeasPerHit * l] = tempMeasurementCov[0][0];
materialEffectsCov[nMeasPerHit * l][nMeasPerHit * k + 1] = tempMeasurementCov[0][1];
materialEffectsCov[nMeasPerHit * k + 1][nMeasPerHit * l] = tempMeasurementCov[0][1];
materialEffectsCov[nMeasPerHit * l + 1][nMeasPerHit * k] = tempMeasurementCov[1][0];
materialEffectsCov[nMeasPerHit * k][nMeasPerHit * l + 1] = tempMeasurementCov[1][0];
materialEffectsCov[nMeasPerHit * l + 1][nMeasPerHit * k + 1] = tempMeasurementCov[1][1];
materialEffectsCov[nMeasPerHit * k + 1][nMeasPerHit * l + 1] = tempMeasurementCov[1][1];
}
// add uncertainties for the following layers due to scattering at this layer
// GFback paramMaterialEffectsCov += allDeltaParameterCovs[k];
// error-propagation to state after energy loss
paramMaterialEffectsCov = paramMaterialEffectsCov.similarity(allCurvatureChanges[k]);
}
theMeasurementsCov += materialEffectsCov;
return true; // cannot fail
}
//__________________________________________________________________________________
bool ReferenceTrajectory::addMaterialEffectsBp(const std::vector<AlgebraicMatrix> &allJacobians,
const std::vector<AlgebraicMatrix> &allProjections,
const std::vector<AlgebraicSymMatrix> &allCurvatureChanges,
const std::vector<AlgebraicSymMatrix> &allDeltaParameterCovs,
const std::vector<AlgebraicMatrix> &allLocalToCurv) {
//CHK: add material effects using break points
int offsetPar = theNumberOfPars;
int offsetMeas = nMeasPerHit * allJacobians.size();
int ierr = 0;
AlgebraicMatrix tempJacobian;
AlgebraicMatrix MSprojection(2, 5);
MSprojection[0][1] = 1;
MSprojection[1][2] = 1;
AlgebraicSymMatrix tempMSCov;
AlgebraicSymMatrix tempMSCovProj;
AlgebraicMatrix tempMSJacProj;
for (unsigned int k = 1; k < allJacobians.size(); ++k) {
// CHK
int kbp = k - 1;
tempJacobian = allJacobians[k] * allCurvatureChanges[k];
tempMSCov = allDeltaParameterCovs[k - 1].similarity(allLocalToCurv[k - 1]);
tempMSCovProj = tempMSCov.similarity(MSprojection);
theMeasurementsCov[offsetMeas + nMeasPerHit * kbp][offsetMeas + nMeasPerHit * kbp] = tempMSCovProj[0][0];
theMeasurementsCov[offsetMeas + nMeasPerHit * kbp + 1][offsetMeas + nMeasPerHit * kbp + 1] = tempMSCovProj[1][1];
theDerivatives[offsetMeas + nMeasPerHit * kbp][offsetPar + 2 * kbp] = 1.0;
theDerivatives[offsetMeas + nMeasPerHit * kbp + 1][offsetPar + 2 * kbp + 1] = 1.0;
tempMSJacProj = (allProjections[k] * (tempJacobian * allLocalToCurv[k - 1].inverse(ierr))) * MSprojection.T();
if (ierr) {
edm::LogError("Alignment") << "@SUB=ReferenceTrajectory::addMaterialEffectsBp"
<< "Inversion 1 for break points failed: " << ierr;
return false;
}
theDerivatives[nMeasPerHit * k][offsetPar + 2 * kbp] = tempMSJacProj[0][0];
theDerivatives[nMeasPerHit * k][offsetPar + 2 * kbp + 1] = tempMSJacProj[0][1];
theDerivatives[nMeasPerHit * k + 1][offsetPar + 2 * kbp] = tempMSJacProj[1][0];
theDerivatives[nMeasPerHit * k + 1][offsetPar + 2 * kbp + 1] = tempMSJacProj[1][1];
for (unsigned int l = k + 1; l < allJacobians.size(); ++l) {
// CHK
int kbp = k - 1;
tempJacobian = allJacobians[l] * allCurvatureChanges[l] * tempJacobian;
tempMSJacProj = (allProjections[l] * (tempJacobian * allLocalToCurv[k - 1].inverse(ierr))) * MSprojection.T();
if (ierr) {
edm::LogError("Alignment") << "@SUB=ReferenceTrajectory::addMaterialEffectsBp"
<< "Inversion 2 for break points failed: " << ierr;
return false;
}
theDerivatives[nMeasPerHit * l][offsetPar + 2 * kbp] = tempMSJacProj[0][0];
theDerivatives[nMeasPerHit * l][offsetPar + 2 * kbp + 1] = tempMSJacProj[0][1];
theDerivatives[nMeasPerHit * l + 1][offsetPar + 2 * kbp] = tempMSJacProj[1][0];
theDerivatives[nMeasPerHit * l + 1][offsetPar + 2 * kbp + 1] = tempMSJacProj[1][1];
}
}
return true;
}
//__________________________________________________________________________________
bool ReferenceTrajectory::addMaterialEffectsBrl(const std::vector<AlgebraicMatrix> &allCurvlinJacobians,
const std::vector<AlgebraicMatrix> &allProjections,
const std::vector<AlgebraicSymMatrix> &allCurvatureChanges,
const std::vector<AlgebraicSymMatrix> &allDeltaParameterCovs,
const std::vector<AlgebraicMatrix> &allLocalToCurv,
const GlobalTrajectoryParameters >p) {
//CHK: add material effects using broken lines
//fine: use exact Jacobians, all detectors
//broken lines: pair of offsets (u1,u2) = (xt,yt) (in curvilinear frame (q/p,lambda,phi,xt,yt)) at each layer
// scattering angles (alpha1,alpha2) = (cosLambda*dPhi, dLambda) (cosLambda cancels in Chi2)
// DU' = (dU'/dU)*DU + (dU'/dAlpha)*DAlpha + (dU'/dQbyp)*DQbyp (propagation of U)
// = J*DU + S*DAlpha + d*DQbyp
// => DAlpha = S^-1 (DU' - J*DU - d*DQbyp)
int offsetPar = theNumberOfPars;
int offsetMeas = nMeasPerHit * allCurvlinJacobians.size();
int ierr = 0;
GlobalVector p = gtp.momentum();
double cosLambda = sqrt((p.x() * p.x() + p.y() * p.y()) / (p.x() * p.x() + p.y() * p.y() + p.z() * p.z()));
// transformations Curvilinear <-> BrokenLines
AlgebraicMatrix QbypToCurv(5, 1); // dCurv/dQbyp
QbypToCurv[0][0] = 1.; // dQbyp/dQbyp
AlgebraicMatrix AngleToCurv(5, 2); // dCurv/dAlpha
AngleToCurv[1][1] = 1.; // dlambda/dalpha2
AngleToCurv[2][0] = 1. / cosLambda; // dphi/dalpha1
AlgebraicMatrix CurvToAngle(2, 5); // dAlpha/dCurv
CurvToAngle[1][1] = 1.; // dalpha2/dlambda
CurvToAngle[0][2] = cosLambda; // dalpha1/dphi
AlgebraicMatrix OffsetToCurv(5, 2); // dCurv/dU
OffsetToCurv[3][0] = 1.; // dxt/du1
OffsetToCurv[4][1] = 1.; // dyt/du2
AlgebraicMatrix CurvToOffset(2, 5); // dU/dCurv
CurvToOffset[0][3] = 1.; // du1/dxt
CurvToOffset[1][4] = 1.; // du2/dyt
// transformations trajectory to components (Qbyp, U1, U2)
AlgebraicMatrix TrajToQbyp(1, 5);
TrajToQbyp[0][0] = 1.;
AlgebraicMatrix TrajToOff1(2, 5);
TrajToOff1[0][1] = 1.;
TrajToOff1[1][2] = 1.;
AlgebraicMatrix TrajToOff2(2, 5);
TrajToOff2[0][3] = 1.;
TrajToOff2[1][4] = 1.;
AlgebraicMatrix JacOffsetToAngleC, JacQbypToAngleC;
AlgebraicMatrix JacCurvToOffsetL, JacOffsetToOffsetL, JacAngleToOffsetL, JacQbypToOffsetL, JacOffsetToAngleL;
AlgebraicMatrix JacCurvToOffsetN, JacOffsetToOffsetN, JacAngleToOffsetN, JacQbypToOffsetN, JacOffsetToAngleN;
// transformation from trajectory to curvilinear parameters
JacCurvToOffsetN = CurvToOffset * allCurvlinJacobians[1]; // (dU'/dCurv') * (dCurv'/dCurv) @ 2nd point
JacOffsetToOffsetN = JacCurvToOffsetN * OffsetToCurv; // J: (dU'/dU) = (dU'/dCurv') * (dCurv'/dCurv) * (dCurv/dU)
JacAngleToOffsetN =
JacCurvToOffsetN * AngleToCurv; // S: (dU'/dAlpha) = (dU'/dCurv') * (dCurv'/dCurv) * (dCurv/dAlpha)
JacQbypToOffsetN = JacCurvToOffsetN * QbypToCurv; // d: (dU'/dQbyp) = (dU'/dCurv') * (dCurv'/dCurv) * (dCurv/dQbyp)
JacOffsetToAngleN = JacAngleToOffsetN.inverse(ierr); // W
if (ierr) {
edm::LogError("Alignment") << "@SUB=ReferenceTrajectory::addMaterialEffectsBrl"
<< "Inversion 1 for fine broken lines failed: " << ierr;
return false;
}
JacOffsetToAngleC = -(JacOffsetToAngleN * JacOffsetToOffsetN); // (dAlpha/dU)
JacQbypToAngleC = -(JacOffsetToAngleN * JacQbypToOffsetN); // (dAlpha/dQbyp)
// (dAlpha/dTraj) = (dAlpha/dQbyp) * (dQbyp/dTraj) + (dAlpha/dU1) * (dU1/dTraj) + (dAlpha/dU2) * (dU2/dTraj)
AlgebraicMatrix JacTrajToAngle =
JacQbypToAngleC * TrajToQbyp + JacOffsetToAngleC * TrajToOff1 + JacOffsetToAngleN * TrajToOff2;
// (dCurv/dTraj) = (dCurv/dQbyp) * (dQbyp/dTraj) + (dCurv/dAlpha) * (dAlpha/dTraj) + (dCurv/dU) * (dU/dTraj)
theInnerTrajectoryToCurvilinear = QbypToCurv * TrajToQbyp + AngleToCurv * JacTrajToAngle + OffsetToCurv * TrajToOff1;
theInnerLocalToTrajectory = theInnerTrajectoryToCurvilinear.inverse(ierr) * allLocalToCurv[0];
if (ierr) {
edm::LogError("Alignment") << "@SUB=ReferenceTrajectory::addMaterialEffectsBrl"
<< "Inversion 2 for fine broken lines failed: " << ierr;
return false;
}
AlgebraicMatrix tempJacobian(allCurvatureChanges[0]);
AlgebraicSymMatrix tempMSCov;
AlgebraicSymMatrix tempMSCovProj;
AlgebraicMatrix tempJacL, tempJacN;
AlgebraicMatrix JacOffsetToMeas;
// measurements from hits
for (unsigned int k = 0; k < allCurvlinJacobians.size(); ++k) {
// (dMeas/dU) = (dMeas/dLoc) * (dLoc/dCurv) * (dCurv/dU)
JacOffsetToMeas = (allProjections[k] * allLocalToCurv[k].inverse(ierr)) * OffsetToCurv;
if (ierr) {
edm::LogError("Alignment") << "@SUB=ReferenceTrajectory::addMaterialEffectsBrl"
<< "Inversion 3 for fine broken lines failed: " << ierr;
return false;
}
theDerivatives[nMeasPerHit * k][offsetPar + 2 * k] = JacOffsetToMeas[0][0];
theDerivatives[nMeasPerHit * k][offsetPar + 2 * k + 1] = JacOffsetToMeas[0][1];
theDerivatives[nMeasPerHit * k + 1][offsetPar + 2 * k] = JacOffsetToMeas[1][0];
theDerivatives[nMeasPerHit * k + 1][offsetPar + 2 * k + 1] = JacOffsetToMeas[1][1];
}
// measurement of MS kink
for (unsigned int k = 1; k < allCurvlinJacobians.size() - 1; ++k) {
// CHK
int iMsMeas = k - 1;
int l = k - 1; // last hit
int n = k + 1; // next hit
// amount of multiple scattering in layer k (angular error perp to direction)
tempMSCov = allDeltaParameterCovs[k].similarity(allLocalToCurv[k]);
tempMSCovProj = tempMSCov.similarity(CurvToAngle);
theMeasurementsCov[offsetMeas + nMeasPerHit * iMsMeas][offsetMeas + nMeasPerHit * iMsMeas] = tempMSCovProj[1][1];
theMeasurementsCov[offsetMeas + nMeasPerHit * iMsMeas + 1][offsetMeas + nMeasPerHit * iMsMeas + 1] =
tempMSCovProj[0][0];
// transformation matices for offsets ( l <- k -> n )
tempJacL = allCurvlinJacobians[k] * tempJacobian;
JacCurvToOffsetL = CurvToOffset * tempJacL.inverse(ierr); // (dU'/dCurv') * (dCurv'/dCurv) @ last point
if (ierr) {
edm::LogError("Alignment") << "@SUB=ReferenceTrajectory::addMaterialEffectsBrl"
<< "Inversion 4 for fine broken lines failed: " << ierr;
return false;
}
JacOffsetToOffsetL =
JacCurvToOffsetL * OffsetToCurv; // J-: (dU'/dU) = (dU'/dCurv') * (dCurv'/dCurv) * (dCurv/dU)
JacAngleToOffsetL =
JacCurvToOffsetL * AngleToCurv; // S-: (dU'/dAlpha) = (dU'/dCurv') * (dCurv'/dCurv) * (dCurv/dAlpha)
JacQbypToOffsetL =
JacCurvToOffsetL * QbypToCurv; // d-: (dU'/dQbyp) = (dU'/dCurv') * (dCurv'/dCurv) * (dCurv/dQbyp)
JacOffsetToAngleL = -JacAngleToOffsetL.inverse(ierr); // W-
if (ierr) {
edm::LogError("Alignment") << "@SUB=ReferenceTrajectory::addMaterialEffectsBrl"
<< "Inversion 5 for fine broken lines failed: " << ierr;
return false;
}
tempJacobian = tempJacobian * allCurvatureChanges[k];
tempJacN = allCurvlinJacobians[n] * tempJacobian;
JacCurvToOffsetN = CurvToOffset * tempJacN; // (dU'/dCurv') * (dCurv'/dCurv) @ next point
JacOffsetToOffsetN =
JacCurvToOffsetN * OffsetToCurv; // J+: (dU'/dU) = (dU'/dCurv') * (dCurv'/dCurv) * (dCurv/dU)
JacAngleToOffsetN =
JacCurvToOffsetN * AngleToCurv; // S+: (dU'/dAlpha) = (dU'/dCurv') * (dCurv'/dCurv) * (dCurv/dAlpha)
JacQbypToOffsetN =
JacCurvToOffsetN * QbypToCurv; // d+: (dU'/dQbyp) = (dU'/dCurv') * (dCurv'/dCurv) * (dCurv/dQbyp)
JacOffsetToAngleN = JacAngleToOffsetN.inverse(ierr); // W+
if (ierr) {
edm::LogError("Alignment") << "@SUB=ReferenceTrajectory::addMaterialEffectsBrl"
<< "Inversion 6 for fine broken lines failed: " << ierr;
return false;
}
JacOffsetToAngleC = -(JacOffsetToAngleL * JacOffsetToOffsetL + JacOffsetToAngleN * JacOffsetToOffsetN);
JacQbypToAngleC = -(JacOffsetToAngleL * JacQbypToOffsetL + JacOffsetToAngleN * JacQbypToOffsetN);
// bending
theDerivatives[offsetMeas + nMeasPerHit * iMsMeas][0] = JacQbypToAngleC[0][0];
theDerivatives[offsetMeas + nMeasPerHit * iMsMeas + 1][0] = JacQbypToAngleC[1][0];
// last layer
theDerivatives[offsetMeas + nMeasPerHit * iMsMeas][offsetPar + 2 * l] = JacOffsetToAngleL[0][0];
theDerivatives[offsetMeas + nMeasPerHit * iMsMeas][offsetPar + 2 * l + 1] = JacOffsetToAngleL[0][1];
theDerivatives[offsetMeas + nMeasPerHit * iMsMeas + 1][offsetPar + 2 * l] = JacOffsetToAngleL[1][0];
theDerivatives[offsetMeas + nMeasPerHit * iMsMeas + 1][offsetPar + 2 * l + 1] = JacOffsetToAngleL[1][1];
// current layer
theDerivatives[offsetMeas + nMeasPerHit * iMsMeas][offsetPar + 2 * k] = JacOffsetToAngleC[0][0];
theDerivatives[offsetMeas + nMeasPerHit * iMsMeas][offsetPar + 2 * k + 1] = JacOffsetToAngleC[0][1];
theDerivatives[offsetMeas + nMeasPerHit * iMsMeas + 1][offsetPar + 2 * k] = JacOffsetToAngleC[1][0];
theDerivatives[offsetMeas + nMeasPerHit * iMsMeas + 1][offsetPar + 2 * k + 1] = JacOffsetToAngleC[1][1];
// next layer
theDerivatives[offsetMeas + nMeasPerHit * iMsMeas][offsetPar + 2 * n] = JacOffsetToAngleN[0][0];
theDerivatives[offsetMeas + nMeasPerHit * iMsMeas][offsetPar + 2 * n + 1] = JacOffsetToAngleN[0][1];
theDerivatives[offsetMeas + nMeasPerHit * iMsMeas + 1][offsetPar + 2 * n] = JacOffsetToAngleN[1][0];
theDerivatives[offsetMeas + nMeasPerHit * iMsMeas + 1][offsetPar + 2 * n + 1] = JacOffsetToAngleN[1][1];
}
return true;
}
//__________________________________________________________________________________
bool ReferenceTrajectory::addMaterialEffectsBrl(const std::vector<AlgebraicMatrix> &allProjections,
const std::vector<AlgebraicSymMatrix> &allDeltaParameterCovs,
const std::vector<AlgebraicMatrix> &allLocalToCurv,
const std::vector<double> &allSteps,
const GlobalTrajectoryParameters >p,
const double minStep) {
//CHK: add material effects using broken lines
//BrokenLinesCoarse: combine close by detectors,
// use approximate Jacobians from Steps (limit Qbyp -> 0),
// bending only in RPhi (B=(0,0,Bz)), no energy loss correction
int offsetPar = theNumberOfPars;
int offsetMeas = nMeasPerHit * allSteps.size();
int ierr = 0;
GlobalVector p = gtp.momentum();
double cosLambda = sqrt((p.x() * p.x() + p.y() * p.y()) / (p.x() * p.x() + p.y() * p.y() + p.z() * p.z()));
double bFac = -gtp.magneticFieldInInverseGeV(gtp.position()).mag();
// transformation from trajectory to curvilinear parameters at refTsos
double delta(1.0 / allSteps[1]);
theInnerTrajectoryToCurvilinear[0][0] = 1;
theInnerTrajectoryToCurvilinear[1][2] = -delta;
theInnerTrajectoryToCurvilinear[1][4] = delta;
theInnerTrajectoryToCurvilinear[2][0] = -0.5 * bFac / delta;
theInnerTrajectoryToCurvilinear[2][1] = -delta / cosLambda;
theInnerTrajectoryToCurvilinear[2][3] = delta / cosLambda;
theInnerTrajectoryToCurvilinear[3][1] = 1;
theInnerTrajectoryToCurvilinear[4][2] = 1;
theInnerLocalToTrajectory = theInnerTrajectoryToCurvilinear.inverse(ierr) * allLocalToCurv[0];
if (ierr) {
edm::LogError("Alignment") << "@SUB=ReferenceTrajectory::addMaterialEffectsBrl"
<< "Inversion 1 for coarse broken lines failed: " << ierr;
return false;
}
AlgebraicMatrix CurvToAngle(2, 5); // dAlpha/dCurv
CurvToAngle[1][1] = 1.; // dalpha2/dlambda
CurvToAngle[0][2] = cosLambda; // dalpha1/dphi
AlgebraicMatrix OffsetToCurv(5, 2); // dCurv/dU
OffsetToCurv[3][0] = 1.; // dxt/du1
OffsetToCurv[4][1] = 1.; // dyt/du2
AlgebraicSymMatrix tempMSCov;
AlgebraicSymMatrix tempMSCovProj;
AlgebraicMatrix JacOffsetToMeas;
// combine closeby detectors into single plane
std::vector<unsigned int> first(allSteps.size());
std::vector<unsigned int> last(allSteps.size());
std::vector<unsigned int> plane(allSteps.size());
std::vector<double> sPlane(allSteps.size());
unsigned int nPlane = 0;
double sTot = 0;
for (unsigned int k = 1; k < allSteps.size(); ++k) {
sTot += allSteps[k];
if (fabs(allSteps[k]) > minStep) {
nPlane += 1;
first[nPlane] = k;
}
last[nPlane] = k;
plane[k] = nPlane;
sPlane[nPlane] += sTot;
}
if (nPlane < 2)
return false; // pathological cases: need at least 2 planes
theNumberOfVirtualPars = 2 * (nPlane + 1);
theNumberOfVirtualMeas = 2 * (nPlane - 1); // unsigned underflow for nPlane == 0...
for (unsigned int k = 0; k <= nPlane; ++k) {
sPlane[k] /= (double)(last[k] - first[k] + 1);
}
// measurements from hits
sTot = 0;
for (unsigned int k = 0; k < allSteps.size(); ++k) {
sTot += allSteps[k];
// (dMeas/dU) = (dMeas/dLoc) * (dLoc/dCurv) * (dCurv/dU)
JacOffsetToMeas = (allProjections[k] * allLocalToCurv[k].inverse(ierr)) * OffsetToCurv;
if (ierr) {
edm::LogError("Alignment") << "@SUB=ReferenceTrajectory::addMaterialEffectsBrl"
<< "Inversion 2 for coarse broken lines failed: " << ierr;
return false;
}
unsigned int iPlane = plane[k];
if (last[iPlane] == first[iPlane]) { // single plane
theDerivatives[nMeasPerHit * k][offsetPar + 2 * iPlane] = JacOffsetToMeas[0][0];
theDerivatives[nMeasPerHit * k][offsetPar + 2 * iPlane + 1] = JacOffsetToMeas[0][1];
theDerivatives[nMeasPerHit * k + 1][offsetPar + 2 * iPlane] = JacOffsetToMeas[1][0];
theDerivatives[nMeasPerHit * k + 1][offsetPar + 2 * iPlane + 1] = JacOffsetToMeas[1][1];
} else { // combined plane: (linear) interpolation
unsigned int jPlane; // neighbor plane for interpolation
if (fabs(sTot) < fabs(sPlane[iPlane])) {
jPlane = (iPlane > 0) ? iPlane - 1 : 1;
} else {
jPlane = (iPlane < nPlane) ? iPlane + 1 : nPlane - 1;
}
// interpolation weights
double sDiff = sPlane[iPlane] - sPlane[jPlane];
double iFrac = (sTot - sPlane[jPlane]) / sDiff;
double jFrac = 1.0 - iFrac;
theDerivatives[nMeasPerHit * k][offsetPar + 2 * iPlane] = JacOffsetToMeas[0][0] * iFrac;
theDerivatives[nMeasPerHit * k][offsetPar + 2 * iPlane + 1] = JacOffsetToMeas[0][1] * iFrac;
theDerivatives[nMeasPerHit * k + 1][offsetPar + 2 * iPlane] = JacOffsetToMeas[1][0] * iFrac;
theDerivatives[nMeasPerHit * k + 1][offsetPar + 2 * iPlane + 1] = JacOffsetToMeas[1][1] * iFrac;
theDerivatives[nMeasPerHit * k][offsetPar + 2 * jPlane] = JacOffsetToMeas[0][0] * jFrac;
theDerivatives[nMeasPerHit * k][offsetPar + 2 * jPlane + 1] = JacOffsetToMeas[0][1] * jFrac;
theDerivatives[nMeasPerHit * k + 1][offsetPar + 2 * jPlane] = JacOffsetToMeas[1][0] * jFrac;
theDerivatives[nMeasPerHit * k + 1][offsetPar + 2 * jPlane + 1] = JacOffsetToMeas[1][1] * jFrac;
// 2nd order neglected
// theDerivatives[nMeasPerHit*k ][ 0] = -0.5*bFac*sDiff*iFrac*sDiff*jFrac*cosLambda;
}
}
// measurement of MS kink
for (unsigned int i = 1; i < nPlane; ++i) {
// CHK
int iMsMeas = i - 1;
int l = i - 1; // last hit
int n = i + 1; // next hit
// amount of multiple scattering in plane k
for (unsigned int k = first[i]; k <= last[i]; ++k) {
tempMSCov = allDeltaParameterCovs[k].similarity(allLocalToCurv[k]);
tempMSCovProj = tempMSCov.similarity(CurvToAngle);
theMeasurementsCov[offsetMeas + nMeasPerHit * iMsMeas][offsetMeas + nMeasPerHit * iMsMeas] += tempMSCovProj[0][0];
theMeasurementsCov[offsetMeas + nMeasPerHit * iMsMeas + 1][offsetMeas + nMeasPerHit * iMsMeas + 1] +=
tempMSCovProj[1][1];
}
// broken line measurements for layer k, correlations between both planes neglected
double stepK = sPlane[i] - sPlane[l];
double stepN = sPlane[n] - sPlane[i];
double deltaK(1.0 / stepK);
double deltaN(1.0 / stepN);
// bending (only in RPhi)
theDerivatives[offsetMeas + nMeasPerHit * iMsMeas][0] = -0.5 * bFac * (stepK + stepN) * cosLambda;
// last layer
theDerivatives[offsetMeas + nMeasPerHit * iMsMeas][offsetPar + 2 * l] = deltaK;
theDerivatives[offsetMeas + nMeasPerHit * iMsMeas + 1][offsetPar + 2 * l + 1] = deltaK;
// current layer
theDerivatives[offsetMeas + nMeasPerHit * iMsMeas][offsetPar + 2 * i] = -(deltaK + deltaN);
theDerivatives[offsetMeas + nMeasPerHit * iMsMeas + 1][offsetPar + 2 * i + 1] = -(deltaK + deltaN);
// next layer
theDerivatives[offsetMeas + nMeasPerHit * iMsMeas][offsetPar + 2 * n] = deltaN;
theDerivatives[offsetMeas + nMeasPerHit * iMsMeas + 1][offsetPar + 2 * n + 1] = deltaN;
}
return true;
}
//__________________________________________________________________________________
bool ReferenceTrajectory::addMaterialEffectsLocalGbl(const std::vector<AlgebraicMatrix> &allJacobians,
const std::vector<AlgebraicMatrix> &allProjections,
const std::vector<AlgebraicSymMatrix> &allCurvatureChanges,
const std::vector<AlgebraicSymMatrix> &allDeltaParameterCovs) {
//CHK: add material effects using general broken lines, no initial kinks
// local track parameters are defined in the TSO system
// Minimum precision to use a measurement.
// Measurements with smaller values are rejected and with larger values are accepted
// (ending up in the MP2 binary files and used for alignment).
// The precision for the measurement along the strips is 12./Length^2. Thus:
// - for the Phase 0 Strips modules (Length ~ 10 cm) is 0.12 => rejected
// - for the Phase 2 Strips in PS modules (Length ~ 2.4 cm) is 2.08 => accepted
// - for the Phase 2 Strips in 2S modules (Length ~ 5 cm) is 0.48 => accepted
const double minPrec = 0.3;
AlgebraicMatrix OffsetToLocal(5, 2); // dLocal/dU
OffsetToLocal[3][0] = 1.;
OffsetToLocal[4][1] = 1.;
AlgebraicMatrix SlopeToLocal(5, 2); // dLocal/dU'
SlopeToLocal[1][0] = 1.;
SlopeToLocal[2][1] = 1.;
// GBL uses Eigen matrices as interface
Eigen::Matrix2d covariance, scatPrecision, proLocalToMeas;
Matrix5d jacPointToPoint;
auto identity = Matrix5d::Identity();
Eigen::Vector2d measurement, measPrecDiag;
auto scatterer = Eigen::Vector2d::Zero();
//bool initialKinks = (allCurvlinKinks.size()>0);
// measurements and scatterers from hits
unsigned int numHits = allJacobians.size();
std::vector<GblPoint> GblPointList;
GblPointList.reserve(numHits);
for (unsigned int k = 0; k < numHits; ++k) {
// GBL point to point jacobian
clhep2eigen(allJacobians[k] * allCurvatureChanges[k], jacPointToPoint);
// GBL point
GblPoint aGblPoint(jacPointToPoint);
// GBL projection from local to measurement system
clhep2eigen(allProjections[k] * OffsetToLocal, proLocalToMeas);
// GBL measurement (residuum to initial trajectory)
clhep2eigen(theMeasurements.sub(2 * k + 1, 2 * k + 2) - theTrajectoryPositions.sub(2 * k + 1, 2 * k + 2),
measurement);
// GBL measurement covariance matrix
clhep2eigen(theMeasurementsCov.sub(2 * k + 1, 2 * k + 2), covariance);
// GBL add measurement to point
if (std::abs(covariance(0, 1)) < std::numeric_limits<double>::epsilon()) {
// covariance matrix is diagonal, independent measurements
for (unsigned int row = 0; row < 2; ++row) {
measPrecDiag(row) = (0. < covariance(row, row) ? 1.0 / covariance(row, row) : 0.);
}
aGblPoint.addMeasurement(proLocalToMeas, measurement, measPrecDiag, minPrec);
} else {
// covariance matrix needs diagonalization
aGblPoint.addMeasurement(proLocalToMeas, measurement, covariance.inverse(), minPrec);
}
// GBL multiple scattering (full matrix in local system)
clhep2eigen(allDeltaParameterCovs[k].similarityT(SlopeToLocal), scatPrecision);
if (!(scatPrecision.colPivHouseholderQr().isInvertible())) {
if (!allowZeroMaterial_) {
throw cms::Exception("Alignment") << "@SUB=ReferenceTrajectory::addMaterialEffectsLocalGbl"
<< "\nEncountered singular scatter covariance-matrix without allowing "
<< "for zero material.";
}
} else {
// GBL add scatterer to point
aGblPoint.addScatterer(scatterer, Eigen::Matrix2d(scatPrecision.inverse()));
}
// add point to list
GblPointList.push_back(aGblPoint);
}
// add list of points and transformation local to fit (=local) system at first hit
theGblInput.push_back(std::make_pair(GblPointList, identity));
return true;
}
//__________________________________________________________________________________
bool ReferenceTrajectory::addMaterialEffectsCurvlinGbl(const std::vector<AlgebraicMatrix> &allCurvlinJacobians,
const std::vector<AlgebraicMatrix> &allProjections,
const std::vector<AlgebraicSymMatrix> &allCurvatureChanges,
const std::vector<AlgebraicSymMatrix> &allDeltaParameterCovs,
const std::vector<AlgebraicMatrix> &allLocalToCurv) {
//CHK: add material effects using general broken lines
// local track parameters are defined in the curvilinear system
// Minimum precision to use a measurement.
// Measurements with smaller values are rejected and with larger values are accepted
// (ending up in the MP2 binary files and used for alignment).
// The precision for the measurement along the strips is 12./Length^2. Thus:
// - for the Phase 0 Strips modules (Length ~ 10 cm) is 0.12 => rejected
// - for the Phase 2 Strips in PS modules (Length ~ 2.4 cm) is 2.08 => accepted
// - for the Phase 2 Strips in 2S modules (Length ~ 5 cm) is 0.48 => accepted
const double minPrec = 0.3;
int ierr = 0;
AlgebraicMatrix OffsetToCurv(5, 2); // dCurv/dU
OffsetToCurv[3][0] = 1.; // dxt/du1
OffsetToCurv[4][1] = 1.; // dyt/du2
AlgebraicMatrix JacOffsetToMeas, tempMSCov;
// GBL uses Eigen matrices as interface
Eigen::Matrix2d covariance, proLocalToMeas;
Matrix5d jacPointToPoint, firstLocalToCurv;
Eigen::Vector2d measurement, measPrecDiag, scatPrecDiag;
auto scatterer = Eigen::Vector2d::Zero();
// measurements and scatterers from hits
unsigned int numHits = allCurvlinJacobians.size();
std::vector<GblPoint> GblPointList;
GblPointList.reserve(numHits);
for (unsigned int k = 0; k < numHits; ++k) {
// (dMeas/dU) = (dMeas/dLoc) * (dLoc/dCurv) * (dCurv/dU)
JacOffsetToMeas = (allProjections[k] * allLocalToCurv[k].inverse(ierr)) * OffsetToCurv;
if (ierr) {
edm::LogError("Alignment") << "@SUB=ReferenceTrajectory::addMaterialEffectsGbl"
<< "Inversion 1 for general broken lines failed: " << ierr;
return false;
}
// GBL point to point jacobian
clhep2eigen(allCurvlinJacobians[k] * allCurvatureChanges[k], jacPointToPoint);
// GBL point
GblPoint aGblPoint(jacPointToPoint);
// GBL projection from local to measurement system
clhep2eigen(JacOffsetToMeas, proLocalToMeas);
// GBL measurement (residuum to initial trajectory)
clhep2eigen(theMeasurements.sub(2 * k + 1, 2 * k + 2) - theTrajectoryPositions.sub(2 * k + 1, 2 * k + 2),
measurement);
// GBL measurement covariance matrix
clhep2eigen(theMeasurementsCov.sub(2 * k + 1, 2 * k + 2), covariance);
// GBL add measurement to point
if (std::abs(covariance(0, 1)) < std::numeric_limits<double>::epsilon()) {
// covariance matrix is diagonal, independent measurements
for (unsigned int row = 0; row < 2; ++row) {
measPrecDiag(row) = (0. < covariance(row, row) ? 1.0 / covariance(row, row) : 0.);
}
aGblPoint.addMeasurement(proLocalToMeas, measurement, measPrecDiag, minPrec);
} else {
// covariance matrix needs diagonalization
aGblPoint.addMeasurement(proLocalToMeas, measurement, covariance.inverse(), minPrec);
}
// GBL multiple scattering (diagonal matrix in curvilinear system)
tempMSCov = allDeltaParameterCovs[k].similarity(allLocalToCurv[k]);
for (unsigned int row = 0; row < 2; ++row) {
scatPrecDiag(row) = 1.0 / tempMSCov[row + 1][row + 1];
}
// check for singularity
bool singularCovariance{false};
for (int row = 0; row < scatPrecDiag.rows(); ++row) {
if (!(scatPrecDiag[row] < std::numeric_limits<double>::infinity())) {
singularCovariance = true;
break;
}
}
if (singularCovariance && !allowZeroMaterial_) {
throw cms::Exception("Alignment") << "@SUB=ReferenceTrajectory::addMaterialEffectsCurvlinGbl"
<< "\nEncountered singular scatter covariance-matrix without allowing "
<< "for zero material.";
}
// GBL add scatterer to point
aGblPoint.addScatterer(scatterer, Eigen::Vector2d(scatPrecDiag));
// add point to list
GblPointList.push_back(aGblPoint);
}
// add list of points and transformation local to fit (=curvilinear) system at first hit
clhep2eigen(allLocalToCurv[0], firstLocalToCurv);
theGblInput.push_back(std::make_pair(GblPointList, firstLocalToCurv));
return true;
}
//__________________________________________________________________________________
template <typename Derived>
void ReferenceTrajectory::clhep2eigen(const AlgebraicVector &in, Eigen::MatrixBase<Derived> &out) {
static_assert(Derived::ColsAtCompileTime == 1, "clhep2eigen: 'out' must be of vector type");
for (int row = 0; row < in.num_row(); ++row) {
out(row) = in[row];
}
}
template <typename Derived>
void ReferenceTrajectory::clhep2eigen(const AlgebraicMatrix &in, Eigen::MatrixBase<Derived> &out) {
for (int row = 0; row < in.num_row(); ++row) {
for (int col = 0; col < in.num_col(); ++col) {
out(row, col) = in[row][col];
}
}
}
template <typename Derived>
void ReferenceTrajectory::clhep2eigen(const AlgebraicSymMatrix &in, Eigen::MatrixBase<Derived> &out) {
for (int row = 0; row < in.num_row(); ++row) {
for (int col = 0; col < in.num_col(); ++col) {
out(row, col) = in[row][col];
}
}
}
//__________________________________________________________________________________
AlgebraicMatrix ReferenceTrajectory::getHitProjectionMatrix(
const TransientTrackingRecHit::ConstRecHitPointer &hitPtr) const {
if (this->useRecHit(hitPtr)) {
// check which templated non-member function to call:
switch (hitPtr->dimension()) {
case 1:
return getHitProjectionMatrixT<1>(hitPtr);
case 2:
return getHitProjectionMatrixT<2>(hitPtr);
case 3:
return getHitProjectionMatrixT<3>(hitPtr);
case 4:
return getHitProjectionMatrixT<4>(hitPtr);
case 5:
return getHitProjectionMatrixT<5>(hitPtr);
default:
throw cms::Exception("ReferenceTrajectory::getHitProjectionMatrix")
<< "Unexpected hit dimension: " << hitPtr->dimension() << "\n";
}
}
// invalid or (to please compiler) unknown dimension
return AlgebraicMatrix(2, 5, 0); // get size from ???
}
//__________________________________________________________________________________
template <unsigned int N>
AlgebraicMatrix ReferenceTrajectory::getHitProjectionMatrixT(
const TransientTrackingRecHit::ConstRecHitPointer &hitPtr) const {
// define variables that will be used to setup the KfComponentsHolder
// (their allocated memory is needed by 'hitPtr->getKfComponents(..)'
ProjectMatrix<double, 5, N> pf;
typename AlgebraicROOTObject<N>::Vector r, rMeas;
typename AlgebraicROOTObject<N, N>::SymMatrix V, VMeas;
// input for the holder - but dummy is OK here to just get the projection matrix:
const AlgebraicVector5 dummyPars;
const AlgebraicSymMatrix55 dummyErr;
// setup the holder with the correct dimensions and get the values
KfComponentsHolder holder;
holder.setup<N>(&r, &V, &pf, &rMeas, &VMeas, dummyPars, dummyErr);
hitPtr->getKfComponents(holder);
return asHepMatrix<N, 5>(holder.projection<N>());
}
|