Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263

/*
 *  See header file for a description of this class.
 *
 *  \author G. Cerminara - INFN Torino
 */

#include "CalibMuon/DTCalibration/interface/DTTimeBoxFitter.h"

#include <iostream>
#include <vector>

#include "TFile.h"
#include "TH1F.h"
#include "TMath.h"
#include "TF1.h"
#include "TString.h"

using namespace std;

DTTimeBoxFitter::DTTimeBoxFitter(const TString& debugFileName)
    : hDebugFile(nullptr), theVerbosityLevel(0), theSigma(10.) {
  // Create a root file for debug output only if needed
  if (debugFileName != "")
    hDebugFile = new TFile(debugFileName.Data(), "RECREATE");
  interactiveFit = false;
  rebin = 1;
}

DTTimeBoxFitter::~DTTimeBoxFitter() {
  if (hDebugFile != nullptr)
    hDebugFile->Close();
}

/// Compute the ttrig (in ns) from the Time Box
pair<double, double> DTTimeBoxFitter::fitTimeBox(TH1F* hTimeBox) {
  hTimeBox->Rebin(rebin);

  // Check if the histo contains any entry
  if (hTimeBox->GetEntries() == 0) {
    cout << "[DTTimeBoxFitter]***Error: the time box contains no entry!" << endl;
    return make_pair(-1, -1);
  }

  if (hTimeBox->GetEntries() < 50000) {
    hTimeBox->Rebin(2);
  }

  // Get seeds for the fit
  // The TimeBox range to be fitted (the rising edge)
  double xFitMin = 0;    // Min value for the fit
  double xFitMax = 0;    // Max value for the fit
  double xValue = 0;     // The mean value of the gaussian
  double xFitSigma = 0;  // The sigma of the gaussian
  double tBoxMax = 0;    // The max of the time box, it is used as seed for gaussian integral

  //hTimeBox->Rebin(2); //FIXME: Temporary for low statistics

  TH1F* hTimeBoxForSeed = (TH1F*)hTimeBox->Clone();  //FIXME: test
  if (!interactiveFit) {
    getFitSeeds(hTimeBoxForSeed, xValue, xFitSigma, tBoxMax, xFitMin, xFitMax);
  } else {
    getInteractiveFitSeeds(hTimeBoxForSeed, xValue, xFitSigma, tBoxMax, xFitMin, xFitMax);
  }

  // Define the fitting function and use fit seeds
  TF1* fIntGaus = new TF1("IntGauss", intGauss, xFitMin, xFitMax, 3);
  fIntGaus->SetParName(0, "Constant");
  fIntGaus->SetParameter(0, tBoxMax);
  fIntGaus->SetParName(1, "Mean");
  fIntGaus->SetParameter(1, xValue);
  fIntGaus->SetParName(2, "Sigma");
  fIntGaus->SetParameter(2, xFitSigma);
  fIntGaus->SetLineColor(kRed);

  // Fit the histo
  string option = "Q";
  if (theVerbosityLevel >= 2)
    option = "";

  hTimeBox->Fit(fIntGaus, option.c_str(), "", xFitMin, xFitMax);

  // Get fitted parameters
  double mean = fIntGaus->GetParameter("Mean");
  double sigma = fIntGaus->GetParameter("Sigma");
  //   double constant = fIntGaus->GetParameter("Constant");
  double chiSquare = fIntGaus->GetChisquare() / fIntGaus->GetNDF();

  if (theVerbosityLevel >= 1) {
    cout << " === Fit Results: " << endl;
    cout << "     Fitted mean = " << mean << endl;
    cout << "     Fitted sigma = " << sigma << endl;
    cout << "     Reduced Chi Square = " << chiSquare << endl;
  }
  return make_pair(mean, sigma);
}

// Get the seeds for the fit as input from user!It is used if interactiveFit == true
void DTTimeBoxFitter::getInteractiveFitSeeds(
    TH1F* hTBox, double& mean, double& sigma, double& tBoxMax, double& xFitMin, double& xFitMax) {
  if (theVerbosityLevel >= 1)
    cout << " === Insert seeds for the Time Box fit:" << endl;

  cout << "Inser the fit mean:" << endl;
  cin >> mean;

  sigma = theSigma;  //FIXME: estimate it!

  tBoxMax = hTBox->GetMaximum();

  // Define the fit range
  xFitMin = mean - 5. * sigma;
  xFitMax = mean + 5. * sigma;

  if (theVerbosityLevel >= 1) {
    cout << "      Time Box Rising edge: " << mean << endl;
    cout << "    = Seeds and range for fit:" << endl;
    cout << "       Seed mean = " << mean << endl;
    cout << "       Seed sigma = " << sigma << endl;
    cout << "       Fitting from = " << xFitMin << " to " << xFitMax << endl << endl;
  }
}

// Automatically compute the seeds the range to be used for time box fit
void DTTimeBoxFitter::getFitSeeds(
    TH1F* hTBox, double& mean, double& sigma, double& tBoxMax, double& xFitMin, double& xFitMax) {
  if (theVerbosityLevel >= 1)
    cout << " === Looking for fit seeds in Time Box:" << endl;

  // The approximate width of the time box
  static const int tBoxWidth = 400;  //FIXE: tune it

  int nBins = hTBox->GetNbinsX();
  const int xMin = (int)hTBox->GetXaxis()->GetXmin();
  const int xMax = (int)hTBox->GetXaxis()->GetXmax();
  const int nEntries = (int)hTBox->GetEntries();

  double binValue = (double)(xMax - xMin) / (double)nBins;

  // Compute a threshold for TimeBox discrimination
  const double threshold = binValue * nEntries / (double)(tBoxWidth * 3.);
  if (theVerbosityLevel >= 2)
    cout << "   Threshold for logic time box is (# entries): " << threshold << endl;

  int nRebins = 0;  // protection for infinite loop
  while (threshold > hTBox->GetMaximum() / 2. && nRebins < 5) {
    cout << " Rebinning!" << endl;
    hTBox->Rebin(2);
    nBins = hTBox->GetNbinsX();
    binValue = (double)(xMax - xMin) / (double)nBins;
    nRebins++;
  }

  if (hDebugFile != nullptr)
    hDebugFile->cd();
  TString hLName = TString(hTBox->GetName()) + "L";
  TH1F hLTB(hLName.Data(), "Logic Time Box", nBins, xMin, xMax);
  // Loop over all time box bins and discriminate them accordigly to the threshold
  for (int i = 1; i <= nBins; i++) {
    if (hTBox->GetBinContent(i) > threshold)
      hLTB.SetBinContent(i, 1);
  }
  if (hDebugFile != nullptr)
    hLTB.Write();

  // Look for the time box in the "logic histo" and save beginning and lenght of each plateau
  vector<pair<int, int> > startAndLenght;
  if (theVerbosityLevel >= 2)
    cout << "   Look for rising and folling edges of logic time box: " << endl;
  int start = -1;
  int lenght = -1;
  for (int j = 1; j < nBins; j++) {
    int diff = (int)hLTB.GetBinContent(j + 1) - (int)hLTB.GetBinContent(j);
    if (diff == 1) {  // This is a rising edge
      start = j;
      lenght = 1;
      if (theVerbosityLevel >= 2) {
        cout << "     >>>----" << endl;
        cout << "      bin: " << j << " is a rising edge" << endl;
      }
    } else if (diff == -1) {  // This is a falling edge
      startAndLenght.push_back(make_pair(start, lenght));
      if (theVerbosityLevel >= 2) {
        cout << "      bin: " << j << " is a falling edge, lenght is: " << lenght << endl;
        cout << "     <<<----" << endl;
      }
      start = -1;
      lenght = -1;
    } else if (diff == 0 && (int)hLTB.GetBinContent(j) == 1) {  // This is a bin within the plateau
      lenght++;
    }
  }

  if (theVerbosityLevel >= 2)
    cout << "   Add macro intervals: " << endl;
  // Look for consecutive plateau: 2 plateau are consecutive if the gap is < 5 ns
  vector<pair<int, int> > superIntervals;
  for (vector<pair<int, int> >::const_iterator interval = startAndLenght.begin(); interval != startAndLenght.end();
       ++interval) {
    pair<int, int> theInterval = (*interval);
    vector<pair<int, int> >::const_iterator next = interval;
    while (++next != startAndLenght.end()) {
      int gap = (*next).first - (theInterval.first + theInterval.second);
      double gabInNs = binValue * gap;
      if (theVerbosityLevel >= 2)
        cout << "      gap: " << gabInNs << "(ns)" << endl;
      if (gabInNs > 20) {
        break;
      } else {
        theInterval = make_pair(theInterval.first, theInterval.second + gap + (*next).second);
        superIntervals.push_back(theInterval);
        if (theVerbosityLevel >= 2)
          cout << "          Add interval, start: " << theInterval.first << " width: " << theInterval.second << endl;
      }
    }
  }

  // merge the vectors of intervals
  copy(superIntervals.begin(), superIntervals.end(), back_inserter(startAndLenght));

  // Look for the plateau of the right lenght
  if (theVerbosityLevel >= 2)
    cout << "    Look for the best interval:" << endl;
  int delta = 999999;
  int beginning = -1;
  int tbWidth = -1;
  for (vector<pair<int, int> >::const_iterator stAndL = startAndLenght.begin(); stAndL != startAndLenght.end();
       ++stAndL) {
    if (abs((*stAndL).second - tBoxWidth) < delta) {
      delta = abs((*stAndL).second - tBoxWidth);
      beginning = (*stAndL).first;
      tbWidth = (*stAndL).second;
      if (theVerbosityLevel >= 2)
        cout << "   Candidate: First: " << beginning << ", width: " << tbWidth << ", delta: " << delta << endl;
    }
  }

  mean = xMin + beginning * binValue;
  sigma = theSigma;  //FIXME: estimate it!

  tBoxMax = hTBox->GetMaximum();

  // Define the fit range
  xFitMin = mean - 5. * sigma;
  xFitMax = mean + 5. * sigma;

  if (theVerbosityLevel >= 1) {
    cout << "      Time Box Rising edge: " << mean << endl;
    cout << "      Time Box Width: " << tbWidth * binValue << endl;
    cout << "    = Seeds and range for fit:" << endl;
    cout << "       Seed mean = " << mean << endl;
    cout << "       Seed sigma = " << sigma << endl;
    cout << "       Fitting from = " << xFitMin << " to " << xFitMax << endl << endl;
  }
}

double intGauss(double* x, double* par) {
  double media = par[1];
  double sigma = par[2];
  double var = (x[0] - media) / (sigma * sqrt(2.));

  return 0.5 * par[0] * (1 + TMath::Erf(var));
}