TRange

Macros

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
#ifndef TRange_H
#define TRange_H

/** Define a range [aMin,aMax] */

#include <iostream>
#include <utility>
#include <algorithm>

template <class T>
class TRange : public std::pair<T, T> {
public:
  TRange() {}

  TRange(const T& aMin, const T& aMax) : std::pair<T, T>(aMin, aMax) {}

  TRange(const std::pair<T, T>& apair) : std::pair<T, T>(apair) {}

  /// lower edge of range
  const T& min() const { return this->first; }

  /// upper edge of range
  const T& max() const { return this->second; }

  T mean() const { return (this->first + this->second) / 2.; }

  /// true for empty region. note that region [x,x] is not empty
  bool empty() const { return (this->second < this->first); }

  /// check if object is inside region
  bool inside(const T& value) const {
    if (value < this->first || this->second < value)
      return false;
    else
      return true;
  }

  /*
  /// check if ranges overlap
  bool hasIntersection( const TRange<T> & r) const {
    return rangesIntersect(*this,r); 
  }

  /// overlaping region
  TRange<T> intersection( 
      const TRange<T> & r) const {
    return rangeIntersection(*this,r); 
  }
*/

  /// sum of overlaping regions. the overlapping should be checked before.
  TRange<T> sum(const TRange<T>& r) const {
    if (this->empty())
      return r;
    else if (r.empty())
      return *this;
    else
      return TRange((min() < r.min()) ? min() : r.min(), (max() < r.max()) ? r.max() : max());
  }

  void sort() {
    if (empty())
      std::swap(this->first, this->second);
  }
};

template <class T>
std::ostream& operator<<(std::ostream& out, const TRange<T>& r) {
  return out << "(" << r.min() << "," << r.max() << ")";
}
#endif