1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
|
/*
* \class PulseFitWithFunction
*
* \author: Patrick Jarry - CEA/Saclay
*/
// File PulseFitWithFunction.cxx
// ===========================================================
// == ==
// == Class for a function fit method ==
// == ==
// == Date: July 17th 2003 ==
// == Author: Patrick Jarry ==
// == ==
// == ==
// ===========================================================
#include "CalibCalorimetry/EcalLaserAnalyzer/interface/PulseFitWithFunction.h"
#include <iostream>
#include "TMath.h"
//ClassImp(PulseFitWithFunction)
// Constructor...
PulseFitWithFunction::PulseFitWithFunction() {
fNsamples = 0;
fNum_samp_bef_max = 0;
fNum_samp_after_max = 0;
}
// Destructor
PulseFitWithFunction::~PulseFitWithFunction() {}
// Initialisation
void PulseFitWithFunction::init(int n_samples, int samplb, int sampla, int niter, double alfa, double beta) {
//printf("\n");
//printf(" =========================================================\n");
//printf(" == Initialising the function fit method ==\n");
//printf(" == PulseFitWithFunction::init ==\n");
//printf(" == ==\n");
fNsamples = n_samples;
fAlpha_laser = alfa;
fBeta_laser = beta;
fAlpha_beam = 0.98;
fBeta_beam = 2.04;
fNb_iter = niter;
fNum_samp_bef_max = samplb;
fNum_samp_after_max = sampla;
//printf(" == # samples used = %3d ==\n",fNsamples);
//printf(" == #sample before max= %1d and #sample after maximum= %1d ==\n",fNum_samp_bef_max,fNum_samp_after_max);
//printf(" == alpha= %5.4f beta= %5.4f ==\n",fAlpha_laser,fBeta_laser);
//printf(" =========================================================\n\n");
return;
}
// Compute the amplitude using as input the Crystaldata
double PulseFitWithFunction::doFit(double *adc) {
double parout[4]; // amp_max ;
//double amp_parab , tim_parab ;
double chi2;
//int imax ;
//
// first one has to get starting point first with parabolic fun// //
Fit_parab(&adc[0], 3, fNsamples, parout);
amp_parab = parout[0];
tim_parab = parout[1];
imax = (int)parout[2];
amp_max = parout[3];
//printf("amp_parab= %f tim_parab=%f amp_max=%f imax=%d\n",amp_parab,tim_parab,amp_max,imax);
fNumber_samp_max = imax;
//
if (amp_parab < 1.) {
tim_parab = (double)imax;
amp_parab = amp_max;
}
//
fValue_tim_max = tim_parab;
fFunc_max = amp_parab;
fTim_max = tim_parab;
// here to fit maximum amplitude and time of arrival ...
chi2 = Fit_electronic(0, &adc[0], 8.);
// adc is an array to be filled with samples
// 0 is for Laser (1 for electron)
// 8 is for sigma of pedestals
// which (can be computed)
// double amplitude = fAmp_fitted_max ; // amplitude fitted
// double time = fTim_fitted_max ; // time fitted
return chi2; // return amplitude fitted
}
//-----------------------------------------------------------------------
//----------------------------------------------------------------------
/*************************************************/
double PulseFitWithFunction::Fit_electronic(int data, double *adc_to_fit, double sigmas_sample) {
// fit electronic function from simulation
// parameters fAlpha and fBeta are fixed and fit is providing
// the maximum amplitude ( fAmp_fitted_max ) and the time of
// the maximum amplitude ( fTim_fitted_max)
// initialization of parameters
double chi2 = 0;
double d_alpha, d_beta;
// first initialize parameters fAlpha and fBeta ( depending of beam or laser)
fAlpha = fAlpha_laser;
fBeta = fBeta_laser;
if (data == 1) {
fAlpha = fAlpha_beam;
fBeta = fBeta_beam;
}
//
fAmp_fitted_max = 0.;
fTim_fitted_max = 0.;
double un_sur_sigma = 1.;
double variation_func_max = 0.;
double variation_tim_max = 0.;
//
if (fValue_tim_max > 20. || fValue_tim_max < 3.) {
fValue_tim_max = fNumber_samp_max;
}
int num_fit_min = (int)(fValue_tim_max - fNum_samp_bef_max);
int num_fit_max = (int)(fValue_tim_max + fNum_samp_after_max);
//
if (sigmas_sample > 0.)
un_sur_sigma = 1. / sigmas_sample;
double func, delta;
// Loop on iterations
for (int iter = 0; iter < fNb_iter; iter++) {
// initialization inside iteration loop !
chi2 = 0.;
double d11 = 0.;
double d12 = 0.;
double d22 = 0.;
double z1 = 0.;
double z2 = 0.;
fFunc_max += variation_func_max;
fTim_max += variation_tim_max;
int nsamp_used = 0;
//
// Then we loop on samples to be fitted
for (int i = num_fit_min; i < num_fit_max + 1; i++) {
// calculate function to be fitted
func = Electronic_shape((double)i);
// then calculate derivatives of function to be fitted
double dt = (double)i - fTim_max;
double alpha_beta = fAlpha * fBeta;
if (dt > -alpha_beta) {
double dt_sur_beta = dt / fBeta;
double variable = (double)1. + dt / alpha_beta;
double expo = TMath::Exp(-dt_sur_beta);
double puissance = TMath::Power(variable, fAlpha);
d_alpha = un_sur_sigma * puissance * expo;
d_beta = fFunc_max * d_alpha * dt_sur_beta / (alpha_beta * variable);
} else {
continue;
}
nsamp_used++; // number of samples used inside the fit
// compute matrix elements D (symetric --> d12 = d21 )
d11 += d_alpha * d_alpha;
d12 += d_alpha * d_beta;
d22 += d_beta * d_beta;
// compute delta
delta = (adc_to_fit[i] - func) * un_sur_sigma;
// compute vector elements Z
z1 += delta * d_alpha;
z2 += delta * d_beta;
chi2 += delta * delta;
} // end of loop on samples
double denom = d11 * d22 - d12 * d12;
if (denom == 0.) {
//printf( "attention denom = 0 signal pas fitte \n") ;
return 101;
}
if (nsamp_used < 3) {
//printf( "Attention nsamp = %d ---> no function fit provided \n",nsamp_used) ;
return 102;
}
// compute variations of parameters fAmp_max and fTim_max
variation_func_max = (z1 * d22 - z2 * d12) / denom;
variation_tim_max = (-z1 * d12 + z2 * d11) / denom;
chi2 = chi2 / ((double)nsamp_used - 2.);
} // end of loop on iterations
// results of the fit are calculated
fAmp_fitted_max = fFunc_max + variation_func_max;
fTim_fitted_max = fTim_max + variation_tim_max;
//
return chi2;
}
//-----------------------------------------------------------------------
//----------------------------------------------------------------------
double PulseFitWithFunction::Electronic_shape(double tim) {
// electronic function (from simulation) to fit ECAL pulse shape
double func_electronic, dtsbeta, variable, puiss;
double albet = fAlpha * fBeta;
if (albet <= 0)
return ((Double_t)0.);
double dt = tim - fTim_max;
if (dt > -albet) {
dtsbeta = dt / fBeta;
variable = 1. + dt / albet;
puiss = TMath::Power(variable, fAlpha);
func_electronic = fFunc_max * puiss * TMath::Exp(-dtsbeta);
} else
func_electronic = 0.;
//
return func_electronic;
}
void PulseFitWithFunction::Fit_parab(Double_t *ampl, Int_t nmin, Int_t nmax, Double_t *parout) {
/* Now we calculate the parabolic adjustement in order to get */
/* maximum and time max */
double denom, dt, amp1, amp2, amp3;
double ampmax = 0.;
int imax = 0;
int k;
/*
*/
for (k = nmin; k < nmax; k++) {
//printf("ampl[%d]=%f\n",k,ampl[k]);
if (ampl[k] > ampmax) {
ampmax = ampl[k];
imax = k;
}
}
amp1 = ampl[imax - 1];
amp2 = ampl[imax];
amp3 = ampl[imax + 1];
denom = 2. * amp2 - amp1 - amp3;
/* */
if (denom > 0.) {
dt = 0.5 * (amp3 - amp1) / denom;
} else {
//printf("denom =%f\n",denom) ;
dt = 0.5;
}
/* */
/* ampmax correspond au maximum d'amplitude parabolique et dt */
/* decalage en temps par rapport au sample maximum soit k + dt */
parout[0] = amp2 + (amp3 - amp1) * dt * 0.25;
parout[1] = (double)imax + dt;
parout[2] = (double)imax;
parout[3] = ampmax;
return;
}
|