1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
|
/*
* \class TSFit
*
* \author: Jean-Pierre Pansart - CEA/Saclay
*/
#include <CalibCalorimetry/EcalLaserAnalyzer/interface/TSFit.h>
#include <cstdio>
#include <cmath>
#include <cstring>
//ClassImp(TSFit)
//------------------------------------------------------------------------
// TSFit provide fitting methods of pulses with third degree polynomial
//
TSFit::TSFit(int size, int size_sh) {
sdim = size;
plshdim = size_sh;
// sample_flag = new int[size];
// t = new double[sdim];
// z = new double[sdim];
// f = new double[sdim];
// acc = new double[sdim];
// adfmx = new double[sdim];
// adcp = new double[sdim];
// maskp3 = new double[sdim];
// corel = new double[sdim];
// nbcor = new double[sdim];
// int k;
// ff = new double *[sdim];
// for(k=0;k<sdim;k++)ff[k] = new double[4];
// der = new double *[sdim];
// for(k=0;k<sdim;k++)der[k] = new double[5];
}
void TSFit::set_params(int n_samples,
int niter,
int n_presmpl,
int sample_min,
int sample_max,
double time_of_max,
double chi2_max,
int nsbm,
int nsam) {
// parameters initialisation of the fit package
// nsbm n_samples_bef_max, nsam n_samples_aft_max
nbs = n_samples;
nbr_iter_fit = niter;
n_presamples = n_presmpl;
iinf = sample_min;
isup = sample_max;
avtm = time_of_max;
xki2_max = chi2_max;
n_samples_bef_max = nsbm;
n_samples_aft_max = nsam;
norme = 0.;
alpha_th = 2.20;
beta_th = 1.11;
int k;
for (k = 0; k <= nbs; k++) {
sample_flag[k] = 0;
}
for (k = sample_min; k <= sample_max; k++) {
sample_flag[k] = 1;
}
/*
int lim1 = ( iinf > n_presamples ) ? n_presamples : iinf;
for(int k=lim1;k<=sample_max;k++){
sample_flag[k] = 2;
}
*/
// printf( "sample_fag : " );
// for(k=0;k<=nbs;k++){
// printf( "%1d ", sample_flag[k] );
// }
// printf( "\n" );
}
void TSFit::init_errmat(double noise_initialvalue) {
// Input: noise_initial value noise (in adc channels) as read in the
// data base.
/*------------------------------------------------------------------------*/
int i, j;
//double one_over_noisesq;
//one_over_noisesq = 1. / ( noise_initialvalue * noise_initialvalue );
for (i = 0; i < sdim; i++) {
for (j = 0; j < sdim; j++) {
errmat[i][j] = noise_initialvalue;
//errmat[i][j] = 0.;
}
//errmat[i][i] = one_over_noisesq;
}
}
double TSFit::fpol3dg(int nmxul, double *parom, double *mask, double *adc) {
// fit third degree polynomial
// nmxul array adc[] length
// parom return parameters (a0,a1,a2,a3,pos max,height)
// fplo3dg uses only the diagonal terms of errmat[][]
// errmat inverse of the error matrix
int i, k, l;
double h, t2, tm, delta, tmp;
double xki2, dif, difmx, deglib;
double bv[4], s;
deglib = (double)nmxul - 4.;
for (i = 0; i < nmxul; i++) {
t[i] = i;
ff[i][0] = 1.;
ff[i][1] = t[i];
ff[i][2] = t[i] * t[i];
ff[i][3] = ff[i][2] * t[i];
}
/* computation of covariance matrix */
for (k = 0; k < 4; k++) {
for (l = 0; l < 4; l++) {
s = 0.;
for (i = 0; i < nmxul; i++) {
s = s + ff[i][k] * ff[i][l] * errmat[i][i] * mask[i];
}
cov[k][l] = s;
}
s = 0.;
for (i = 0; i < nmxul; i++) {
s = s + ff[i][k] * adc[i] * errmat[i][i] * mask[i];
}
bv[k] = s;
}
/* parameters */
inverms(4, cov, invcov);
for (k = 0; k < 4; k++) {
s = 0.;
for (l = 0; l < 4; l++) {
s = s + bv[l] * invcov[l][k];
}
parom[k] = s;
}
if (parom[3] == 0.) {
parom[4] = -1000.;
parom[5] = -1000.;
parom[6] = -1000.;
return 1000000.;
}
/* worst hit and ki2 */
xki2 = 0.;
difmx = 0.;
for (i = 0; i < nmxul; i++) {
t2 = t[i] * t[i];
h = parom[0] + parom[1] * t[i] + parom[2] * t2 + parom[3] * t2 * t[i];
dif = (adc[i] - h) * mask[i];
xki2 = xki2 + dif * dif * errmat[i][i];
if (dif > difmx) {
difmx = dif;
}
}
if (deglib > 0.5)
xki2 = xki2 / deglib;
/* amplitude and maximum position */
delta = parom[2] * parom[2] - 3. * parom[3] * parom[1];
if (delta > 0.) {
delta = sqrt(delta);
tm = -(delta + parom[2]) / (3. * parom[3]);
tmp = (delta - parom[2]) / (3. * parom[3]);
} else {
parom[4] = -1000.;
parom[5] = -1000.;
parom[6] = -1000.;
return xki2;
}
parom[4] = tm;
parom[5] = parom[0] + parom[1] * tm + parom[2] * tm * tm + parom[3] * tm * tm * tm;
parom[6] = tmp;
return xki2;
}
double TSFit::inverms(int n, double g[matdim][matdim], double ginv[matdim][matdim]) {
// inversion of a positive definite symetric matrix of size n
int i, j, k, jj;
double r, s;
double deter = 0;
/* initialisation */
if (n > matdim) {
printf("ERROR : trying to use TSFit::inverms with size %d( max allowed %d\n", n, matdim);
return -999.;
}
int zero = 0;
memset((char *)al, zero, 8 * n * n);
memset((char *)be, zero, 8 * n * n);
/*
for(i=0;i<n;i++){
for(j=0;j<n;j++){
al[i][j] = 0.;
be[i][j] = 0.;
}
}
*/
/* decomposition en vecteurs sur une base orthonormee */
al[0][0] = sqrt(g[0][0]);
for (i = 1; i < n; i++) {
al[i][0] = g[0][i] / al[0][0];
for (j = 1; j <= i; j++) {
s = 0.;
for (k = 0; k <= j - 1; k++) {
s = s + al[i][k] * al[j][k];
}
r = g[i][j] - s;
if (j < i)
al[i][j] = r / al[j][j];
if (j == i)
al[i][j] = sqrt(r);
}
}
/* inversion de la matrice al */
be[0][0] = 1. / al[0][0];
for (i = 1; i < n; i++) {
be[i][i] = 1. / al[i][i];
for (j = 0; j < i; j++) {
jj = i - j - 1;
s = 0.;
for (k = jj + 1; k <= i; k++) {
s = s + be[i][k] * al[k][jj];
}
be[i][jj] = -s / al[jj][jj];
}
}
/* calcul de la matrice ginv */
for (i = 0; i < n; i++) {
for (j = 0; j < n; j++) {
s = 0.;
for (k = 0; k < n; k++) {
s = s + be[k][i] * be[k][j];
}
ginv[i][j] = s;
}
}
return deter;
}
double TSFit::fit_third_degree_polynomial(double *bdc, double *ret_dat) {
// third degree polynomial fit of the pulse summit.
// samples are contained in array bdc and must be pedestal
// substracted.
// only samples having sample_flag >= 1 are used.
// the unit of time is one clock unit, that is to say 25 ns.
// output: ret_dat[0] = pulse height
// ret_dat[1] position of maximum in the sample frame in clock units
// ret_dat[2] adc value of the highest sample
// ret_dat[3] number of the highest sample
// ret_dat[4] lower sample number used for fitting
// ret_dat[5] upper sample number used for fitting
// errmat inverse of the error matrix
int i;
int nus;
double xki2;
double tm, tmp, amp;
ret_dat[0] = -999.;
ret_dat[1] = -999.;
// search the maximum
double val_max = 0.;
int imax = 0;
for (i = 0; i < nbs; i++) {
if (sample_flag[i] == 0)
continue;
if (bdc[i] > val_max) {
val_max = bdc[i];
imax = i;
}
}
if ((val_max * val_max) * errmat[imax][imax] < 16.)
return -118;
// if( imax != 9 )printf( "imax : %d !!!!!!!!!!!!!!!!!!!!!!!!!!!\n", imax );
if (norme == 0.)
norme = val_max;
// look for samples above 1/3 of maximum before and 1/2 after
double val2 = val_max / 2.;
double val3 = val_max / 2.;
int ilow = iinf;
int ihig = 0;
for (i = iinf; i <= isup; i++) {
if (sample_flag[i] >= 1) {
if ((bdc[i] < val3) && (i < imax))
ilow = i;
if (bdc[i] > val2)
ihig = i;
}
}
ilow++;
//ilow = imax - 1;
/* le test suivant, apparemment idiot, est mis a cause des sequences 0. 2048. qui apparaissent dans certains mauvais evts JPP 11/09/00 */
if (ihig == ilow)
return -105;
if (ilow == imax)
ilow = ilow - 1;
//if( ihig - ilow < 3 )ihig = ilow + 3;
ihig = ilow + 3;
/* printf(" third degree: ilow %d ihig %d \n",ilow,ihig); */
nus = 0;
int number_of_good_samples = 0;
for (i = ilow; i <= ihig; i++) {
maskp3[nus] = 0;
adfmx[nus] = 0.;
/* printf(" adc %f sample_flag %d number_of good_samples %d \n",bdc[i],sample_flag[i],number_of_good_samples); */
if (sample_flag[i] >= 1) {
adfmx[nus] = bdc[i];
maskp3[nus] = 1.;
number_of_good_samples++;
}
nus++;
}
if (number_of_good_samples < 4) {
return (-106);
}
xki2 = fpol3dg(nus, &parfp3[0], &maskp3[0], &adfmx[0]);
/* printf( "fpol3dg-----------------------------------> %f %f %f %f %f\n",
parfp3[0], parfp3[1], parfp3[2], parfp3[3], parfp3[4] ); */
tm = parfp3[4] + (float)ilow;
amp = parfp3[5];
if (amp * amp * errmat[0][0] < 2.)
return -101.;
tmp = parfp3[6] + (float)ilow;
/*
validation of fit quality. Most of the time the fit is done with
four samples, therefore there is no possible ki2 check. When more than
4 samples are used the ki2 is often bad. So, in order to suppress some
events with bad samples, a consistency check on the position of the
maximum and minimum of the 3rd degree polynomial is used.
*/
if (xki2 > xki2_max) {
return -102.;
}
if ((tm < (double)ilow) || (tm > (double)ihig)) {
return -103.;
}
if ((tmp > (double)ilow) && (tmp < (double)ihig - 1.)) {
return -104.;
}
ret_dat[0] = amp;
ret_dat[1] = tm;
ret_dat[2] = val_max;
ret_dat[3] = (double)imax;
ret_dat[4] = (double)ilow;
ret_dat[5] = (double)ihig;
ret_dat[6] = (double)tmp;
int k;
for (i = 0; i < 4; i++) {
k = i + 7;
ret_dat[k] = parfp3[i];
}
return xki2;
}
|