1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
|
/*
* \class PulseFitWithShape
*
* \author: Julie Malcles - CEA/Saclay
*/
#include "CalibCalorimetry/EcalLaserAnalyzer/interface/PulseFitWithShape.h"
#include <iostream>
#include "TMath.h"
#include <cmath>
//ClassImp(PulseFitWithShape)
// Constructor...
PulseFitWithShape::PulseFitWithShape() {
fNsamples = 0;
fNsamplesShape = 0;
fNum_samp_bef_max = 0;
fNum_samp_after_max = 0;
fNoise = 0.0;
}
// Destructor
PulseFitWithShape::~PulseFitWithShape() {}
// Initialisation
void PulseFitWithShape::init(int n_samples,
int samplb,
int sampla,
int niter,
int n_samplesShape,
const std::vector<double> &shape,
double nois) {
fNsamples = n_samples;
fNsamplesShape = n_samplesShape;
fNb_iter = niter;
fNum_samp_bef_max = samplb;
fNum_samp_after_max = sampla;
if (fNsamplesShape < fNum_samp_bef_max + fNum_samp_after_max + 1) {
std::cout << "PulseFitWithShape::init: Error! Configuration samples in fit greater than total number of samples!"
<< std::endl;
}
for (int i = 0; i < fNsamplesShape; i++) {
pshape.push_back(shape[i]);
dshape.push_back(0.0);
}
fNoise = nois;
return;
}
// Compute the amplitude using as input the Crystaldata
double PulseFitWithShape::doFit(double *adc, double *cova) {
// xpar = fit paramaters
// [0] = signal amplitude
// [1] = residual pedestal
// [2] = clock phase
bool useCova = true;
if (cova == nullptr)
useCova = false;
double xpar[3];
double chi2;
fAmp_fitted_max = 0.;
fTim_fitted_max = 0.;
// for now don't fit pedestal
xpar[1] = 0.0;
// Sample noise. If the cova matrix is defined, use it :
double noise = fNoise;
//if(cova[0] > 0.) noise=1./sqrt(cova[0]);
xpar[0] = 0.;
xpar[2] = 0.;
// first locate max:
int imax = 0;
double amax = 0.0;
for (int i = 0; i < fNsamples; i++) {
if (adc[i] > amax) {
amax = adc[i];
imax = i;
}
}
// Shift pulse shape and calculate its derivative:
double qms = 0.;
int ims = 0;
// 1) search for maximum
for (int is = 0; is < fNsamplesShape; is++) {
if (pshape[is] > qms) {
qms = pshape[is];
ims = is;
}
// 2) compute shape derivative :
if (is < fNsamplesShape - 2)
dshape[is] = (pshape[is + 2] - pshape[is]) * 12.5;
else
dshape[is] = dshape[is - 1];
}
// 3) compute pol2 max
double sq1 = pshape[ims - 1];
double sq2 = pshape[ims];
double sq3 = pshape[ims + 1];
double a2 = (sq3 + sq1) / 2.0 - sq2;
double a1 = sq2 - sq1 + a2 * (1 - 2 * ims);
double t_ims = 0;
if (a2 != 0)
t_ims = -a1 / (2.0 * a2);
// Starting point of the fit : qmax and tmax given by a
// P2 fit on 3 max samples.
double qm = 0.;
int im = 0;
int nsamplef = fNum_samp_bef_max + fNum_samp_after_max + 1; // number of samples used in the fit
int nsampleo = imax - fNum_samp_bef_max; // first sample number = sample max-fNum_samp_bef_max
for (int is = 0; is < nsamplef; is++) {
if (adc[is + nsampleo] > qm) {
qm = adc[is + nsampleo];
im = nsampleo + is;
}
}
double tm;
if (qm > 5. * noise) {
if (im >= nsamplef + nsampleo)
im = nsampleo + nsamplef - 1;
double q1 = adc[im - 1];
double q2 = adc[im];
double q3 = adc[im + 1];
double y2 = (q1 + q3) / 2. - q2;
double y1 = q2 - q1 + y2 * (1 - 2 * im);
double y0 = q2 - y1 * (double)im - y2 * (double)(im * im);
tm = -y1 / 2. / y2;
xpar[0] = y0 + y1 * tm + y2 * tm * tm;
xpar[2] = (double)ims / 25. - tm;
}
double chi2old = 999999.;
chi2 = 99999.;
int nsfit = nsamplef;
int iloop = 0;
int nloop = fNb_iter;
if (qm <= 5 * noise)
nloop = 1; // Just one iteration for very low signal
std::vector<double> resi(fNsamples, 0.0);
while (std::fabs(chi2old - chi2) > 0.1 && iloop < nloop) {
iloop++;
chi2old = chi2;
double c = 0.;
double y1 = 0.;
double s1 = 0.;
double s2 = 0.;
double ys1 = 0.;
double sp1 = 0.;
double sp2 = 0.;
double ssp = 0.;
double ysp = 0.;
for (int is = 0; is < nsfit; is++) {
const int iis = is + nsampleo;
double t1 = (double)iis + xpar[2];
double xbin = t1 * 25.;
int ibin1 = (int)xbin;
if (ibin1 < 0)
ibin1 = 0;
double amp1, amp11, amp12, der1, der11, der12;
if (ibin1 <= fNsamplesShape - 2) { // Interpolate shape values to get the right number :
int ibin2 = ibin1 + 1;
double xfrac = xbin - ibin1;
amp11 = pshape[ibin1];
amp12 = pshape[ibin2];
amp1 = (1. - xfrac) * amp11 + xfrac * amp12;
der11 = dshape[ibin1];
der12 = dshape[ibin2];
der1 = (1. - xfrac) * der11 + xfrac * der12;
} else { // Or extraoplate if we are outside the array :
amp1 = pshape[fNsamplesShape - 1] + dshape[fNsamplesShape - 1] * (xbin - double(fNsamplesShape - 1)) / 25.;
der1 = dshape[fNsamplesShape - 1];
}
if (useCova) { // Use covariance matrix:
for (int js = 0; js < nsfit; js++) {
int jjs = js;
jjs += nsampleo;
t1 = (double)jjs + xpar[2];
xbin = t1 * 25.;
ibin1 = (int)xbin;
if (ibin1 < 0)
ibin1 = 0;
if (ibin1 > fNsamplesShape - 2)
ibin1 = fNsamplesShape - 2;
int ibin2 = ibin1 + 1;
double xfrac = xbin - ibin1;
amp11 = pshape[ibin1];
amp12 = pshape[ibin2];
double amp2 = (1. - xfrac) * amp11 + xfrac * amp12;
der11 = dshape[ibin1];
der12 = dshape[ibin2];
double der2 = (1. - xfrac) * der11 + xfrac * der12;
c = c + cova[js * fNsamples + is];
y1 = y1 + adc[iis] * cova[js * fNsamples + is];
s1 = s1 + amp1 * cova[js * fNsamples + is];
s2 = s2 + amp1 * amp2 * cova[js * fNsamples + is];
ys1 = ys1 + adc[iis] * amp2 * cova[js * fNsamples + is];
sp1 = sp1 + der1 * cova[is * fNsamples + js];
sp2 = sp2 + der1 * der2 * cova[js * fNsamples + is];
ssp = ssp + amp1 * der2 * cova[js * fNsamples + is];
ysp = ysp + adc[iis] * der2 * cova[js * fNsamples + is];
}
} else { // Don't use covariance matrix:
c++;
y1 = y1 + adc[iis];
s1 = s1 + amp1;
s2 = s2 + amp1 * amp1;
ys1 = ys1 + amp1 * adc[iis];
sp1 = sp1 + der1;
sp2 = sp2 + der1 * der1;
ssp = ssp + der1 * amp1;
ysp = ysp + der1 * adc[iis];
}
}
xpar[0] = (ysp * ssp - ys1 * sp2) / (ssp * ssp - s2 * sp2);
xpar[2] += (ysp / xpar[0] / sp2 - ssp / sp2);
for (int is = 0; is < nsfit; is++) {
const int iis = is + nsampleo;
double t1 = (double)iis + xpar[2];
double xbin = t1 * 25.;
int ibin1 = (int)xbin;
if (ibin1 < 0)
ibin1 = 0;
if (ibin1 < 0)
ibin1 = 0;
if (ibin1 > fNsamplesShape - 2)
ibin1 = fNsamplesShape - 2;
int ibin2 = ibin1 + 1;
double xfrac = xbin - ibin1;
double amp11 = xpar[0] * pshape[ibin1];
double amp12 = xpar[0] * pshape[ibin2];
double amp1 = xpar[1] + (1. - xfrac) * amp11 + xfrac * amp12;
resi[iis] = adc[iis] - amp1;
}
chi2 = 0.;
for (int is = 0; is < nsfit; is++) {
const int iis = is + nsampleo;
if (useCova) {
for (int js = 0; js < nsfit; js++) {
int jjs = js;
jjs += nsampleo;
chi2 += resi[iis] * resi[jjs] * cova[js * fNsamples + is];
}
} else
chi2 += resi[iis] * resi[iis];
}
}
fAmp_fitted_max = xpar[0];
fTim_fitted_max = (double)t_ims / 25. - xpar[2];
return chi2;
}
|