Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
#include "FWCore/MessageLogger/interface/MessageLogger.h"

#include "TrackingTools/TrajectoryState/interface/FreeTrajectoryState.h"
#include "DataFormats/GeometrySurface/interface/Surface.h"
#include "Alignment/ReferenceTrajectories/interface/TwoBodyDecayTrajectory.h"
#include "DataFormats/CLHEP/interface/AlgebraicObjects.h"
#include "DataFormats/Math/interface/Error.h"
#include "Alignment/TwoBodyDecay/interface/TwoBodyDecayParameters.h"

#include "Geometry/CommonDetUnit/interface/GeomDet.h"

#include "TrackingTools/TrajectoryState/interface/TrajectoryStateOnSurface.h"

TwoBodyDecayTrajectory::TwoBodyDecayTrajectory(const TwoBodyDecayTrajectoryState& tsos,
                                               const ConstRecHitCollection& recHits,
                                               const MagneticField* magField,
                                               const reco::BeamSpot& beamSpot,
                                               const ReferenceTrajectoryBase::Config& config)
    : ReferenceTrajectoryBase(
          TwoBodyDecayParameters::dimension,
          recHits.first.size() + recHits.second.size(),
          (config.materialEffects >= breakPoints) ? 2 * (recHits.first.size() + recHits.second.size()) - 4 : 0,
          (config.materialEffects >= breakPoints) ? 2 * (recHits.first.size() + recHits.second.size()) - 3 : 1),
      materialEffects_(config.materialEffects),
      propDir_(config.propDir),
      useRefittedState_(config.useRefittedState),
      constructTsosWithErrors_(config.constructTsosWithErrors)

{
  if (config.hitsAreReverse) {
    TransientTrackingRecHit::ConstRecHitContainer::const_reverse_iterator itRecHits;
    ConstRecHitCollection fwdRecHits;

    fwdRecHits.first.reserve(recHits.first.size());
    for (itRecHits = recHits.first.rbegin(); itRecHits != recHits.first.rend(); ++itRecHits) {
      fwdRecHits.first.push_back(*itRecHits);
    }

    fwdRecHits.second.reserve(recHits.second.size());
    for (itRecHits = recHits.second.rbegin(); itRecHits != recHits.second.rend(); ++itRecHits) {
      fwdRecHits.second.push_back(*itRecHits);
    }

    theValidityFlag = this->construct(tsos, fwdRecHits, magField, beamSpot);
  } else {
    theValidityFlag = this->construct(tsos, recHits, magField, beamSpot);
  }
}

TwoBodyDecayTrajectory::TwoBodyDecayTrajectory(void)
    : ReferenceTrajectoryBase(0, 0, 0, 0),
      materialEffects_(none),
      propDir_(anyDirection),
      useRefittedState_(false),
      constructTsosWithErrors_(false) {}

bool TwoBodyDecayTrajectory::construct(const TwoBodyDecayTrajectoryState& state,
                                       const ConstRecHitCollection& recHits,
                                       const MagneticField* field,
                                       const reco::BeamSpot& beamSpot) {
  const TwoBodyDecayTrajectoryState::TsosContainer& tsos = state.trajectoryStates(useRefittedState_);
  const TwoBodyDecayTrajectoryState::Derivatives& deriv = state.derivatives();
  double mass = state.particleMass();

  //
  // first track
  //

  // construct a trajectory (hits should be already in correct order)
  ReferenceTrajectoryBase::Config config(materialEffects_, propDir_, mass);
  config.useBeamSpot = false;
  config.hitsAreReverse = false;

  ReferenceTrajectory trajectory1(tsos.first, recHits.first, field, beamSpot, config);

  // check if construction of trajectory was successful
  if (!trajectory1.isValid())
    return false;

  //
  // second track
  //

  ReferenceTrajectory trajectory2(tsos.second, recHits.second, field, beamSpot, config);

  if (!trajectory2.isValid())
    return false;

  //
  // combine both tracks
  //
  unsigned int nLocal = deriv.first.num_row();
  unsigned int nTbd = deriv.first.num_col();

  if (materialEffects_ >= localGBL) {
    // GBL trajectory inputs
    // convert to Eigen::MatrixXd
    Eigen::MatrixXd tbdToLocal1{nLocal, nTbd};
    for (unsigned int row = 0; row < nLocal; ++row) {
      for (unsigned int col = 0; col < nTbd; ++col) {
        tbdToLocal1(row, col) = deriv.first[row][col];
      }
    }
    // add first body
    theGblInput.push_back(
        std::make_pair(trajectory1.gblInput().front().first, trajectory1.gblInput().front().second * tbdToLocal1));
    // convert to Eigen::MatrixXd
    Eigen::MatrixXd tbdToLocal2{nLocal, nTbd};
    for (unsigned int row = 0; row < nLocal; ++row) {
      for (unsigned int col = 0; col < nTbd; ++col) {
        tbdToLocal2(row, col) = deriv.second[row][col];
      }
    }
    // add second body
    theGblInput.push_back(
        std::make_pair(trajectory2.gblInput().front().first, trajectory2.gblInput().front().second * tbdToLocal2));
    // add virtual mass measurement
    theGblExtDerivatives.resize(1, nTbd);
    theGblExtDerivatives.setZero();
    theGblExtDerivatives(0, TwoBodyDecayParameters::mass) = 1.0;
    theGblExtMeasurements.resize(1);
    theGblExtMeasurements(0) = state.primaryMass() - state.decayParameters()[TwoBodyDecayParameters::mass];
    theGblExtPrecisions.resize(1);
    theGblExtPrecisions(0) = 1.0 / (state.primaryWidth() * state.primaryWidth());
    // nominal field
    theNomField = trajectory1.nominalField();
  } else {
    unsigned int nHitMeas1 = trajectory1.numberOfHitMeas();
    unsigned int nVirtualMeas1 = trajectory1.numberOfVirtualMeas();
    unsigned int nPar1 = trajectory1.numberOfPar();
    unsigned int nVirtualPar1 = trajectory1.numberOfVirtualPar();

    // derivatives of the trajectory w.r.t. to the decay parameters
    AlgebraicMatrix fullDeriv1 = trajectory1.derivatives().sub(1, nHitMeas1 + nVirtualMeas1, 1, nLocal) *
                                 trajectory1.localToTrajectory() * deriv.first;

    unsigned int nHitMeas2 = trajectory2.numberOfHitMeas();
    unsigned int nVirtualMeas2 = trajectory2.numberOfVirtualMeas();
    unsigned int nPar2 = trajectory2.numberOfPar();
    unsigned int nVirtualPar2 = trajectory2.numberOfVirtualPar();

    AlgebraicMatrix fullDeriv2 = trajectory2.derivatives().sub(1, nHitMeas2 + nVirtualMeas2, 1, nLocal) *
                                 trajectory2.localToTrajectory() * deriv.second;

    theNumberOfRecHits.first = recHits.first.size();
    theNumberOfRecHits.second = recHits.second.size();

    theNumberOfHits = trajectory1.numberOfHits() + trajectory2.numberOfHits();
    theNumberOfPars = nPar1 + nPar2;
    theNumberOfVirtualPars = nVirtualPar1 + nVirtualPar2;
    theNumberOfVirtualMeas = nVirtualMeas1 + nVirtualMeas2 + 1;  // add virtual mass measurement

    // hit measurements from trajectory 1
    int rowOffset = 1;
    int colOffset = 1;
    theDerivatives.sub(rowOffset, colOffset, fullDeriv1.sub(1, nHitMeas1, 1, nTbd));
    colOffset += nTbd;
    theDerivatives.sub(
        rowOffset, colOffset, trajectory1.derivatives().sub(1, nHitMeas1, nLocal + 1, nPar1 + nVirtualPar1));
    // hit measurements from trajectory 2
    rowOffset += nHitMeas1;
    colOffset = 1;
    theDerivatives.sub(rowOffset, colOffset, fullDeriv2.sub(1, nHitMeas2, 1, nTbd));
    colOffset += (nPar1 + nVirtualPar1 + nTbd - nLocal);
    theDerivatives.sub(
        rowOffset, colOffset, trajectory2.derivatives().sub(1, nHitMeas2, nLocal + 1, nPar2 + nVirtualPar2));
    // MS measurements from trajectory 1
    rowOffset += nHitMeas2;
    colOffset = 1;
    theDerivatives.sub(rowOffset, colOffset, fullDeriv1.sub(nHitMeas1 + 1, nHitMeas1 + nVirtualMeas1, 1, nTbd));
    colOffset += nTbd;
    theDerivatives.sub(
        rowOffset,
        colOffset,
        trajectory1.derivatives().sub(nHitMeas1 + 1, nHitMeas1 + nVirtualMeas1, nLocal + 1, nPar1 + nVirtualPar1));
    // MS measurements from trajectory 2
    rowOffset += nVirtualMeas1;
    colOffset = 1;
    theDerivatives.sub(rowOffset, colOffset, fullDeriv2.sub(nHitMeas2 + 1, nHitMeas2 + nVirtualMeas2, 1, nTbd));
    colOffset += (nPar1 + nVirtualPar1 + nTbd - nLocal);
    theDerivatives.sub(
        rowOffset,
        colOffset,
        trajectory2.derivatives().sub(nHitMeas2 + 1, nHitMeas2 + nVirtualMeas2, nLocal + 1, nPar2 + nVirtualPar2));

    theMeasurements.sub(1, trajectory1.measurements().sub(1, nHitMeas1));
    theMeasurements.sub(nHitMeas1 + 1, trajectory2.measurements().sub(1, nHitMeas2));
    theMeasurements.sub(nHitMeas1 + nHitMeas2 + 1,
                        trajectory1.measurements().sub(nHitMeas1 + 1, nHitMeas1 + nVirtualMeas1));
    theMeasurements.sub(nHitMeas1 + nHitMeas2 + nVirtualMeas1 + 1,
                        trajectory2.measurements().sub(nHitMeas2 + 1, nHitMeas2 + nVirtualMeas2));

    theMeasurementsCov.sub(1, trajectory1.measurementErrors().sub(1, nHitMeas1));
    theMeasurementsCov.sub(nHitMeas1 + 1, trajectory2.measurementErrors().sub(1, nHitMeas2));
    theMeasurementsCov.sub(nHitMeas1 + nHitMeas2 + 1,
                           trajectory1.measurementErrors().sub(nHitMeas1 + 1, nHitMeas1 + nVirtualMeas1));
    theMeasurementsCov.sub(nHitMeas1 + nHitMeas2 + nVirtualMeas1 + 1,
                           trajectory2.measurementErrors().sub(nHitMeas2 + 1, nHitMeas2 + nVirtualMeas2));

    theTrajectoryPositions.sub(1, trajectory1.trajectoryPositions());
    theTrajectoryPositions.sub(nHitMeas1 + 1, trajectory2.trajectoryPositions());

    theTrajectoryPositionCov =
        state.decayParameters().covariance().similarity(theDerivatives.sub(1, nHitMeas1 + nHitMeas2, 1, 9));

    theParameters = state.decayParameters().parameters();

    // add virtual mass measurement
    rowOffset += nVirtualMeas2;
    int indMass = rowOffset - 1;
    theMeasurements[indMass] = state.primaryMass() - state.decayParameters()[TwoBodyDecayParameters::mass];
    theMeasurementsCov[indMass][indMass] = state.primaryWidth() * state.primaryWidth();
    theDerivatives[indMass][TwoBodyDecayParameters::mass] = 1.0;
  }

  theRecHits.insert(theRecHits.end(), recHits.first.begin(), recHits.first.end());
  theRecHits.insert(theRecHits.end(), recHits.second.begin(), recHits.second.end());

  if (constructTsosWithErrors_) {
    constructTsosVecWithErrors(trajectory1, trajectory2, field);
  } else {
    theTsosVec.insert(theTsosVec.end(), trajectory1.trajectoryStates().begin(), trajectory1.trajectoryStates().end());

    theTsosVec.insert(theTsosVec.end(), trajectory2.trajectoryStates().begin(), trajectory2.trajectoryStates().end());
  }

  return true;
}

void TwoBodyDecayTrajectory::constructTsosVecWithErrors(const ReferenceTrajectory& traj1,
                                                        const ReferenceTrajectory& traj2,
                                                        const MagneticField* field) {
  int iTsos = 0;

  std::vector<TrajectoryStateOnSurface>::const_iterator itTsos;

  for (itTsos = traj1.trajectoryStates().begin(); itTsos != traj1.trajectoryStates().end(); itTsos++) {
    constructSingleTsosWithErrors(*itTsos, iTsos, field);
    iTsos++;
  }

  for (itTsos = traj2.trajectoryStates().begin(); itTsos != traj2.trajectoryStates().end(); itTsos++) {
    constructSingleTsosWithErrors(*itTsos, iTsos, field);
    iTsos++;
  }
}

void TwoBodyDecayTrajectory::constructSingleTsosWithErrors(const TrajectoryStateOnSurface& tsos,
                                                           int iTsos,
                                                           const MagneticField* field) {
  AlgebraicSymMatrix55 localErrors;
  const double coeff = 1e-2;

  double invP = tsos.localParameters().signedInverseMomentum();
  LocalVector p = tsos.localParameters().momentum();

  // rough estimate for the errors of q/p, dx/dz and dy/dz, assuming that
  // sigma(px) = sigma(py) = sigma(pz) = coeff*p.
  float dpinv = coeff * (fabs(p.x()) + fabs(p.y()) + fabs(p.z())) * invP * invP;
  float dxdir = coeff * (fabs(p.x()) + fabs(p.z())) / p.z() / p.z();
  float dydir = coeff * (fabs(p.y()) + fabs(p.z())) / p.z() / p.z();
  localErrors[0][0] = dpinv * dpinv;
  localErrors[1][1] = dxdir * dxdir;
  localErrors[2][2] = dydir * dydir;

  // exact values for the errors on local x and y
  localErrors[3][3] = theTrajectoryPositionCov[nMeasPerHit * iTsos][nMeasPerHit * iTsos];
  localErrors[3][4] = theTrajectoryPositionCov[nMeasPerHit * iTsos][nMeasPerHit * iTsos + 1];
  localErrors[4][4] = theTrajectoryPositionCov[nMeasPerHit * iTsos + 1][nMeasPerHit * iTsos + 1];

  // construct tsos with local errors
  theTsosVec[iTsos] = TrajectoryStateOnSurface(
      tsos.localParameters(), LocalTrajectoryError(localErrors), tsos.surface(), field, tsos.surfaceSide());
}