1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
|
#include "FWCore/MessageLogger/interface/MessageLogger.h"
#include "TrackingTools/TrajectoryState/interface/FreeTrajectoryState.h"
#include "DataFormats/GeometrySurface/interface/Surface.h"
#include "Alignment/ReferenceTrajectories/interface/TwoBodyDecayTrajectory.h"
#include "DataFormats/CLHEP/interface/AlgebraicObjects.h"
#include "DataFormats/Math/interface/Error.h"
#include "Alignment/TwoBodyDecay/interface/TwoBodyDecayParameters.h"
#include "Geometry/CommonDetUnit/interface/GeomDet.h"
#include "TrackingTools/TrajectoryState/interface/TrajectoryStateOnSurface.h"
TwoBodyDecayTrajectory::TwoBodyDecayTrajectory(const TwoBodyDecayTrajectoryState& tsos,
const ConstRecHitCollection& recHits,
const MagneticField* magField,
const reco::BeamSpot& beamSpot,
const ReferenceTrajectoryBase::Config& config)
: ReferenceTrajectoryBase(
TwoBodyDecayParameters::dimension,
recHits.first.size() + recHits.second.size(),
(config.materialEffects >= breakPoints) ? 2 * (recHits.first.size() + recHits.second.size()) - 4 : 0,
(config.materialEffects >= breakPoints) ? 2 * (recHits.first.size() + recHits.second.size()) - 3 : 1),
materialEffects_(config.materialEffects),
propDir_(config.propDir),
useRefittedState_(config.useRefittedState),
constructTsosWithErrors_(config.constructTsosWithErrors)
{
if (config.hitsAreReverse) {
TransientTrackingRecHit::ConstRecHitContainer::const_reverse_iterator itRecHits;
ConstRecHitCollection fwdRecHits;
fwdRecHits.first.reserve(recHits.first.size());
for (itRecHits = recHits.first.rbegin(); itRecHits != recHits.first.rend(); ++itRecHits) {
fwdRecHits.first.push_back(*itRecHits);
}
fwdRecHits.second.reserve(recHits.second.size());
for (itRecHits = recHits.second.rbegin(); itRecHits != recHits.second.rend(); ++itRecHits) {
fwdRecHits.second.push_back(*itRecHits);
}
theValidityFlag = this->construct(tsos, fwdRecHits, magField, beamSpot);
} else {
theValidityFlag = this->construct(tsos, recHits, magField, beamSpot);
}
}
TwoBodyDecayTrajectory::TwoBodyDecayTrajectory(void)
: ReferenceTrajectoryBase(0, 0, 0, 0),
materialEffects_(none),
propDir_(anyDirection),
useRefittedState_(false),
constructTsosWithErrors_(false) {}
bool TwoBodyDecayTrajectory::construct(const TwoBodyDecayTrajectoryState& state,
const ConstRecHitCollection& recHits,
const MagneticField* field,
const reco::BeamSpot& beamSpot) {
const TwoBodyDecayTrajectoryState::TsosContainer& tsos = state.trajectoryStates(useRefittedState_);
const TwoBodyDecayTrajectoryState::Derivatives& deriv = state.derivatives();
double mass = state.particleMass();
//
// first track
//
// construct a trajectory (hits should be already in correct order)
ReferenceTrajectoryBase::Config config(materialEffects_, propDir_, mass);
config.useBeamSpot = false;
config.hitsAreReverse = false;
ReferenceTrajectory trajectory1(tsos.first, recHits.first, field, beamSpot, config);
// check if construction of trajectory was successful
if (!trajectory1.isValid())
return false;
//
// second track
//
ReferenceTrajectory trajectory2(tsos.second, recHits.second, field, beamSpot, config);
if (!trajectory2.isValid())
return false;
//
// combine both tracks
//
unsigned int nLocal = deriv.first.num_row();
unsigned int nTbd = deriv.first.num_col();
if (materialEffects_ >= localGBL) {
// GBL trajectory inputs
// convert to Eigen::MatrixXd
Eigen::MatrixXd tbdToLocal1{nLocal, nTbd};
for (unsigned int row = 0; row < nLocal; ++row) {
for (unsigned int col = 0; col < nTbd; ++col) {
tbdToLocal1(row, col) = deriv.first[row][col];
}
}
// add first body
theGblInput.push_back(
std::make_pair(trajectory1.gblInput().front().first, trajectory1.gblInput().front().second * tbdToLocal1));
// convert to Eigen::MatrixXd
Eigen::MatrixXd tbdToLocal2{nLocal, nTbd};
for (unsigned int row = 0; row < nLocal; ++row) {
for (unsigned int col = 0; col < nTbd; ++col) {
tbdToLocal2(row, col) = deriv.second[row][col];
}
}
// add second body
theGblInput.push_back(
std::make_pair(trajectory2.gblInput().front().first, trajectory2.gblInput().front().second * tbdToLocal2));
// add virtual mass measurement
theGblExtDerivatives.resize(1, nTbd);
theGblExtDerivatives.setZero();
theGblExtDerivatives(0, TwoBodyDecayParameters::mass) = 1.0;
theGblExtMeasurements.resize(1);
theGblExtMeasurements(0) = state.primaryMass() - state.decayParameters()[TwoBodyDecayParameters::mass];
theGblExtPrecisions.resize(1);
theGblExtPrecisions(0) = 1.0 / (state.primaryWidth() * state.primaryWidth());
// nominal field
theNomField = trajectory1.nominalField();
} else {
unsigned int nHitMeas1 = trajectory1.numberOfHitMeas();
unsigned int nVirtualMeas1 = trajectory1.numberOfVirtualMeas();
unsigned int nPar1 = trajectory1.numberOfPar();
unsigned int nVirtualPar1 = trajectory1.numberOfVirtualPar();
// derivatives of the trajectory w.r.t. to the decay parameters
AlgebraicMatrix fullDeriv1 = trajectory1.derivatives().sub(1, nHitMeas1 + nVirtualMeas1, 1, nLocal) *
trajectory1.localToTrajectory() * deriv.first;
unsigned int nHitMeas2 = trajectory2.numberOfHitMeas();
unsigned int nVirtualMeas2 = trajectory2.numberOfVirtualMeas();
unsigned int nPar2 = trajectory2.numberOfPar();
unsigned int nVirtualPar2 = trajectory2.numberOfVirtualPar();
AlgebraicMatrix fullDeriv2 = trajectory2.derivatives().sub(1, nHitMeas2 + nVirtualMeas2, 1, nLocal) *
trajectory2.localToTrajectory() * deriv.second;
theNumberOfRecHits.first = recHits.first.size();
theNumberOfRecHits.second = recHits.second.size();
theNumberOfHits = trajectory1.numberOfHits() + trajectory2.numberOfHits();
theNumberOfPars = nPar1 + nPar2;
theNumberOfVirtualPars = nVirtualPar1 + nVirtualPar2;
theNumberOfVirtualMeas = nVirtualMeas1 + nVirtualMeas2 + 1; // add virtual mass measurement
// hit measurements from trajectory 1
int rowOffset = 1;
int colOffset = 1;
theDerivatives.sub(rowOffset, colOffset, fullDeriv1.sub(1, nHitMeas1, 1, nTbd));
colOffset += nTbd;
theDerivatives.sub(
rowOffset, colOffset, trajectory1.derivatives().sub(1, nHitMeas1, nLocal + 1, nPar1 + nVirtualPar1));
// hit measurements from trajectory 2
rowOffset += nHitMeas1;
colOffset = 1;
theDerivatives.sub(rowOffset, colOffset, fullDeriv2.sub(1, nHitMeas2, 1, nTbd));
colOffset += (nPar1 + nVirtualPar1 + nTbd - nLocal);
theDerivatives.sub(
rowOffset, colOffset, trajectory2.derivatives().sub(1, nHitMeas2, nLocal + 1, nPar2 + nVirtualPar2));
// MS measurements from trajectory 1
rowOffset += nHitMeas2;
colOffset = 1;
theDerivatives.sub(rowOffset, colOffset, fullDeriv1.sub(nHitMeas1 + 1, nHitMeas1 + nVirtualMeas1, 1, nTbd));
colOffset += nTbd;
theDerivatives.sub(
rowOffset,
colOffset,
trajectory1.derivatives().sub(nHitMeas1 + 1, nHitMeas1 + nVirtualMeas1, nLocal + 1, nPar1 + nVirtualPar1));
// MS measurements from trajectory 2
rowOffset += nVirtualMeas1;
colOffset = 1;
theDerivatives.sub(rowOffset, colOffset, fullDeriv2.sub(nHitMeas2 + 1, nHitMeas2 + nVirtualMeas2, 1, nTbd));
colOffset += (nPar1 + nVirtualPar1 + nTbd - nLocal);
theDerivatives.sub(
rowOffset,
colOffset,
trajectory2.derivatives().sub(nHitMeas2 + 1, nHitMeas2 + nVirtualMeas2, nLocal + 1, nPar2 + nVirtualPar2));
theMeasurements.sub(1, trajectory1.measurements().sub(1, nHitMeas1));
theMeasurements.sub(nHitMeas1 + 1, trajectory2.measurements().sub(1, nHitMeas2));
theMeasurements.sub(nHitMeas1 + nHitMeas2 + 1,
trajectory1.measurements().sub(nHitMeas1 + 1, nHitMeas1 + nVirtualMeas1));
theMeasurements.sub(nHitMeas1 + nHitMeas2 + nVirtualMeas1 + 1,
trajectory2.measurements().sub(nHitMeas2 + 1, nHitMeas2 + nVirtualMeas2));
theMeasurementsCov.sub(1, trajectory1.measurementErrors().sub(1, nHitMeas1));
theMeasurementsCov.sub(nHitMeas1 + 1, trajectory2.measurementErrors().sub(1, nHitMeas2));
theMeasurementsCov.sub(nHitMeas1 + nHitMeas2 + 1,
trajectory1.measurementErrors().sub(nHitMeas1 + 1, nHitMeas1 + nVirtualMeas1));
theMeasurementsCov.sub(nHitMeas1 + nHitMeas2 + nVirtualMeas1 + 1,
trajectory2.measurementErrors().sub(nHitMeas2 + 1, nHitMeas2 + nVirtualMeas2));
theTrajectoryPositions.sub(1, trajectory1.trajectoryPositions());
theTrajectoryPositions.sub(nHitMeas1 + 1, trajectory2.trajectoryPositions());
theTrajectoryPositionCov =
state.decayParameters().covariance().similarity(theDerivatives.sub(1, nHitMeas1 + nHitMeas2, 1, 9));
theParameters = state.decayParameters().parameters();
// add virtual mass measurement
rowOffset += nVirtualMeas2;
int indMass = rowOffset - 1;
theMeasurements[indMass] = state.primaryMass() - state.decayParameters()[TwoBodyDecayParameters::mass];
theMeasurementsCov[indMass][indMass] = state.primaryWidth() * state.primaryWidth();
theDerivatives[indMass][TwoBodyDecayParameters::mass] = 1.0;
}
theRecHits.insert(theRecHits.end(), recHits.first.begin(), recHits.first.end());
theRecHits.insert(theRecHits.end(), recHits.second.begin(), recHits.second.end());
if (constructTsosWithErrors_) {
constructTsosVecWithErrors(trajectory1, trajectory2, field);
} else {
theTsosVec.insert(theTsosVec.end(), trajectory1.trajectoryStates().begin(), trajectory1.trajectoryStates().end());
theTsosVec.insert(theTsosVec.end(), trajectory2.trajectoryStates().begin(), trajectory2.trajectoryStates().end());
}
return true;
}
void TwoBodyDecayTrajectory::constructTsosVecWithErrors(const ReferenceTrajectory& traj1,
const ReferenceTrajectory& traj2,
const MagneticField* field) {
int iTsos = 0;
std::vector<TrajectoryStateOnSurface>::const_iterator itTsos;
for (itTsos = traj1.trajectoryStates().begin(); itTsos != traj1.trajectoryStates().end(); itTsos++) {
constructSingleTsosWithErrors(*itTsos, iTsos, field);
iTsos++;
}
for (itTsos = traj2.trajectoryStates().begin(); itTsos != traj2.trajectoryStates().end(); itTsos++) {
constructSingleTsosWithErrors(*itTsos, iTsos, field);
iTsos++;
}
}
void TwoBodyDecayTrajectory::constructSingleTsosWithErrors(const TrajectoryStateOnSurface& tsos,
int iTsos,
const MagneticField* field) {
AlgebraicSymMatrix55 localErrors;
const double coeff = 1e-2;
double invP = tsos.localParameters().signedInverseMomentum();
LocalVector p = tsos.localParameters().momentum();
// rough estimate for the errors of q/p, dx/dz and dy/dz, assuming that
// sigma(px) = sigma(py) = sigma(pz) = coeff*p.
float dpinv = coeff * (fabs(p.x()) + fabs(p.y()) + fabs(p.z())) * invP * invP;
float dxdir = coeff * (fabs(p.x()) + fabs(p.z())) / p.z() / p.z();
float dydir = coeff * (fabs(p.y()) + fabs(p.z())) / p.z() / p.z();
localErrors[0][0] = dpinv * dpinv;
localErrors[1][1] = dxdir * dxdir;
localErrors[2][2] = dydir * dydir;
// exact values for the errors on local x and y
localErrors[3][3] = theTrajectoryPositionCov[nMeasPerHit * iTsos][nMeasPerHit * iTsos];
localErrors[3][4] = theTrajectoryPositionCov[nMeasPerHit * iTsos][nMeasPerHit * iTsos + 1];
localErrors[4][4] = theTrajectoryPositionCov[nMeasPerHit * iTsos + 1][nMeasPerHit * iTsos + 1];
// construct tsos with local errors
theTsosVec[iTsos] = TrajectoryStateOnSurface(
tsos.localParameters(), LocalTrajectoryError(localErrors), tsos.surface(), field, tsos.surfaceSide());
}
|