SiPixelLorentzAnglePCLHarvester

covStatus

cuts

fitResults

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896
// -*- C++ -*-
//
// Package:    CalibTracker/SiPixelLorentzAnglePCLHarvester
// Class:      SiPixelLorentzAnglePCLHarvester
//
/**\class SiPixelLorentzAnglePCLHarvester SiPixelLorentzAnglePCLHarvester.cc CalibTracker/SiPixelLorentzAngle/src/SiPixelLorentzAnglePCLHarvester.cc
 Description: reads the intermediate ALCAPROMPT DQMIO-like dataset and performs the fitting of the SiPixel Lorentz Angle in the Prompt Calibration Loop
 Implementation:
     Reads the 2D histograms of the drift vs depth created by SiPixelLorentzAnglePCLWorker modules and generates 1D profiles which are then fit
     with a 5th order polinomial. The extracted value of the tan(theta_L)/B are stored in an output sqlite file which is then uploaded to the conditions database
*/
//
// Original Author:  mmusich
//         Created:  Sat, 29 May 2021 14:46:19 GMT
//
//

// system includes
#include <fmt/format.h>
#include <fmt/printf.h>
#include <fstream>

// user includes
#include "CalibTracker/SiPixelLorentzAngle/interface/SiPixelLorentzAngleCalibrationStruct.h"
#include "CondCore/DBOutputService/interface/PoolDBOutputService.h"
#include "CondFormats/DataRecord/interface/SiPixelLorentzAngleRcd.h"
#include "CondFormats/SiPixelObjects/interface/SiPixelLorentzAngle.h"
#include "DQMServices/Core/interface/DQMEDHarvester.h"
#include "DataFormats/TrackerCommon/interface/PixelBarrelName.h"
#include "DataFormats/TrackerCommon/interface/PixelEndcapName.h"
#include "FWCore/Framework/interface/EventSetup.h"
#include "FWCore/Framework/interface/Frameworkfwd.h"
#include "FWCore/Framework/interface/MakerMacros.h"
#include "FWCore/ParameterSet/interface/ParameterSet.h"
#include "FWCore/ServiceRegistry/interface/Service.h"
#include "Geometry/Records/interface/TrackerDigiGeometryRecord.h"
#include "Geometry/TrackerGeometryBuilder/interface/PixelTopologyMap.h"
#include "Geometry/TrackerGeometryBuilder/interface/TrackerGeometry.h"
#include "MagneticField/Engine/interface/MagneticField.h"
#include "MagneticField/Records/interface/IdealMagneticFieldRecord.h"

// for ROOT fits
#include "TFitResult.h"

/* 
 * Auxilliary struct to store fit results
 */
namespace SiPixelLAHarvest {

  enum covStatus { kUndefined = -1, kNotCalculated = 0, kApproximated = 1, kMadePosDef = 2, kAccurate = 3 };
  enum cuts { kZeroChi2 = 0, kChi2Cut = 1, kCovStatus = 2, kNentries = 3 };

  struct fitResults {
  public:
    fitResults() {
      // set all parameters to default
      p0 = p1 = p2 = p3 = p4 = p5 = 0.;
      e0 = e1 = e2 = e3 = e4 = e5 = 0.;
      chi2 = prob = dSq = redChi2 = -9999.;
      tan_LA = error_LA = -9999.;
      fitStatus = covMatrixStatus = ndf = nentries = -999;
      quality = {0b0000};
    };

    void setQualityCutBit(const SiPixelLAHarvest::cuts& cut) {
      switch (cut) {
        case kZeroChi2:
          quality.set(0);
          break;
        case kChi2Cut:
          quality.set(1);
          break;
        case kCovStatus:
          quality.set(2);
          break;
        case kNentries:
          quality.set(3);
          break;
        default:
          throw cms::Exception("Inconsistent Data") << "Passed inexistent cut value";
      }
    }

    double p0, e0;
    double p1, e1;
    double p2, e2;
    double p3, e3;
    double p4, e4;
    double p5, e5;
    double chi2;
    int ndf;
    int nentries;
    double prob;
    int fitStatus, covMatrixStatus;
    double dSq;
    double redChi2;
    double tan_LA;
    double error_LA;
    std::bitset<4> quality; /* to store if passes cuts*/
  };
}  // namespace SiPixelLAHarvest

//------------------------------------------------------------------------------
class SiPixelLorentzAnglePCLHarvester : public DQMEDHarvester {
public:
  SiPixelLorentzAnglePCLHarvester(const edm::ParameterSet&);
  ~SiPixelLorentzAnglePCLHarvester() override = default;
  void beginRun(const edm::Run&, const edm::EventSetup&) override;

  static void fillDescriptions(edm::ConfigurationDescriptions&);

private:
  void dqmEndJob(DQMStore::IBooker&, DQMStore::IGetter&) override;
  void endRun(const edm::Run&, const edm::EventSetup&) override;
  void findMean(MonitorElement* h_drift_depth_adc_slice_, int i, int i_ring);
  SiPixelLAHarvest::fitResults fitAndStore(std::shared_ptr<SiPixelLorentzAngle> theLA, int i_idx, int i_lay, int i_mod);
  bool isFitGood(SiPixelLAHarvest::fitResults& res);

  // es tokens
  edm::ESGetToken<TrackerGeometry, TrackerDigiGeometryRecord> geomEsToken_;
  edm::ESGetToken<TrackerTopology, TrackerTopologyRcd> topoEsTokenBR_, topoEsTokenER_;
  edm::ESGetToken<SiPixelLorentzAngle, SiPixelLorentzAngleRcd> siPixelLAEsToken_;
  edm::ESGetToken<MagneticField, IdealMagneticFieldRecord> magneticFieldToken_;

  std::vector<std::string> newmodulelist_;
  const std::string dqmDir_;
  const bool doChebyshevFit_;
  const int order_;
  const double fitChi2Cut_;
  const std::vector<double> fitRange_;
  const int minHitsCut_;
  const std::string recordName_;
  std::unique_ptr<TF1> f1_;
  float width_;
  float theMagField_{0.f};

  static constexpr float teslaToInverseGeV_ = 2.99792458e-3f;
  std::pair<double, double> theFitRange_{5., 280.};

  SiPixelLorentzAngleCalibrationHistograms hists_;
  const SiPixelLorentzAngle* currentLorentzAngle_;
  std::unique_ptr<TrackerTopology> theTrackerTopology_;
};

//------------------------------------------------------------------------------
SiPixelLorentzAnglePCLHarvester::SiPixelLorentzAnglePCLHarvester(const edm::ParameterSet& iConfig)
    : geomEsToken_(esConsumes<edm::Transition::BeginRun>()),
      topoEsTokenBR_(esConsumes<edm::Transition::BeginRun>()),
      topoEsTokenER_(esConsumes<edm::Transition::EndRun>()),
      siPixelLAEsToken_(esConsumes<edm::Transition::BeginRun>()),
      magneticFieldToken_(esConsumes<edm::Transition::BeginRun>()),
      newmodulelist_(iConfig.getParameter<std::vector<std::string>>("newmodulelist")),
      dqmDir_(iConfig.getParameter<std::string>("dqmDir")),
      doChebyshevFit_(iConfig.getParameter<bool>("doChebyshevFit")),
      order_(iConfig.getParameter<int>("order")),
      fitChi2Cut_(iConfig.getParameter<double>("fitChi2Cut")),
      fitRange_(iConfig.getParameter<std::vector<double>>("fitRange")),
      minHitsCut_(iConfig.getParameter<int>("minHitsCut")),
      recordName_(iConfig.getParameter<std::string>("record")) {
  // initialize the fit range
  if (fitRange_.size() == 2) {
    theFitRange_.first = fitRange_[0];
    theFitRange_.second = fitRange_[1];
  } else {
    throw cms::Exception("SiPixelLorentzAnglePCLHarvester") << "Too many fit range parameters specified";
  }

  // first ensure DB output service is available
  edm::Service<cond::service::PoolDBOutputService> poolDbService;
  if (!poolDbService.isAvailable())
    throw cms::Exception("SiPixelLorentzAnglePCLHarvester") << "PoolDBService required";
}

//------------------------------------------------------------------------------
void SiPixelLorentzAnglePCLHarvester::beginRun(const edm::Run& iRun, const edm::EventSetup& iSetup) {
  // geometry
  const TrackerGeometry* geom = &iSetup.getData(geomEsToken_);
  const TrackerTopology* tTopo = &iSetup.getData(topoEsTokenBR_);

  const MagneticField* magField = &iSetup.getData(magneticFieldToken_);
  currentLorentzAngle_ = &iSetup.getData(siPixelLAEsToken_);

  // B-field value
  // inverseBzAtOriginInGeV() returns the inverse of field z component for this map in GeV
  // for the conversion please consult https://github.com/cms-sw/cmssw/blob/master/MagneticField/Engine/src/MagneticField.cc#L17
  // theInverseBzAtOriginInGeV = 1.f / (at0z * 2.99792458e-3f);
  // ==> at0z = 1.f / (theInverseBzAtOriginInGeV * 2.99792458e-3f)

  theMagField_ = 1.f / (magField->inverseBzAtOriginInGeV() * teslaToInverseGeV_);

  PixelTopologyMap map = PixelTopologyMap(geom, tTopo);
  hists_.nlay = geom->numberOfLayers(PixelSubdetector::PixelBarrel);
  hists_.nModules_.resize(hists_.nlay);
  hists_.nLadders_.resize(hists_.nlay);
  for (int i = 0; i < hists_.nlay; i++) {
    hists_.nModules_[i] = map.getPXBModules(i + 1);
    hists_.nLadders_[i] = map.getPXBLadders(i + 1);
  }

  // list of modules already filled, then return (we already entered here)
  if (!hists_.BPixnewDetIds_.empty() || !hists_.FPixnewDetIds_.empty())
    return;

  if (!newmodulelist_.empty()) {
    for (auto const& modulename : newmodulelist_) {
      if (modulename.find("BPix_") != std::string::npos) {
        PixelBarrelName bn(modulename, true);
        const auto& detId = bn.getDetId(tTopo);
        hists_.BPixnewmodulename_.push_back(modulename);
        hists_.BPixnewDetIds_.push_back(detId.rawId());
        hists_.BPixnewModule_.push_back(bn.moduleName());
        hists_.BPixnewLayer_.push_back(bn.layerName());
      } else if (modulename.find("FPix_") != std::string::npos) {
        PixelEndcapName en(modulename, true);
        const auto& detId = en.getDetId(tTopo);
        hists_.FPixnewmodulename_.push_back(modulename);
        hists_.FPixnewDetIds_.push_back(detId.rawId());
        hists_.FPixnewDisk_.push_back(en.diskName());
        hists_.FPixnewBlade_.push_back(en.bladeName());
      }
    }
  }

  uint count = 0;
  for (const auto& id : hists_.BPixnewDetIds_) {
    LogDebug("SiPixelLorentzAnglePCLHarvester") << id;
    count++;
  }
  LogDebug("SiPixelLorentzAnglePCLHarvester") << "Stored a total of " << count << " new detIds.";

  // list of modules already filled, return (we already entered here)
  if (!hists_.detIdsList.empty())
    return;

  std::vector<uint32_t> treatedIndices;

  for (const auto& det : geom->detsPXB()) {
    const PixelGeomDetUnit* pixelDet = dynamic_cast<const PixelGeomDetUnit*>(det);
    width_ = pixelDet->surface().bounds().thickness();
    const auto& layer = tTopo->pxbLayer(pixelDet->geographicalId());
    const auto& module = tTopo->pxbModule(pixelDet->geographicalId());
    int i_index = module + (layer - 1) * hists_.nModules_[layer - 1];

    uint32_t rawId = pixelDet->geographicalId().rawId();

    // if the detId is already accounted for in the special class, do not attach it
    if (std::find(hists_.BPixnewDetIds_.begin(), hists_.BPixnewDetIds_.end(), rawId) != hists_.BPixnewDetIds_.end())
      continue;

    if (std::find(treatedIndices.begin(), treatedIndices.end(), i_index) != treatedIndices.end()) {
      hists_.detIdsList[i_index].push_back(rawId);
    } else {
      hists_.detIdsList.insert(std::pair<uint32_t, std::vector<uint32_t>>(i_index, {rawId}));
      treatedIndices.push_back(i_index);
    }
  }

  count = 0;
  for (const auto& i : treatedIndices) {
    for (const auto& id : hists_.detIdsList[i]) {
      LogDebug("SiPixelLorentzAnglePCLHarvester") << id;
      count++;
    };
  }
  LogDebug("SiPixelLorentzAnglePCLHarvester") << "Stored a total of " << count << " detIds.";
}

//------------------------------------------------------------------------------
void SiPixelLorentzAnglePCLHarvester::endRun(edm::Run const& run, edm::EventSetup const& isetup) {
  if (!theTrackerTopology_) {
    theTrackerTopology_ = std::make_unique<TrackerTopology>(isetup.getData(topoEsTokenER_));
  }
}

//------------------------------------------------------------------------------
void SiPixelLorentzAnglePCLHarvester::dqmEndJob(DQMStore::IBooker& iBooker, DQMStore::IGetter& iGetter) {
  // go in the right directory
  iGetter.cd();
  iGetter.setCurrentFolder(dqmDir_);

  // fetch the 2D histograms
  for (int i_layer = 1; i_layer <= hists_.nlay; i_layer++) {
    const auto& prefix_ = fmt::sprintf("%s/BPix/BPixLayer%i", dqmDir_, i_layer);
    for (int i_module = 1; i_module <= hists_.nModules_[i_layer - 1]; i_module++) {
      int i_index = i_module + (i_layer - 1) * hists_.nModules_[i_layer - 1];

      hists_.h_drift_depth_[i_index] =
          iGetter.get(fmt::format("{}/h_drift_depth_layer{}_module{}", prefix_, i_layer, i_module));

      if (hists_.h_drift_depth_[i_index] == nullptr) {
        edm::LogError("SiPixelLorentzAnglePCLHarvester::dqmEndJob")
            << "Failed to retrieve electron drift over depth for layer " << i_layer << ", module " << i_module << ".";
        continue;
      }

      hists_.h_drift_depth_adc_[i_index] =
          iGetter.get(fmt::format("{}/h_drift_depth_adc_layer{}_module{}", prefix_, i_layer, i_module));

      hists_.h_drift_depth_adc2_[i_index] =
          iGetter.get(fmt::format("{}/h_drift_depth_adc2_layer{}_module{}", prefix_, i_layer, i_module));

      hists_.h_drift_depth_noadc_[i_index] =
          iGetter.get(fmt::format("{}/h_drift_depth_noadc_layer{}_module{}", prefix_, i_layer, i_module));

      hists_.h_mean_[i_index] = iGetter.get(fmt::format("{}/h_mean_layer{}_module{}", dqmDir_, i_layer, i_module));

      hists_.h_drift_depth_[i_index]->divide(
          hists_.h_drift_depth_adc_[i_index], hists_.h_drift_depth_noadc_[i_index], 1., 1., "");
    }
  }

  // fetch the new modules 2D histograms
  for (int i = 0; i < (int)hists_.BPixnewDetIds_.size(); i++) {
    int new_index = i + 1 + hists_.nModules_[hists_.nlay - 1] + (hists_.nlay - 1) * hists_.nModules_[hists_.nlay - 1];

    hists_.h_drift_depth_[new_index] = iGetter.get(
        fmt::format("{}/h_BPixnew_drift_depth_{}", dqmDir_ + "/BPix/NewModules", hists_.BPixnewmodulename_[i]));

    if (hists_.h_drift_depth_[new_index] == nullptr) {
      edm::LogError("SiPixelLorentzAnglePCLHarvester")
          << "Failed to retrieve electron drift over depth for new module " << hists_.BPixnewmodulename_[i] << ".";
      continue;
    }

    hists_.h_drift_depth_adc_[new_index] = iGetter.get(
        fmt::format("{}/h_BPixnew_drift_depth_adc_{}", dqmDir_ + "/BPix/NewModules", hists_.BPixnewmodulename_[i]));

    hists_.h_drift_depth_adc2_[new_index] = iGetter.get(
        fmt::format("{}/h_BPixnew_drift_depth_adc2_{}", dqmDir_ + "/BPix/NewModules", hists_.BPixnewmodulename_[i]));

    hists_.h_drift_depth_noadc_[new_index] = iGetter.get(
        fmt::format("{}/h_BPixnew_drift_depth_noadc_{}", dqmDir_ + "/BPix/NewModules", hists_.BPixnewmodulename_[i]));

    hists_.h_mean_[new_index] = iGetter.get(fmt::format("{}/h_BPixnew_mean_{}", dqmDir_, hists_.BPixnewmodulename_[i]));

    hists_.h_drift_depth_[new_index]->divide(
        hists_.h_drift_depth_adc_[new_index], hists_.h_drift_depth_noadc_[new_index], 1., 1., "");
  }

  hists_.h_bySectOccupancy_ = iGetter.get(fmt::format("{}/h_bySectorOccupancy", dqmDir_ + "/SectorMonitoring"));
  if (hists_.h_bySectOccupancy_ == nullptr) {
    edm::LogError("SiPixelLorentzAnglePCLHarvester") << "Failed to retrieve the hit on track occupancy.";
    return;
  }

  int hist_drift_;
  int hist_depth_;
  double min_drift_;
  double max_drift_;

  if (hists_.h_drift_depth_adc_[1] != nullptr) {
    hist_drift_ = hists_.h_drift_depth_adc_[1]->getNbinsX();
    hist_depth_ = hists_.h_drift_depth_adc_[1]->getNbinsY();
    min_drift_ = hists_.h_drift_depth_adc_[1]->getAxisMin(1);
    max_drift_ = hists_.h_drift_depth_adc_[1]->getAxisMax(1);
  } else {
    hist_drift_ = 100;
    hist_depth_ = 50;
    min_drift_ = -500.;
    max_drift_ = 500.;
  }

  iBooker.setCurrentFolder(fmt::format("{}Harvesting", dqmDir_));
  MonitorElement* h_drift_depth_adc_slice_ =
      iBooker.book1D("h_drift_depth_adc_slice", "slice of adc histogram", hist_drift_, min_drift_, max_drift_);

  // book histogram of differences
  MonitorElement* h_diffLA = iBooker.book1D(
      "h_diffLA", "difference in #mu_{H}; #Delta #mu_{H}/#mu_{H} (old-new)/old [%];n. modules", 100, -150, 150);

  // retrieve the number of bins from the other monitoring histogram
  const auto& maxSect = hists_.h_bySectOccupancy_->getNbinsX();
  const double lo = -0.5;
  const double hi = maxSect - 0.5;

  // this will be booked in the Harvesting folder
  iBooker.setCurrentFolder(fmt::format("{}Harvesting/SectorMonitoring", dqmDir_));
  std::string repText = "%s tan#theta_{LA}/B by sector;pixel sector;%s tan(#theta_{LA})/B [1/T]";
  hists_.h_bySectMeasLA_ =
      iBooker.book1D("h_LAbySector_Measured", fmt::sprintf(repText, "measured", "measured"), maxSect, lo, hi);
  hists_.h_bySectSetLA_ =
      iBooker.book1D("h_LAbySector_Accepted", fmt::sprintf(repText, "accepted", "accepted"), maxSect, lo, hi);
  hists_.h_bySectRejectLA_ =
      iBooker.book1D("h_LAbySector_Rejected", fmt::sprintf(repText, "rejected", "rejected"), maxSect, lo, hi);
  hists_.h_bySectLA_ = iBooker.book1D("h_LAbySector", fmt::sprintf(repText, "payload", "payload"), maxSect, lo, hi);
  hists_.h_bySectDeltaLA_ =
      iBooker.book1D("h_deltaLAbySector", fmt::sprintf(repText, "#Delta", "#Delta"), maxSect, lo, hi);
  hists_.h_bySectChi2_ =
      iBooker.book1D("h_bySectorChi2", "Fit #chi^{2}/ndf by sector;pixel sector; fit #chi^{2}/ndf", maxSect, lo, hi);

  hists_.h_bySectFitStatus_ =
      iBooker.book1D("h_bySectFitStatus", "Fit Status by sector;pixel sector; fit status", maxSect, lo, hi);

  hists_.h_bySectCovMatrixStatus_ = iBooker.book1D(
      "h_bySectorCovMatrixStatus", "Fit Covariance Matrix Status by sector;pixel sector; fit status", maxSect, lo, hi);
  hists_.h_bySectDriftError_ =
      iBooker.book1D("h_bySectorDriftError",
                     "square error on the measured drift at half-width by sector;pixel sector;#Delta d^{2}(t/2)",
                     maxSect,
                     lo,
                     hi);

  // set the bin labels for the fit quality dashboard histogram
  std::vector<std::string> labels = {"#chi^{2}!=0", "#chi^{2} cut", "covStat>=2", "n. entries cut"};
  hists_.h_bySectFitQuality_ = iBooker.book2D("h_bySectFitQuality",
                                              "Fit quality by sector;pixel sector;quality cut",
                                              maxSect,
                                              lo,
                                              hi,
                                              labels.size(),
                                              -0.5,
                                              labels.size() - 0.5);

  // copy the bin labels from the occupancy histogram
  for (int bin = 1; bin <= maxSect; bin++) {
    const auto& binName = hists_.h_bySectOccupancy_->getTH1()->GetXaxis()->GetBinLabel(bin);
    hists_.h_bySectMeasLA_->setBinLabel(bin, binName);
    hists_.h_bySectSetLA_->setBinLabel(bin, binName);
    hists_.h_bySectRejectLA_->setBinLabel(bin, binName);
    hists_.h_bySectLA_->setBinLabel(bin, binName);
    hists_.h_bySectDeltaLA_->setBinLabel(bin, binName);
    hists_.h_bySectChi2_->setBinLabel(bin, binName);
    hists_.h_bySectFitStatus_->setBinLabel(bin, binName);
    hists_.h_bySectCovMatrixStatus_->setBinLabel(bin, binName);
    hists_.h_bySectDriftError_->setBinLabel(bin, binName);
    hists_.h_bySectFitQuality_->setBinLabel(bin, binName, 1);
  }

  for (unsigned int binY = 1; binY <= labels.size(); binY++) {
    hists_.h_bySectFitQuality_->setBinLabel(binY, labels[binY - 1], 2);
  }

  // this will be booked in the Harvesting folder
  iBooker.setCurrentFolder(fmt::format("{}Harvesting/LorentzAngleMaps", dqmDir_));
  for (int i = 0; i < hists_.nlay; i++) {
    std::string repName = "h2_byLayerLA_%i";
    std::string repText = "BPix Layer %i tan#theta_{LA}/B;module number;ladder number;tan#theta_{LA}/B [1/T]";

    hists_.h2_byLayerLA_.emplace_back(iBooker.book2D(fmt::sprintf(repName, i + 1),
                                                     fmt::sprintf(repText, i + 1),
                                                     hists_.nModules_[i],
                                                     0.5,
                                                     hists_.nModules_[i] + 0.5,
                                                     hists_.nLadders_[i],
                                                     0.5,
                                                     hists_.nLadders_[i] + 0.5));

    repName = "h2_byLayerDiff_%i";
    repText = "BPix Layer %i #Delta#mu_{H}/#mu_{H};module number;ladder number;#Delta#mu_{H}/#mu_{H} [%%]";
    hists_.h2_byLayerDiff_.emplace_back(iBooker.book2D(fmt::sprintf(repName, i + 1),
                                                       fmt::sprintf(repText, i + 1),
                                                       hists_.nModules_[i],
                                                       0.5,
                                                       hists_.nModules_[i] + 0.5,
                                                       hists_.nLadders_[i],
                                                       0.5,
                                                       hists_.nLadders_[i] + 0.5));
  }

  // clang-format off
  edm::LogPrint("LorentzAngle") << "module" << "\t" << "layer" << "\t"
                                << "offset" << "\t" << "e0" << "\t"
                                << "slope"  << "\t" << "e1" << "\t"
                                << "rel.err" << "\t" << "pull" << "\t"
                                << "p2" << "\t" << "e2" << "\t"
                                << "p3" << "\t" << "e3" << "\t"
                                << "p4" << "\t" << "e4" << "\t"
                                << "p5" << "\t" << "e5" << "\t"
                                << "chi2" << "\t" << "prob" << "\t"
                                << "newDetId" << "\t" << "tan(LA)" << "\t"
                                << "Error(LA)" ;
  // clang-format on

  // payload to be written out
  std::shared_ptr<SiPixelLorentzAngle> LorentzAngle = std::make_shared<SiPixelLorentzAngle>();

  // fill the map of simulation values
  double p1_simul_newmodule = 0.294044;
  double p1_simul[hists_.nlay + 1][hists_.nModules_[hists_.nlay - 1]];
  for (int i_layer = 1; i_layer <= hists_.nlay; i_layer++) {
    for (int i_module = 1; i_module <= hists_.nModules_[i_layer - 1]; i_module++) {
      if (i_layer == 1)
        p1_simul[i_layer - 1][i_module - 1] = 0.436848;
      else if (i_layer == 2)
        p1_simul[i_layer - 1][i_module - 1] = 0.25802;
      else if (i_layer == 3 && i_module <= 4)
        p1_simul[i_layer - 1][i_module - 1] = 0.29374;
      else if (i_layer == 3 && i_module >= 5)
        p1_simul[i_layer - 1][i_module - 1] = 0.31084;
      else if (i_layer == 4 && i_module <= 4)
        p1_simul[i_layer - 1][i_module - 1] = 0.29944;
      else
        p1_simul[i_layer - 1][i_module - 1] = 0.31426;
    }
  }
  // fictitious n-th layer to store the values of new modules
  for (int i_module = 1; i_module <= hists_.nModules_[hists_.nlay - 1]; i_module++) {
    p1_simul[hists_.nlay][i_module - 1] = p1_simul_newmodule;
  }

  // loop over "new" BPix modules
  for (int j = 0; j < (int)hists_.BPixnewDetIds_.size(); j++) {
    //uint32_t rawId = hists_.BPixnewDetIds_[j];
    int new_index = j + 1 + hists_.nModules_[hists_.nlay - 1] + (hists_.nlay - 1) * hists_.nModules_[hists_.nlay - 1];
    if (hists_.h_drift_depth_adc_[new_index] == nullptr)
      continue;
    for (int i = 1; i <= hist_depth_; i++) {
      findMean(h_drift_depth_adc_slice_, i, new_index);
    }

    // fit the distributions and store the LA in the payload
    const auto& res = fitAndStore(LorentzAngle, new_index, hists_.BPixnewLayer_[j], hists_.BPixnewModule_[j]);

    edm::LogPrint("SiPixelLorentzAngle") << std::setprecision(4) << hists_.BPixnewModule_[j] << "\t"
                                         << hists_.BPixnewLayer_[j] << "\t" << res.p0 << "\t" << res.e0 << "\t"
                                         << res.p1 << std::setprecision(3) << "\t" << res.e1 << "\t"
                                         << res.e1 / res.p1 * 100. << "\t"
                                         << (res.p1 - p1_simul[hists_.nlay][0]) / res.e1 << "\t" << res.p2 << "\t"
                                         << res.e2 << "\t" << res.p3 << "\t" << res.e3 << "\t" << res.p4 << "\t"
                                         << res.e4 << "\t" << res.p5 << "\t" << res.e5 << "\t" << res.chi2 << "\t"
                                         << res.prob << "\t" << hists_.BPixnewDetIds_[j] << "\t" << res.tan_LA << "\t"
                                         << res.error_LA;
  }  // loop on BPix new modules

  //loop over modules and layers to fit the lorentz angle
  for (int i_layer = 1; i_layer <= hists_.nlay; i_layer++) {
    for (int i_module = 1; i_module <= hists_.nModules_[i_layer - 1]; i_module++) {
      int i_index = i_module + (i_layer - 1) * hists_.nModules_[i_layer - 1];
      if (hists_.h_drift_depth_adc_[i_index] == nullptr)
        continue;
      //loop over bins in depth (z-local-coordinate) (in order to fit slices)
      for (int i = 1; i <= hist_depth_; i++) {
        findMean(h_drift_depth_adc_slice_, i, i_index);
      }  // end loop over bins in depth

      // fit the distributions and store the LA in the payload
      const auto& res = fitAndStore(LorentzAngle, i_index, i_layer, i_module);

      edm::LogPrint("SiPixelLorentzAngle")
          << std::setprecision(4) << i_module << "\t" << i_layer << "\t" << res.p0 << "\t" << res.e0 << "\t" << res.p1
          << std::setprecision(3) << "\t" << res.e1 << "\t" << res.e1 / res.p1 * 100. << "\t"
          << (res.p1 - p1_simul[i_layer - 1][i_module - 1]) / res.e1 << "\t" << res.p2 << "\t" << res.e2 << "\t"
          << res.p3 << "\t" << res.e3 << "\t" << res.p4 << "\t" << res.e4 << "\t" << res.p5 << "\t" << res.e5 << "\t"
          << res.chi2 << "\t" << res.prob << "\t"
          << "null"
          << "\t" << res.tan_LA << "\t" << res.error_LA;
    }
  }  // end loop over modules and layers

  // fill the rest of DetIds not filled above (for the moment FPix)
  const auto& currentLAMap = currentLorentzAngle_->getLorentzAngles();
  const auto& newLAMap = LorentzAngle->getLorentzAngles();
  std::vector<unsigned int> currentLADets;
  std::vector<unsigned int> newLADets;

  std::transform(currentLAMap.begin(),
                 currentLAMap.end(),
                 std::back_inserter(currentLADets),
                 [](const std::map<unsigned int, float>::value_type& pair) { return pair.first; });

  std::transform(newLAMap.begin(),
                 newLAMap.end(),
                 std::back_inserter(newLADets),
                 [](const std::map<unsigned int, float>::value_type& pair) { return pair.first; });

  std::vector<unsigned int> notCommon;
  std::set_symmetric_difference(
      currentLADets.begin(), currentLADets.end(), newLADets.begin(), newLADets.end(), std::back_inserter(notCommon));

  for (const auto& id : notCommon) {
    float fPixLorentzAnglePerTesla_ = currentLorentzAngle_->getLorentzAngle(id);
    if (!LorentzAngle->putLorentzAngle(id, fPixLorentzAnglePerTesla_)) {
      edm::LogError("SiPixelLorentzAnglePCLHarvester")
          << "[SiPixelLorentzAnglePCLHarvester::dqmEndJob] filling rest of payload: detid already exists";
    }
  }

  for (const auto& id : newLADets) {
    float deltaMuHoverMuH = (currentLorentzAngle_->getLorentzAngle(id) - LorentzAngle->getLorentzAngle(id)) /
                            currentLorentzAngle_->getLorentzAngle(id);
    h_diffLA->Fill(deltaMuHoverMuH * 100.f);
  }

  bool isPayloadChanged{false};
  // fill the 2D output Lorentz Angle maps and check if the payload is different from the input one
  for (const auto& [id, value] : LorentzAngle->getLorentzAngles()) {
    DetId ID = DetId(id);
    if (ID.subdetId() == PixelSubdetector::PixelBarrel) {
      const auto& layer = theTrackerTopology_->pxbLayer(id);
      const auto& ladder = theTrackerTopology_->pxbLadder(id);
      const auto& module = theTrackerTopology_->pxbModule(id);
      hists_.h2_byLayerLA_[layer - 1]->setBinContent(module, ladder, value);

      float deltaMuHoverMuH =
          (currentLorentzAngle_->getLorentzAngle(id) - value) / currentLorentzAngle_->getLorentzAngle(id);
      hists_.h2_byLayerDiff_[layer - 1]->setBinContent(module, ladder, deltaMuHoverMuH * 100.f);

      if (!isPayloadChanged && (deltaMuHoverMuH != 0.f))
        isPayloadChanged = true;
    }
  }

  if (isPayloadChanged) {
    // fill the DB object record
    edm::Service<cond::service::PoolDBOutputService> mydbservice;
    if (mydbservice.isAvailable()) {
      try {
        mydbservice->writeOneIOV(*LorentzAngle, mydbservice->currentTime(), recordName_);
      } catch (const cond::Exception& er) {
        edm::LogError("SiPixelLorentzAngleDB") << er.what();
      } catch (const std::exception& er) {
        edm::LogError("SiPixelLorentzAngleDB") << "caught std::exception " << er.what();
      }
    } else {
      edm::LogError("SiPixelLorentzAngleDB") << "Service is unavailable";
    }
  } else {
    edm::LogPrint("SiPixelLorentzAngleDB") << __PRETTY_FUNCTION__ << " there is no new valid measurement to append! ";
  }
}

//------------------------------------------------------------------------------
void SiPixelLorentzAnglePCLHarvester::findMean(MonitorElement* h_drift_depth_adc_slice_, int i, int i_ring) {
  double nentries = 0;
  h_drift_depth_adc_slice_->Reset();
  int hist_drift_ = h_drift_depth_adc_slice_->getNbinsX();

  // determine sigma and sigma^2 of the adc counts and average adc counts
  //loop over bins in drift width
  for (int j = 1; j <= hist_drift_; j++) {
    if (hists_.h_drift_depth_noadc_[i_ring]->getBinContent(j, i) >= 1) {
      double adc_error2 = (hists_.h_drift_depth_adc2_[i_ring]->getBinContent(j, i) -
                           hists_.h_drift_depth_adc_[i_ring]->getBinContent(j, i) *
                               hists_.h_drift_depth_adc_[i_ring]->getBinContent(j, i) /
                               hists_.h_drift_depth_noadc_[i_ring]->getBinContent(j, i)) /
                          hists_.h_drift_depth_noadc_[i_ring]->getBinContent(j, i);

      hists_.h_drift_depth_adc_[i_ring]->setBinError(j, i, sqrt(adc_error2));
      double error2 = adc_error2 / (hists_.h_drift_depth_noadc_[i_ring]->getBinContent(j, i) - 1.);
      hists_.h_drift_depth_[i_ring]->setBinError(j, i, sqrt(error2));
    } else {
      hists_.h_drift_depth_[i_ring]->setBinError(j, i, 0);
      hists_.h_drift_depth_adc_[i_ring]->setBinError(j, i, 0);
    }
    h_drift_depth_adc_slice_->setBinContent(j, hists_.h_drift_depth_adc_[i_ring]->getBinContent(j, i));
    h_drift_depth_adc_slice_->setBinError(j, hists_.h_drift_depth_adc_[i_ring]->getBinError(j, i));
    nentries += hists_.h_drift_depth_noadc_[i_ring]->getBinContent(j, i);
  }  // end loop over bins in drift width

  double mean = h_drift_depth_adc_slice_->getMean(1);
  double error = 0;
  if (nentries != 0) {
    error = h_drift_depth_adc_slice_->getRMS(1) / std::sqrt(nentries);
  }
  hists_.h_mean_[i_ring]->setBinContent(i, mean);
  hists_.h_mean_[i_ring]->setBinError(i, error);

  h_drift_depth_adc_slice_->Reset();  // clear again after extracting the parameters
}

//------------------------------------------------------------------------------
SiPixelLAHarvest::fitResults SiPixelLorentzAnglePCLHarvester::fitAndStore(
    std::shared_ptr<SiPixelLorentzAngle> theLAPayload, int i_index, int i_layer, int i_module) {
  // output results
  SiPixelLAHarvest::fitResults res;

  double half_width = width_ * siPixelLACalibration::cmToum / 2.f;  // pixel half thickness in units of micro meter

  if (doChebyshevFit_) {
    const int npar = order_ + 1;
    auto cheb = std::make_unique<siPixelLACalibration::Chebyshev>(order_, theFitRange_.first, theFitRange_.second);
    f1_ = std::make_unique<TF1>("f1", cheb.release(), theFitRange_.first, theFitRange_.second, npar, "Chebyshev");
  } else {
    f1_ = std::make_unique<TF1>("f1",
                                "[0] + [1]*x + [2]*x*x + [3]*x*x*x + [4]*x*x*x*x + [5]*x*x*x*x*x",
                                theFitRange_.first,
                                theFitRange_.second);
  }

  // DO NOT REMOVE
  // this is needed to ensure it stays synch with the render plugin:
  // https://github.com/dmwm/deployment/blob/master/dqmgui/style/SiPixelLorentzAnglePCLRenderPlugin.cc#L199
  // assert(std::string{f1_->GetName()}=="f1");
  assert(strcmp(f1_->GetName(), "f1") == 0);

  f1_->SetParName(0, "offset");
  f1_->SetParName(1, "tan#theta_{LA}");
  f1_->SetParName(2, "quad term");
  f1_->SetParName(3, "cubic term");
  f1_->SetParName(4, "quartic term");
  f1_->SetParName(5, "quintic term");

  f1_->SetParameter(0, 0);
  f1_->SetParError(0, 0);
  f1_->SetParameter(1, 0.4);
  f1_->SetParError(1, 0);
  f1_->SetParameter(2, 0.0);
  f1_->SetParError(2, 0);
  f1_->SetParameter(3, 0.0);
  f1_->SetParError(3, 0);
  f1_->SetParameter(4, 0.0);
  f1_->SetParError(4, 0);
  f1_->SetParameter(5, 0.0);
  f1_->SetParError(5, 0);
  f1_->SetChisquare(0);

  TFitResultPtr result = hists_.h_mean_[i_index]->getTH1()->Fit(f1_.get(), "ERQS");
  if (result.Get()) {
    res.fitStatus = result->Status();
    edm::LogInfo("SiPixelLorentzAnglePCLHarvester") << "Fit status: " << res.fitStatus;
  } else {
    edm::LogError("SiPixelLorentzAnglePCLHarvester") << "Could not retrieve the fit status! Setting it to 0 by default";
    res.fitStatus = -1;
  }

  if (res.fitStatus >= 0) {
    res.covMatrixStatus = result->CovMatrixStatus();
  } else {
    res.covMatrixStatus = SiPixelLAHarvest::kUndefined;
  }

  // compute the error on the drift-at-half-width parameter (d^2)
  float dSq{0.};
  float cov00{0.};  // needed later for the error on the tan(theta_LA)
  if (!doChebyshevFit_) {
    if (res.covMatrixStatus > SiPixelLAHarvest::kNotCalculated) {
      for (int k = 0; k < order_; k++) {
        for (int l = 0; l < order_; l++) {
          dSq += (std::pow(half_width, k) * std::pow(half_width, l) * result->CovMatrix(k, l));
        }
      }
      cov00 = result->CovMatrix(0, 0);
    }  // if the covariance matrix is valid
  }  // compute the error on the drift-at-half width only for the regular polynomial fit

  res.dSq = dSq;

  res.p0 = f1_->GetParameter(0);
  res.e0 = f1_->GetParError(0);
  res.p1 = f1_->GetParameter(1);
  res.e1 = f1_->GetParError(1);
  res.p2 = f1_->GetParameter(2);
  res.e2 = f1_->GetParError(2);
  res.p3 = f1_->GetParameter(3);
  res.e3 = f1_->GetParError(3);
  res.p4 = f1_->GetParameter(4);
  res.e4 = f1_->GetParError(4);
  res.p5 = f1_->GetParameter(5);
  res.e5 = f1_->GetParError(5);
  res.chi2 = f1_->GetChisquare();
  res.ndf = f1_->GetNDF();
  res.prob = f1_->GetProb();
  res.redChi2 = res.ndf > 0. ? res.chi2 / res.ndf : 0.;

  double f1_halfwidth = res.p0 + res.p1 * half_width + res.p2 * pow(half_width, 2) + res.p3 * pow(half_width, 3) +
                        res.p4 * pow(half_width, 4) + res.p5 * pow(half_width, 5);

  double f1_zerowidth = res.p0;

  // tan_LA = (f1(x = half_width) - f1(x = 0)) / (half_width - 0)
  res.tan_LA = (f1_halfwidth - f1_zerowidth) / half_width;
  double errsq_LA =
      (pow(res.e1, 2) + pow((half_width * res.e2), 2) + pow((half_width * half_width * res.e3), 2) +
       pow((half_width * half_width * half_width * res.e4), 2) +
       pow((half_width * half_width * half_width * half_width * res.e5), 2));  // Propagation of uncertainty

  res.error_LA = doChebyshevFit_ ? sqrt(errsq_LA) : sqrt(res.dSq + cov00) / half_width;

  hists_.h_bySectMeasLA_->setBinContent(i_index, (res.tan_LA / theMagField_));
  hists_.h_bySectMeasLA_->setBinError(i_index, (res.error_LA / theMagField_));
  hists_.h_bySectChi2_->setBinContent(i_index, res.redChi2);
  hists_.h_bySectChi2_->setBinError(i_index, 0.);  // no errors

  hists_.h_bySectFitStatus_->setBinContent(i_index, res.fitStatus);
  hists_.h_bySectFitStatus_->setBinError(i_index, 0.);  // no errors
  hists_.h_bySectCovMatrixStatus_->setBinContent(i_index, res.covMatrixStatus);
  hists_.h_bySectCovMatrixStatus_->setBinError(i_index, 0.);  // no errors
  hists_.h_bySectDriftError_->setBinContent(i_index, res.dSq);
  hists_.h_bySectDriftError_->setBinError(i_index, 0.);

  res.nentries = hists_.h_bySectOccupancy_->getBinContent(i_index);  // number of on track hits in that sector

  bool isNew = (i_index > hists_.nlay * hists_.nModules_[hists_.nlay - 1]);
  int shiftIdx = i_index - hists_.nlay * hists_.nModules_[hists_.nlay - 1] - 1;

  LogDebug("SiPixelLorentzAnglePCLHarvester")
      << " isNew: " << isNew << " i_index: " << i_index << " shift index: " << shiftIdx;

  const auto& detIdsToFill =
      isNew ? std::vector<unsigned int>({hists_.BPixnewDetIds_[shiftIdx]}) : hists_.detIdsList[i_index];

  LogDebug("SiPixelLorentzAnglePCLHarvester")
      << "index: " << i_index << " i_module: " << i_module << " i_layer: " << i_layer;
  for (const auto& id : detIdsToFill) {
    LogDebug("SiPixelLorentzAnglePCLHarvester") << id << ",";
  }

  // no errors on the following MEs
  hists_.h_bySectSetLA_->setBinError(i_index, 0.);
  hists_.h_bySectRejectLA_->setBinError(i_index, 0.);
  hists_.h_bySectLA_->setBinError(i_index, 0.);
  hists_.h_bySectDeltaLA_->setBinError(i_index, 0.);

  float LorentzAnglePerTesla_;
  float currentLA = currentLorentzAngle_->getLorentzAngle(detIdsToFill.front());

  // fill the fit status dashboard
  bool goodFit = isFitGood(res);
  for (unsigned int i_bin = 0; i_bin < res.quality.size(); i_bin++) {
    if (res.quality[i_bin]) {
      hists_.h_bySectFitQuality_->setBinContent(i_index, i_bin + 1, 1.);
    } else {
      hists_.h_bySectFitQuality_->setBinContent(i_index, i_bin + 1, 0.);
    }
  }

  // if the fit quality is OK
  if (goodFit) {
    LorentzAnglePerTesla_ = res.tan_LA / theMagField_;
    // fill the LA actually written to payload
    hists_.h_bySectSetLA_->setBinContent(i_index, LorentzAnglePerTesla_);
    hists_.h_bySectRejectLA_->setBinContent(i_index, 0.);
    hists_.h_bySectLA_->setBinContent(i_index, LorentzAnglePerTesla_);

    const auto& deltaLA = (LorentzAnglePerTesla_ - currentLA);
    hists_.h_bySectDeltaLA_->setBinContent(i_index, deltaLA);

    for (const auto& id : detIdsToFill) {
      if (!theLAPayload->putLorentzAngle(id, LorentzAnglePerTesla_)) {
        edm::LogError("SiPixelLorentzAnglePCLHarvester") << "[SiPixelLorentzAnglePCLHarvester::fitAndStore]: detid ("
                                                         << i_layer << "," << i_module << ") already exists";
      }
    }
  } else {
    // just copy the values from the existing payload
    hists_.h_bySectSetLA_->setBinContent(i_index, 0.);
    hists_.h_bySectRejectLA_->setBinContent(i_index, (res.tan_LA / theMagField_));
    hists_.h_bySectLA_->setBinContent(i_index, currentLA);
    hists_.h_bySectDeltaLA_->setBinContent(i_index, 0.);

    for (const auto& id : detIdsToFill) {
      LorentzAnglePerTesla_ = currentLorentzAngle_->getLorentzAngle(id);
      if (!theLAPayload->putLorentzAngle(id, LorentzAnglePerTesla_)) {
        edm::LogError("SiPixelLorentzAnglePCLHarvester") << "[SiPixelLorentzAnglePCLHarvester::fitAndStore]: detid ("
                                                         << i_layer << "," << i_module << ") already exists";
      }
    }
  }
  // return the struct of fit details
  return res;
}

// function to check the fit quality
bool SiPixelLorentzAnglePCLHarvester::isFitGood(SiPixelLAHarvest::fitResults& res) {
  // check if reduced chi2 is different from 0.
  const bool notZeroCut = (res.redChi2 != 0.);
  // check the result of the chi2 only if doing the chebyshev fit
  const bool chi2Cut = doChebyshevFit_ ? (res.redChi2 < fitChi2Cut_) : true;
  // check the covariance matrix status
  const bool covMatrixStatusCut = (res.covMatrixStatus >= SiPixelLAHarvest::kMadePosDef);
  // check that the number of entries is larger than the minimum amount
  const bool nentriesCut = (res.nentries > minHitsCut_);

  if (notZeroCut) {
    res.setQualityCutBit(SiPixelLAHarvest::kZeroChi2);
  }
  if (chi2Cut) {
    res.setQualityCutBit(SiPixelLAHarvest::kChi2Cut);
  }
  if (covMatrixStatusCut) {
    res.setQualityCutBit(SiPixelLAHarvest::kCovStatus);
  }
  if (nentriesCut) {
    res.setQualityCutBit(SiPixelLAHarvest::kNentries);
  }

  // check if all the bits are set
  return (res.quality.all());
}

//------------------------------------------------------------------------------
void SiPixelLorentzAnglePCLHarvester::fillDescriptions(edm::ConfigurationDescriptions& descriptions) {
  edm::ParameterSetDescription desc;
  desc.setComment("Harvester module of the SiPixel Lorentz Angle PCL monitoring workflow");
  desc.add<std::vector<std::string>>("newmodulelist", {})->setComment("the list of DetIds for new sensors");
  desc.add<std::string>("dqmDir", "AlCaReco/SiPixelLorentzAngle")->setComment("the directory of PCL Worker output");
  desc.add<bool>("doChebyshevFit", false)->setComment("use Chebyshev polynomials for the dript vs depth fit");
  desc.add<int>("order", 5)->setComment("order of the Chebyshev polynomial used for the fit");
  desc.add<double>("fitChi2Cut", 20.)->setComment("cut on fit chi2/ndof to accept measurement");
  desc.add<std::vector<double>>("fitRange", {5., 280.})->setComment("range of depths to perform the LA fit");
  desc.add<int>("minHitsCut", 10000)->setComment("cut on minimum number of on-track hits to accept measurement");
  desc.add<std::string>("record", "SiPixelLorentzAngleRcd")->setComment("target DB record");
  descriptions.addWithDefaultLabel(desc);
}

DEFINE_FWK_MODULE(SiPixelLorentzAnglePCLHarvester);