1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
|
/****************************************************************************
* Authors:
* Jan Kašpar (jan.kaspar@gmail.com)
****************************************************************************/
#include "CalibPPS/AlignmentRelative/interface/IdealResult.h"
#include "CalibPPS/AlignmentRelative/interface/AlignmentTask.h"
#include "Geometry/Records/interface/VeryForwardRealGeometryRecord.h"
#include "Geometry/Records/interface/VeryForwardMisalignedGeometryRecord.h"
#include "TMatrixD.h"
#include "TVectorD.h"
using namespace std;
//----------------------------------------------------------------------------------------------------
IdealResult::IdealResult(const edm::ParameterSet &gps, AlignmentTask *_t) : AlignmentAlgorithm(gps, _t) {}
//----------------------------------------------------------------------------------------------------
void IdealResult::begin(const CTPPSGeometry *geometryReal, const CTPPSGeometry *geometryMisaligned) {
gReal = geometryReal;
gMisaligned = geometryMisaligned;
}
//----------------------------------------------------------------------------------------------------
unsigned int IdealResult::solve(const std::vector<AlignmentConstraint> &constraints,
std::map<unsigned int, AlignmentResult> &results,
TDirectory *dir) {
/*
STRATEGY:
1) Determine true misalignment as misalign_geometry - real_geometry.
2) Represent the true misalignment as the "chi" vector (cf. Jan algorithm), denoted chi_tr.
3) Find the expected result of track-based alignment, subject to the given constraints. Formally this corresponds to finding
chi_exp = chi_tr + I * Lambda
where the I matrix contains the "inaccessible alignment modes" as columns and Lambda is a vector of parameters. The constraints are given by
C^T * chi_exp = V
Since the problem may be generally overconstrained, it is better to formulate it as search for Lambda which minimises
|C^ * chi_exp - V|^2
This gives
Lambda = (A^T * A)^-1 * A^T * b, A = C^T * I, b = V - C^T * chi_tr
*/
results.clear();
// determine dimension and offsets
unsigned int dim = 0;
vector<unsigned int> offsets;
map<unsigned int, unsigned int> offset_map;
for (unsigned int qci = 0; qci < task->quantityClasses.size(); qci++) {
offsets.push_back(dim);
offset_map[task->quantityClasses[qci]] = dim;
dim += task->quantitiesOfClass(task->quantityClasses[qci]);
}
// collect true misalignments
TVectorD chi_tr(dim);
for (const auto &dit : task->geometry.getSensorMap()) {
unsigned int detId = dit.first;
const DetGeomDesc *real = gReal->sensor(detId);
const DetGeomDesc *misal = gMisaligned->sensor(detId);
// extract shift
const auto shift = misal->translation() - real->translation();
// extract rotation around z
const auto rotation = misal->rotation() * real->rotation().Inverse();
double r_xx, r_xy, r_xz;
double r_yx, r_yy, r_yz;
double r_zx, r_zy, r_zz;
rotation.GetComponents(r_xx, r_xy, r_xz, r_yx, r_yy, r_yz, r_zx, r_zy, r_zz);
if (std::abs(r_zz - 1.) > 1E-5)
throw cms::Exception("PPS") << "IdealResult::Solve: only rotations about z are supported.";
double rot_z = atan2(r_yx, r_xx);
const auto &geom = task->geometry.get(detId);
for (unsigned int qci = 0; qci < task->quantityClasses.size(); ++qci) {
const auto &qc = task->quantityClasses[qci];
signed int idx = task->getQuantityIndex(qc, detId);
if (idx < 0)
continue;
double v = 0.;
if (qc == AlignmentTask::qcShR1) {
const auto &d = geom.getDirectionData(1);
v = shift.x() * d.dx + shift.y() * d.dy + shift.z() * d.dz;
}
if (qc == AlignmentTask::qcShR2) {
const auto &d = geom.getDirectionData(2);
v = shift.x() * d.dx + shift.y() * d.dy + shift.z() * d.dz;
}
if (qc == AlignmentTask::qcRotZ)
v = rot_z;
chi_tr(offsets[qci] + idx) = v;
}
}
// build list of "inaccessible" modes
vector<TVectorD> inaccessibleModes;
if (task->resolveShR) {
TVectorD fm_ShX_gl(dim);
fm_ShX_gl.Zero();
TVectorD fm_ShX_lp(dim);
fm_ShX_lp.Zero();
TVectorD fm_ShY_gl(dim);
fm_ShY_gl.Zero();
TVectorD fm_ShY_lp(dim);
fm_ShY_lp.Zero();
for (const auto &sp : task->geometry.getSensorMap()) {
CTPPSDetId senId(sp.first);
const auto &geom = sp.second;
if (senId.subdetId() == CTPPSDetId::sdTrackingStrip) {
signed int qIndex = task->getQuantityIndex(AlignmentTask::qcShR2, senId);
const double d2x = geom.getDirectionData(2).dx;
const double d2y = geom.getDirectionData(2).dy;
const auto &offset2 = offset_map[AlignmentTask::qcShR2];
fm_ShX_gl(offset2 + qIndex) = d2x;
fm_ShX_lp(offset2 + qIndex) = d2x * geom.z;
fm_ShY_gl(offset2 + qIndex) = d2y;
fm_ShY_lp(offset2 + qIndex) = d2y * geom.z;
}
if (senId.subdetId() == CTPPSDetId::sdTrackingPixel) {
const signed int qIndex1 = task->getQuantityIndex(AlignmentTask::qcShR1, senId);
const signed int qIndex2 = task->getQuantityIndex(AlignmentTask::qcShR2, senId);
const double d1x = geom.getDirectionData(1).dx;
const double d1y = geom.getDirectionData(1).dy;
const double d2x = geom.getDirectionData(2).dx;
const double d2y = geom.getDirectionData(2).dy;
const auto &offset1 = offset_map[AlignmentTask::qcShR1];
fm_ShX_gl(offset1 + qIndex1) = d1x;
fm_ShX_lp(offset1 + qIndex1) = d1x * geom.z;
fm_ShY_gl(offset1 + qIndex1) = d1y;
fm_ShY_lp(offset1 + qIndex1) = d1y * geom.z;
const auto &offset2 = offset_map[AlignmentTask::qcShR2];
fm_ShX_gl(offset2 + qIndex2) = d2x;
fm_ShX_lp(offset2 + qIndex2) = d2x * geom.z;
fm_ShY_gl(offset2 + qIndex2) = d2y;
fm_ShY_lp(offset2 + qIndex2) = d2y * geom.z;
}
}
inaccessibleModes.push_back(fm_ShX_gl);
inaccessibleModes.push_back(fm_ShX_lp);
inaccessibleModes.push_back(fm_ShY_gl);
inaccessibleModes.push_back(fm_ShY_lp);
}
if (task->resolveRotZ) {
TVectorD fm_RotZ_gl(dim);
fm_RotZ_gl.Zero();
TVectorD fm_RotZ_lp(dim);
fm_RotZ_lp.Zero();
for (const auto &sp : task->geometry.getSensorMap()) {
CTPPSDetId senId(sp.first);
const auto &geom = sp.second;
for (int m = 0; m < 2; ++m) {
double rho = 0.;
TVectorD *fmp = nullptr;
if (m == 0) {
rho = 1.;
fmp = &fm_RotZ_gl;
}
if (m == 1) {
rho = geom.z;
fmp = &fm_RotZ_lp;
}
TVectorD &fm = *fmp;
const signed int qIndex = task->getQuantityIndex(AlignmentTask::qcRotZ, senId);
const auto &offset = offset_map[AlignmentTask::qcRotZ];
fm(offset + qIndex) = rho;
const double as_x = -rho * geom.sy;
const double as_y = +rho * geom.sx;
if (senId.subdetId() == CTPPSDetId::sdTrackingStrip) {
const double d2x = geom.getDirectionData(2).dx;
const double d2y = geom.getDirectionData(2).dy;
const signed int qIndex2 = task->getQuantityIndex(AlignmentTask::qcShR2, senId);
const auto &offset2 = offset_map[AlignmentTask::qcShR2];
fm(offset2 + qIndex2) = d2x * as_x + d2y * as_y;
}
if (senId.subdetId() == CTPPSDetId::sdTrackingPixel) {
const double d1x = geom.getDirectionData(1).dx;
const double d1y = geom.getDirectionData(1).dy;
const double d2x = geom.getDirectionData(2).dx;
const double d2y = geom.getDirectionData(2).dy;
const signed int qIndex1 = task->getQuantityIndex(AlignmentTask::qcShR1, senId);
const auto &offset1 = offset_map[AlignmentTask::qcShR1];
fm(offset1 + qIndex1) = d1x * as_x + d1y * as_y;
const signed int qIndex2 = task->getQuantityIndex(AlignmentTask::qcShR2, senId);
const auto &offset2 = offset_map[AlignmentTask::qcShR2];
fm(offset2 + qIndex2) = d2x * as_x + d2y * as_y;
}
}
}
inaccessibleModes.push_back(fm_RotZ_gl);
inaccessibleModes.push_back(fm_RotZ_lp);
}
// build matrices and vectors
TMatrixD C(dim, constraints.size());
TVectorD V(constraints.size());
for (unsigned int i = 0; i < constraints.size(); i++) {
V(i) = constraints[i].val;
unsigned int offset = 0;
for (auto &quantityClass : task->quantityClasses) {
const TVectorD &cv = constraints[i].coef.find(quantityClass)->second;
for (int k = 0; k < cv.GetNrows(); k++) {
C[offset][i] = cv[k];
offset++;
}
}
}
TMatrixD I(dim, inaccessibleModes.size());
for (unsigned int i = 0; i < inaccessibleModes.size(); ++i) {
for (int j = 0; j < inaccessibleModes[i].GetNrows(); ++j)
I(j, i) = inaccessibleModes[i](j);
}
// determine expected track-based alignment result
TMatrixD CT(TMatrixD::kTransposed, C);
TMatrixD CTI(CT * I);
const TMatrixD &A = CTI;
TMatrixD AT(TMatrixD::kTransposed, A);
TMatrixD ATA(AT * A);
TMatrixD ATA_inv(TMatrixD::kInverted, ATA);
TVectorD b = V - CT * chi_tr;
TVectorD La(ATA_inv * AT * b);
TVectorD chi_exp(chi_tr + I * La);
// save result
for (const auto &dit : task->geometry.getSensorMap()) {
AlignmentResult r;
for (unsigned int qci = 0; qci < task->quantityClasses.size(); ++qci) {
const auto &qc = task->quantityClasses[qci];
const auto idx = task->getQuantityIndex(qc, dit.first);
if (idx < 0)
continue;
const auto &v = chi_exp(offsets[qci] + idx);
switch (qc) {
case AlignmentTask::qcShR1:
r.setShR1(v);
break;
case AlignmentTask::qcShR2:
r.setShR2(v);
break;
case AlignmentTask::qcShZ:
r.setShZ(v);
break;
case AlignmentTask::qcRotZ:
r.setRotZ(v);
break;
}
}
results[dit.first] = r;
}
return 0;
}
|