1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
|
/*
* See header file for a description of this class.
*
* \author S. Bolognesi - INFN Torino
*/
#include "CalibMuon/DTCalibration/interface/DTMeanTimerFitter.h"
//#include "CalibMuon/DTCalibration/plugins/vDriftHistos.h"
#include "CalibMuon/DTCalibration/interface/vDriftHistos.h"
#include "FWCore/MessageLogger/interface/MessageLogger.h"
#include <iostream>
#include "TFile.h"
#include "TF1.h"
using namespace std;
DTMeanTimerFitter::DTMeanTimerFitter(TFile *file) : hInputFile(file), theVerbosityLevel(0) {
//hInputFile = new TFile("DTTMaxHistos.root", "READ");
hDebugFile = new TFile("DTMeanTimerFitter.root", "RECREATE");
}
DTMeanTimerFitter::~DTMeanTimerFitter() { hDebugFile->Close(); }
vector<float> DTMeanTimerFitter::evaluateVDriftAndReso(const TString &N) {
// Retrieve histogram sets
hTMaxCell *histos = new hTMaxCell(N, hInputFile);
vector<float> vDriftAndReso;
// Check that the histo for this cell exists
if (histos->hTmax123 != nullptr) {
vector<TH1F *> hTMax; // histograms for <T_max> calculation
vector<TH1F *> hT0; // histograms for T0 evaluation
hTMax.push_back(histos->hTmax123);
hTMax.push_back(histos->hTmax124s72);
hTMax.push_back(histos->hTmax124s78);
hTMax.push_back(histos->hTmax134s72);
hTMax.push_back(histos->hTmax134s78);
hTMax.push_back(histos->hTmax234);
hT0.push_back(histos->hTmax_3t0);
hT0.push_back(histos->hTmax_2t0);
hT0.push_back(histos->hTmax_t0);
hT0.push_back(histos->hTmax_0);
vector<Double_t> factor; // factor relating the width of the Tmax distribution
// and the cell resolution
factor.push_back(sqrt(2. / 3.)); // hTmax123
factor.push_back(sqrt(2. / 7.)); // hTmax124s72
factor.push_back(sqrt(8. / 7.)); // hTmax124s78
factor.push_back(sqrt(2. / 7.)); // hTmax134s72
factor.push_back(sqrt(8. / 7.)); // hTmax134s78
factor.push_back(sqrt(2. / 3.)); // hTmax234
// Retrieve the gaussian mean and sigma for each TMax histogram
vector<Double_t> mean;
vector<Double_t> sigma;
vector<Double_t> count; //number of entries
for (vector<TH1F *>::const_iterator ith = hTMax.begin(); ith != hTMax.end(); ++ith) {
TF1 *funct = fitTMax(*ith);
if (!funct) {
edm::LogError("DTMeanTimerFitter") << "Error when fitting TMax..histogram name" << (*ith)->GetName();
// return empty or -1 filled vector?
vector<float> defvec(6, -1);
return defvec;
}
hDebugFile->cd();
(*ith)->Write();
// Get mean, sigma and number of entries of each histogram
mean.push_back(funct->GetParameter(1));
sigma.push_back(funct->GetParameter(2));
count.push_back((*ith)->GetEntries());
}
Double_t tMaxMean = 0.;
Double_t wTMaxSum = 0.;
Double_t sigmaT = 0.;
Double_t wSigmaSum = 0.;
//calculate total mean and sigma
for (int i = 0; i <= 5; i++) {
if (count[i] < 200)
continue;
tMaxMean += mean[i] * (count[i] / (sigma[i] * sigma[i]));
wTMaxSum += count[i] / (sigma[i] * sigma[i]);
sigmaT += count[i] * factor[i] * sigma[i];
wSigmaSum += count[i];
// cout << "TMaxMean "<<i<<": "<< mean[i] << " entries: " << count[i]
// << " sigma: " << sigma[i]
// << " weight: " << (count[i]/(sigma[i]*sigma[i])) << endl;
}
if ((!wTMaxSum) || (!wSigmaSum)) {
edm::LogError("DTMeanTimerFitter") << "Error zero sum of weights..returning default";
vector<float> defvec(6, -1);
return defvec;
}
tMaxMean /= wTMaxSum;
sigmaT /= wSigmaSum;
//calculate v_drift and resolution
Double_t vDrift = 2.1 / tMaxMean; //2.1 is the half cell length in cm
Double_t reso = vDrift * sigmaT;
vDriftAndReso.push_back(vDrift);
vDriftAndReso.push_back(reso);
//if(theVerbosityLevel >= 1)
edm::LogVerbatim("DTMeanTimerFitter")
<< " final TMaxMean=" << tMaxMean << " sigma= " << sigmaT << " v_d and reso: " << vDrift << " " << reso << endl;
// Order t0 histogram by number of entries (choose histograms with higher nr. of entries)
map<Double_t, TH1F *> hEntries;
for (vector<TH1F *>::const_iterator ith = hT0.begin(); ith != hT0.end(); ++ith) {
hEntries[(*ith)->GetEntries()] = (*ith);
}
// add at the end of hT0 the two hists with the higher number of entries
int counter = 0;
for (map<Double_t, TH1F *>::reverse_iterator iter = hEntries.rbegin(); iter != hEntries.rend(); ++iter) {
counter++;
if (counter == 1)
hT0.push_back(iter->second);
else if (counter == 2) {
hT0.push_back(iter->second);
break;
}
}
// Retrieve the gaussian mean and sigma of histograms for Delta(t0) evaluation
vector<Double_t> meanT0;
vector<Double_t> sigmaT0;
vector<Double_t> countT0;
for (vector<TH1F *>::const_iterator ith = hT0.begin(); ith != hT0.end(); ++ith) {
try {
(*ith)->Fit("gaus");
} catch (std::exception const &) {
edm::LogError("DTMeanTimerFitter") << "Exception when fitting T0..histogram " << (*ith)->GetName();
// return empty or -1 filled vector?
vector<float> defvec(6, -1);
return defvec;
}
TF1 *f1 = (*ith)->GetFunction("gaus");
// Get mean, sigma and number of entries of the histograms
meanT0.push_back(f1->GetParameter(1));
sigmaT0.push_back(f1->GetParameter(2));
countT0.push_back((*ith)->GetEntries());
}
//calculate Delta(t0)
if (hT0.size() != 6) { // check if you have all the t0 hists
edm::LogVerbatim("DTMeanTimerFitter") << "t0 histograms = " << hT0.size();
for (int i = 1; i <= 4; i++) {
vDriftAndReso.push_back(-1);
}
return vDriftAndReso;
}
for (int it0 = 0; it0 <= 2; it0++) {
if ((countT0[it0] > 200) && (countT0[it0 + 1] > 200)) {
Double_t deltaT0 = meanT0[it0] - meanT0[it0 + 1];
vDriftAndReso.push_back(deltaT0);
} else
vDriftAndReso.push_back(999.);
}
//deltat0 using hists with max nr. of entries
if ((countT0[4] > 200) && (countT0[5] > 200)) {
Double_t t0Diff = histos->GetT0Factor(hT0[4]) - histos->GetT0Factor(hT0[5]);
Double_t deltaT0MaxEntries = (meanT0[4] - meanT0[5]) / t0Diff;
vDriftAndReso.push_back(deltaT0MaxEntries);
} else
vDriftAndReso.push_back(999.);
} else {
for (int i = 1; i <= 6; i++) {
// 0=vdrift, 1=reso, 2=(3deltat0-2deltat0), 3=(2deltat0-1deltat0),
// 4=(1deltat0-0deltat0), 5=deltat0 from hists with max entries,
vDriftAndReso.push_back(-1);
}
}
return vDriftAndReso;
}
TF1 *DTMeanTimerFitter::fitTMax(TH1F *histo) {
// Find distribution peak and fit range
Double_t peak = (((((histo->GetXaxis())->GetXmax()) - ((histo->GetXaxis())->GetXmin())) / histo->GetNbinsX()) *
(histo->GetMaximumBin())) +
((histo->GetXaxis())->GetXmin());
//if(theVerbosityLevel >= 1)
LogDebug("DTMeanTimerFitter") << "Peak " << peak << " : "
<< "xmax " << ((histo->GetXaxis())->GetXmax()) << " xmin "
<< ((histo->GetXaxis())->GetXmin()) << " nbin " << histo->GetNbinsX()
<< " bin with max " << (histo->GetMaximumBin());
Double_t range = 2. * histo->GetRMS();
// Fit each Tmax histogram with a Gaussian in a restricted interval
TF1 *rGaus = new TF1("rGaus", "gaus", peak - range, peak + range);
rGaus->SetMarkerSize(); // just silence gcc complainining about unused var
try {
histo->Fit("rGaus", "R");
} catch (std::exception const &) {
edm::LogError("DTMeanTimerFitter") << "Exception when fitting TMax..histogram " << histo->GetName()
<< " setting return function pointer to zero";
return nullptr;
}
TF1 *f1 = histo->GetFunction("rGaus");
return f1;
}
|