1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
|
#include "CalibMuon/CSCCalibration/interface/CSCConditions.h"
#include "CalibMuon/CSCCalibration/interface/CSCChannelMapperBase.h"
#include "CalibMuon/CSCCalibration/interface/CSCIndexerBase.h"
#include "FWCore/Framework/interface/ESHandle.h"
#include "FWCore/Framework/interface/ESWatcher.h"
#include "FWCore/Framework/interface/Event.h"
#include "FWCore/Framework/interface/EventSetup.h"
#include "FWCore/Framework/interface/MakerMacros.h"
#include "FWCore/ParameterSet/interface/ParameterSet.h"
#include "CondFormats/CSCObjects/interface/CSCChamberTimeCorrections.h"
#include "CondFormats/CSCObjects/interface/CSCDBChipSpeedCorrection.h"
#include "CondFormats/CSCObjects/interface/CSCDBCrosstalk.h"
#include "CondFormats/CSCObjects/interface/CSCDBGains.h"
#include "CondFormats/CSCObjects/interface/CSCDBGasGainCorrection.h"
#include "CondFormats/CSCObjects/interface/CSCDBPedestals.h"
#include "CondFormats/CSCObjects/interface/CSCBadChambers.h"
#include "CondFormats/CSCObjects/interface/CSCBadStrips.h"
#include "CondFormats/CSCObjects/interface/CSCBadWires.h"
CSCConditions::CSCConditions(const edm::ParameterSet &ps, edm::ConsumesCollector cc)
: theGains(),
theCrosstalk(),
thePedestals(),
theNoiseMatrix(),
theBadStrips(),
theBadWires(),
theBadChambers(),
theChipCorrections(),
theChamberTimingCorrections(),
theGasGainCorrections(),
indexer_(nullptr),
mapper_(nullptr),
readBadChannels_(false),
readBadChambers_(false),
useTimingCorrections_(false),
useGasGainCorrections_(false),
idOfBadChannelWords_(CSCDetId()),
badStripWord_(0),
badWireWord_(0),
theAverageGain(-1.0) {
readBadChannels_ = ps.getParameter<bool>("readBadChannels");
readBadChambers_ = ps.getParameter<bool>("readBadChambers");
useTimingCorrections_ = ps.getParameter<bool>("CSCUseTimingCorrections");
useGasGainCorrections_ = ps.getParameter<bool>("CSCUseGasGainCorrections");
indexerToken_ = cc.esConsumes<CSCIndexerBase, CSCIndexerRecord>();
mapperToken_ = cc.esConsumes<CSCChannelMapperBase, CSCChannelMapperRecord>();
gainsToken_ = cc.esConsumes<CSCDBGains, CSCDBGainsRcd>();
crosstalkToken_ = cc.esConsumes<CSCDBCrosstalk, CSCDBCrosstalkRcd>();
pedestalsToken_ = cc.esConsumes<CSCDBPedestals, CSCDBPedestalsRcd>();
noiseMatrixToken_ = cc.esConsumes<CSCDBNoiseMatrix, CSCDBNoiseMatrixRcd>();
if (useTimingCorrections()) {
chipCorrectionsToken_ = cc.esConsumes<CSCDBChipSpeedCorrection, CSCDBChipSpeedCorrectionRcd>();
chamberTimingCorrectionsToken_ = cc.esConsumes<CSCChamberTimeCorrections, CSCChamberTimeCorrectionsRcd>();
}
if (readBadChannels()) {
badStripsToken_ = cc.esConsumes<CSCBadStrips, CSCBadStripsRcd>();
badWiresToken_ = cc.esConsumes<CSCBadWires, CSCBadWiresRcd>();
}
if (readBadChambers()) {
badChambersToken_ = cc.esConsumes<CSCBadChambers, CSCBadChambersRcd>();
}
if (useGasGainCorrections()) {
gasGainCorrectionsToken_ = cc.esConsumes<CSCDBGasGainCorrection, CSCDBGasGainCorrectionRcd>();
}
}
CSCConditions::~CSCConditions() {}
void CSCConditions::initializeEvent(const edm::EventSetup &es) {
// Algorithms
indexer_ = es.getHandle(indexerToken_);
mapper_ = es.getHandle(mapperToken_);
// Strip gains
theGains = es.getHandle(gainsToken_);
// Strip X-talk
theCrosstalk = es.getHandle(crosstalkToken_);
// Strip pedestals
thePedestals = es.getHandle(pedestalsToken_);
// Strip autocorrelation noise matrix
theNoiseMatrix = es.getHandle(noiseMatrixToken_);
if (useTimingCorrections()) {
// Buckeye chip speeds
theChipCorrections = es.getHandle(chipCorrectionsToken_);
// Cable lengths from chambers to peripheral crate and additional chamber
// level timing correction
theChamberTimingCorrections = es.getHandle(chamberTimingCorrectionsToken_);
}
if (readBadChannels()) {
// Bad strip channels
theBadStrips = es.getHandle(badStripsToken_);
// Bad wiregroup channels
theBadWires = es.getHandle(badWiresToken_);
//@@ if( badStripsWatcher_.check( es ) ) {
// fillBadStripWords();
//@@ }
//@@ if( badWiresWatcher_.check( es ) ) {
// fillBadWireWords();
//@ }
}
// Has GainsRcd changed?
if (gainsWatcher_.check(es)) { // Yes...
theAverageGain = -1.0; // ...reset, so next access will recalculate it
}
if (readBadChambers()) {
// Entire bad chambers
theBadChambers = es.getHandle(badChambersToken_);
}
if (useGasGainCorrections()) {
theGasGainCorrections = es.getHandle(gasGainCorrectionsToken_);
}
// print();
}
void CSCConditions::fillBadChannelWords(const CSCDetId &id) {
// input CSCDetId is expected to be an offline value i.e. different for ME1/1A
// and ME1/1B
// Only update content if necessary
if (id != idOfBadChannelWords()) {
// store offline CSCDetId for the two bad channel words
setIdOfBadChannelWords(id);
// reset to all zeroes
badStripWord_.reset();
badWireWord_.reset();
if (readBadChannels()) {
// convert to online CSCDetId since that is how conditions data are stored
CSCDetId idraw = mapper_->rawCSCDetId(id);
fillBadStripWord(idraw);
fillBadWireWord(idraw);
}
}
}
/// Next function private
void CSCConditions::fillBadStripWord(const CSCDetId &id) {
// Input CSCDetId is expected to be a 'raw' value
// Find linear index of chamber for input CSCDetId
int inputIndex = indexer_->chamberIndex(id);
short inputLayer = id.layer();
// Does this chamber occur in bad channel list? If so, unpack its bad channels
// chambers is a vector<BadChamber>
// channels is a vector<BadChannel>
// Each BadChamber contains its index (1-468 or 540 w. ME42), the no. of bad
// channels, and the index within vector<BadChannel> where this chamber's bad
// channels start.
for (size_t i = 0; i < theBadStrips->chambers.size(); ++i) { // loop over bad chambers
int indexc = theBadStrips->chambers[i].chamber_index;
if (indexc != inputIndex)
continue; // next iteration if not a match
int start = theBadStrips->chambers[i].pointer;
int nbad = theBadStrips->chambers[i].bad_channels;
for (int j = start - 1; j < start - 1 + nbad; ++j) { // bad channels in this chamber
short lay = theBadStrips->channels[j].layer; // value 1-6
if (lay != inputLayer)
continue;
short chan = theBadStrips->channels[j].channel; // value 1-80 (->112 for unganged ME1/1A)
// Flags so far unused (and unset in conditins data)
// short f1 = theBadStrips->channels[j].flag1;
// short f2 = theBadStrips->channels[j].flag2;
// short f3 = theBadStrips->channels[j].flag3;
badStripWord_.set(chan - 1, true); // set bit 0-79 (111) in 80 (112)-bit
// bitset representing this layer
} // j
} // i
}
void CSCConditions::fillBadWireWord(const CSCDetId &id) {
// Input CSCDetId is expected to be a 'raw' value
// Find linear index of chamber for input CSCDetId
int inputIndex = indexer_->chamberIndex(id);
short inputLayer = id.layer();
// unpack what we've read from theBadWires
for (size_t i = 0; i < theBadWires->chambers.size(); ++i) { // loop over bad chambers
int indexc = theBadWires->chambers[i].chamber_index;
if (indexc != inputIndex)
continue; // next iteration if not a match
int start = theBadWires->chambers[i].pointer;
int nbad = theBadWires->chambers[i].bad_channels;
for (int j = start - 1; j < start - 1 + nbad; ++j) { // bad channels in this chamber
short lay = theBadWires->channels[j].layer; // value 1-6
if (lay != inputLayer)
continue;
short chan = theBadWires->channels[j].channel; // value 1-112
// short f1 = theBadWires->channels[j].flag1;
// short f2 = theBadWires->channels[j].flag2;
// short f3 = theBadWires->channels[j].flag3;
badWireWord_.set(chan - 1,
true); // set bit 0-111 in 112-bit bitset representing this layer
} // j
} // i
}
bool CSCConditions::isInBadChamber(const CSCDetId &id) const {
//@@ We do not consider the possibility of having ME1/1A & ME1/1B
// independently 'bad'.
//@@ To do that we would need to define separate chamber indexes for ME1/1A &
// ME1/1B.
if (readBadChambers()) {
CSCDetId idraw = mapper_->rawCSCDetId(id);
int index = indexer_->chamberIndex(idraw);
return theBadChambers->isInBadChamber(index);
} else
return false;
}
float CSCConditions::gain(const CSCDetId &id, int geomChannel) const {
assert(theGains.isValid());
CSCDetId idraw = mapper_->rawCSCDetId(id);
int iraw = mapper_->rawStripChannel(id, geomChannel);
int index = indexer_->stripChannelIndex(idraw, iraw) - 1; // NOTE THE MINUS ONE!
return float(theGains->gain(index)) / theGains->scale();
}
float CSCConditions::pedestal(const CSCDetId &id, int geomChannel) const {
assert(thePedestals.isValid());
CSCDetId idraw = mapper_->rawCSCDetId(id);
int iraw = mapper_->rawStripChannel(id, geomChannel);
int index = indexer_->stripChannelIndex(idraw, iraw) - 1; // NOTE THE MINUS ONE!
return float(thePedestals->pedestal(index)) / thePedestals->scale_ped();
}
float CSCConditions::pedestalSigma(const CSCDetId &id, int geomChannel) const {
assert(thePedestals.isValid());
CSCDetId idraw = mapper_->rawCSCDetId(id);
int iraw = mapper_->rawStripChannel(id, geomChannel);
int index = indexer_->stripChannelIndex(idraw, iraw) - 1; // NOTE THE MINUS ONE!
return float(thePedestals->pedestal_rms(index)) / thePedestals->scale_rms();
}
float CSCConditions::crosstalkIntercept(const CSCDetId &id, int geomChannel, bool leftRight) const {
assert(theCrosstalk.isValid());
CSCDetId idraw = mapper_->rawCSCDetId(id);
int iraw = mapper_->rawStripChannel(id, geomChannel);
int index = indexer_->stripChannelIndex(idraw, iraw) - 1; // NOTE THE MINUS ONE!
// resistive fraction is at the peak, where t=0
return leftRight ? float(theCrosstalk->rinter(index)) / theCrosstalk->iscale()
: float(theCrosstalk->linter(index)) / theCrosstalk->iscale();
}
float CSCConditions::crosstalkSlope(const CSCDetId &id, int geomChannel, bool leftRight) const {
assert(theCrosstalk.isValid());
CSCDetId idraw = mapper_->rawCSCDetId(id);
int iraw = mapper_->rawStripChannel(id, geomChannel);
int index = indexer_->stripChannelIndex(idraw, iraw) - 1; // NOTE THE MINUS ONE!
// resistive fraction is at the peak, where t=0
return leftRight ? float(theCrosstalk->rslope(index)) / theCrosstalk->sscale()
: float(theCrosstalk->lslope(index)) / theCrosstalk->sscale();
}
const CSCDBNoiseMatrix::Item &CSCConditions::noiseMatrix(const CSCDetId &id, int geomChannel) const {
//@@ BEWARE - THIS FUNCTION DOES NOT APPLY SCALE FACTOR USED IN PACKING VALUES
// IN CONDITIONS DATA
//@@ MAY BE AN ERROR? WHO WOULD WANT ACCESS WITHOUT IT?
assert(theNoiseMatrix.isValid());
CSCDetId idraw = mapper_->rawCSCDetId(id);
int iraw = mapper_->rawStripChannel(id, geomChannel);
int index = indexer_->stripChannelIndex(idraw, iraw) - 1; // NOTE THE MINUS ONE!
return theNoiseMatrix->item(index);
}
void CSCConditions::noiseMatrixElements(const CSCDetId &id, int geomChannel, std::vector<float> &me) const {
assert(me.size() > 11);
const CSCDBNoiseMatrix::Item &item = noiseMatrix(id, geomChannel); // i.e. the function above
me[0] = float(item.elem33) / theNoiseMatrix->scale();
me[1] = float(item.elem34) / theNoiseMatrix->scale();
me[2] = float(item.elem35) / theNoiseMatrix->scale();
me[3] = float(item.elem44) / theNoiseMatrix->scale();
me[4] = float(item.elem45) / theNoiseMatrix->scale();
me[5] = float(item.elem46) / theNoiseMatrix->scale();
me[6] = float(item.elem55) / theNoiseMatrix->scale();
me[7] = float(item.elem56) / theNoiseMatrix->scale();
me[8] = float(item.elem57) / theNoiseMatrix->scale();
me[9] = float(item.elem66) / theNoiseMatrix->scale();
me[10] = float(item.elem67) / theNoiseMatrix->scale();
me[11] = float(item.elem77) / theNoiseMatrix->scale();
}
void CSCConditions::crossTalk(const CSCDetId &id, int geomChannel, std::vector<float> &ct) const {
assert(theCrosstalk.isValid());
CSCDetId idraw = mapper_->rawCSCDetId(id);
int iraw = mapper_->rawStripChannel(id, geomChannel);
int index = indexer_->stripChannelIndex(idraw, iraw) - 1; // NOTE THE MINUS ONE!
ct[0] = float(theCrosstalk->lslope(index)) / theCrosstalk->sscale();
ct[1] = float(theCrosstalk->linter(index)) / theCrosstalk->iscale();
ct[2] = float(theCrosstalk->rslope(index)) / theCrosstalk->sscale();
ct[3] = float(theCrosstalk->rinter(index)) / theCrosstalk->iscale();
}
float CSCConditions::chipCorrection(const CSCDetId &id, int geomChannel) const {
if (useTimingCorrections()) {
assert(theChipCorrections.isValid());
CSCDetId idraw = mapper_->rawCSCDetId(id);
int iraw = mapper_->rawStripChannel(id, geomChannel);
int ichip = indexer_->chipIndex(iraw); // converts 1-80 to 1-5 (chip#, CFEB#)
int index = indexer_->chipIndex(idraw, ichip) - 1; // NOTE THE MINUS ONE!
return float(theChipCorrections->value(index)) / theChipCorrections->scale();
} else
return 0;
}
float CSCConditions::chamberTimingCorrection(const CSCDetId &id) const {
if (useTimingCorrections()) {
assert(theChamberTimingCorrections.isValid());
CSCDetId idraw = mapper_->rawCSCDetId(id);
int index = indexer_->chamberIndex(idraw) - 1; // NOTE THE MINUS ONE!
return float(
theChamberTimingCorrections->item(index).cfeb_tmb_skew_delay * 1. / theChamberTimingCorrections->precision() +
theChamberTimingCorrections->item(index).cfeb_timing_corr * 1. / theChamberTimingCorrections->precision() +
(theChamberTimingCorrections->item(index).cfeb_cable_delay * 25.));
} else
return 0;
}
float CSCConditions::anodeBXoffset(const CSCDetId &id) const {
if (useTimingCorrections()) {
assert(theChamberTimingCorrections.isValid());
CSCDetId idraw = mapper_->rawCSCDetId(id);
int index = indexer_->chamberIndex(idraw) - 1; // NOTE THE MINUS ONE!
return float(theChamberTimingCorrections->item(index).anode_bx_offset * 1. /
theChamberTimingCorrections->precision());
} else
return 0;
}
/// Return average strip gain for full CSC system. Lazy evaluation.
/// Restrict averaging to gains between 5 and 10, and require average
/// is between 6 or 9 otherwise fix it to 7.5.
/// These values came from Dominique and Stan,
float CSCConditions::averageGain() const {
const float loEdge = 5.0; // consider gains above this
const float hiEdge = 10.0; // consider gains below this
const float loLimit = 6.0; // lowest acceptable average gain
const float hiLimit = 9.0; // highest acceptable average gain
const float expectedAverage = 7.5; // default average gain
if (theAverageGain > 0.)
return theAverageGain; // only recalculate if necessary
int n_strip = 0;
float gain_tot = 0.;
CSCDBGains::GainContainer::const_iterator it;
for (it = theGains->gains.begin(); it != theGains->gains.end(); ++it) {
float the_gain = float(it->gain_slope) / theGains->scale();
if (the_gain > loEdge && the_gain < hiEdge) {
gain_tot += the_gain;
++n_strip;
}
}
// Average gain
if (n_strip > 0) {
theAverageGain = gain_tot / n_strip;
}
// Average gain has been around 7.5 in real data
if (theAverageGain < loLimit || theAverageGain > hiLimit) {
// LogTrace("CSC") << "Average CSC strip gain = "
// << theAverageGain << " is reset to expected value "
// << expectedAverage;
theAverageGain = expectedAverage;
}
return theAverageGain;
}
//
float CSCConditions::gasGainCorrection(const CSCDetId &id, int geomChannel, int iwiregroup) const {
if (useGasGainCorrections()) {
assert(theGasGainCorrections.isValid());
CSCDetId idraw = mapper_->rawCSCDetId(id);
int iraw = mapper_->rawStripChannel(id, geomChannel);
int index = indexer_->gasGainIndex(idraw, iraw, iwiregroup) - 1; // NOTE THE MINUS ONE!
return float(theGasGainCorrections->value(index));
} else {
return 1.;
}
}
int CSCConditions::channelFromStrip(const CSCDetId &id, int geomStrip) const {
return mapper_->channelFromStrip(id, geomStrip);
}
int CSCConditions::rawStripChannel(const CSCDetId &id, int geomChannel) const {
return mapper_->rawStripChannel(id, geomChannel);
}
void CSCConditions::print() const
//@@ HAS NOT BEEN UPDATED THROUGH SEVERAL VERSIONS OF THE CONDITIONS DATA
{
/*
std::cout << "SIZES: GAINS: " << theGains->gains.size()
<< " PEDESTALS: " << thePedestals->pedestals.size()
<< " NOISES " << theNoiseMatrix->matrix.size() << std::endl;;
std::map< int,std::vector<CSCDBGains::Item> >::const_iterator layerGainsItr
= theGains->gains.begin(), lastGain = theGains->gains.end(); for( ;
layerGainsItr != lastGain; ++layerGainsItr)
{
std::cout << "GAIN " << layerGainsItr->first
<< " STRIPS " << layerGainsItr->second.size() << " "
<< layerGainsItr->second[0].gain_slope
<< " " << layerGainsItr->second[0].gain_intercept << std::endl;
}
std::map< int,std::vector<CSCDBPedestals::Item> >::const_iterator
pedestalItr = thePedestals->pedestals.begin(), lastPedestal =
thePedestals->pedestals.end(); for( ; pedestalItr != lastPedestal;
++pedestalItr)
{
std::cout << "PEDS " << pedestalItr->first << " "
<< " STRIPS " << pedestalItr->second.size() << " ";
for(int i = 1; i < 80; ++i)
{
std::cout << pedestalItr->second[i-1].rms << " " ;
}
std::cout << std::endl;
}
std::map< int,std::vector<CSCDBCrosstalk::Item> >::const_iterator
crosstalkItr = theCrosstalk->crosstalk.begin(), lastCrosstalk =
theCrosstalk->crosstalk.end(); for( ; crosstalkItr != lastCrosstalk;
++crosstalkItr)
{
std::cout << "XTALKS " << crosstalkItr->first
<< " STRIPS " << crosstalkItr->second.size() << " "
<< crosstalkItr->second[5].xtalk_slope_left << " "
<< crosstalkItr->second[5].xtalk_slope_right << " "
<< crosstalkItr->second[5].xtalk_intercept_left << " "
<< crosstalkItr->second[5].xtalk_intercept_right << std::endl;
}
*/
}
|