1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
|
// -*- C++ -*-
//
// Package: CalibTracker/SiPixelLorentzAnglePCLHarvester
// Class: SiPixelLorentzAnglePCLHarvester
//
/**\class SiPixelLorentzAnglePCLHarvester SiPixelLorentzAnglePCLHarvester.cc CalibTracker/SiPixelLorentzAngle/src/SiPixelLorentzAnglePCLHarvester.cc
Description: reads the intermediate ALCAPROMPT DQMIO-like dataset and performs the fitting of the SiPixel Lorentz Angle in the Prompt Calibration Loop
Implementation:
Reads the 2D histograms of the drift vs depth created by SiPixelLorentzAnglePCLWorker modules and generates 1D profiles which are then fit
with a 5th order polinomial. The extracted value of the tan(theta_L)/B are stored in an output sqlite file which is then uploaded to the conditions database
*/
//
// Original Author: mmusich
// Created: Sat, 29 May 2021 14:46:19 GMT
//
//
// system includes
#include <fmt/format.h>
#include <fmt/printf.h>
#include <fstream>
// user includes
#include "CalibTracker/SiPixelLorentzAngle/interface/SiPixelLorentzAngleCalibrationStruct.h"
#include "CondCore/DBOutputService/interface/PoolDBOutputService.h"
#include "CondFormats/DataRecord/interface/SiPixelLorentzAngleRcd.h"
#include "CondFormats/SiPixelObjects/interface/SiPixelLorentzAngle.h"
#include "DQMServices/Core/interface/DQMEDHarvester.h"
#include "DataFormats/TrackerCommon/interface/PixelBarrelName.h"
#include "DataFormats/TrackerCommon/interface/PixelEndcapName.h"
#include "FWCore/Framework/interface/EventSetup.h"
#include "FWCore/Framework/interface/Frameworkfwd.h"
#include "FWCore/Framework/interface/MakerMacros.h"
#include "FWCore/ParameterSet/interface/ParameterSet.h"
#include "FWCore/ServiceRegistry/interface/Service.h"
#include "Geometry/Records/interface/TrackerDigiGeometryRecord.h"
#include "Geometry/TrackerGeometryBuilder/interface/PixelTopologyMap.h"
#include "Geometry/TrackerGeometryBuilder/interface/TrackerGeometry.h"
#include "MagneticField/Engine/interface/MagneticField.h"
#include "MagneticField/Records/interface/IdealMagneticFieldRecord.h"
// for ROOT fits
#include "TFitResult.h"
/*
* Auxilliary struct to store fit results
*/
namespace SiPixelLAHarvest {
enum covStatus { kUndefined = -1, kNotCalculated = 0, kApproximated = 1, kMadePosDef = 2, kAccurate = 3 };
enum cuts { kZeroChi2 = 0, kChi2Cut = 1, kCovStatus = 2, kNentries = 3 };
struct fitResults {
public:
fitResults() {
// set all parameters to default
p0 = p1 = p2 = p3 = p4 = p5 = 0.;
e0 = e1 = e2 = e3 = e4 = e5 = 0.;
chi2 = prob = dSq = redChi2 = -9999.;
tan_LA = error_LA = -9999.;
fitStatus = covMatrixStatus = ndf = nentries = -999;
quality = {0b0000};
};
void setQualityCutBit(const SiPixelLAHarvest::cuts& cut) {
switch (cut) {
case kZeroChi2:
quality.set(0);
break;
case kChi2Cut:
quality.set(1);
break;
case kCovStatus:
quality.set(2);
break;
case kNentries:
quality.set(3);
break;
default:
throw cms::Exception("Inconsistent Data") << "Passed inexistent cut value";
}
}
double p0, e0;
double p1, e1;
double p2, e2;
double p3, e3;
double p4, e4;
double p5, e5;
double chi2;
int ndf;
int nentries;
double prob;
int fitStatus, covMatrixStatus;
double dSq;
double redChi2;
double tan_LA;
double error_LA;
std::bitset<4> quality; /* to store if passes cuts*/
};
} // namespace SiPixelLAHarvest
//------------------------------------------------------------------------------
class SiPixelLorentzAnglePCLHarvester : public DQMEDHarvester {
public:
SiPixelLorentzAnglePCLHarvester(const edm::ParameterSet&);
~SiPixelLorentzAnglePCLHarvester() override = default;
void beginRun(const edm::Run&, const edm::EventSetup&) override;
static void fillDescriptions(edm::ConfigurationDescriptions&);
private:
void dqmEndJob(DQMStore::IBooker&, DQMStore::IGetter&) override;
void endRun(const edm::Run&, const edm::EventSetup&) override;
void findMean(MonitorElement* h_drift_depth_adc_slice_, int i, int i_ring);
SiPixelLAHarvest::fitResults fitAndStore(std::shared_ptr<SiPixelLorentzAngle> theLA, int i_idx, int i_lay, int i_mod);
bool isFitGood(SiPixelLAHarvest::fitResults& res);
// es tokens
edm::ESGetToken<TrackerGeometry, TrackerDigiGeometryRecord> geomEsToken_;
edm::ESGetToken<TrackerTopology, TrackerTopologyRcd> topoEsTokenBR_, topoEsTokenER_;
edm::ESGetToken<SiPixelLorentzAngle, SiPixelLorentzAngleRcd> siPixelLAEsToken_;
edm::ESGetToken<MagneticField, IdealMagneticFieldRecord> magneticFieldToken_;
std::vector<std::string> newmodulelist_;
const std::string dqmDir_;
const bool doChebyshevFit_;
const int order_;
const double fitChi2Cut_;
const std::vector<double> fitRange_;
const int minHitsCut_;
const std::string recordName_;
std::unique_ptr<TF1> f1_;
float width_;
float theMagField_{0.f};
static constexpr float teslaToInverseGeV_ = 2.99792458e-3f;
std::pair<double, double> theFitRange_{5., 280.};
SiPixelLorentzAngleCalibrationHistograms hists_;
const SiPixelLorentzAngle* currentLorentzAngle_;
std::unique_ptr<TrackerTopology> theTrackerTopology_;
};
//------------------------------------------------------------------------------
SiPixelLorentzAnglePCLHarvester::SiPixelLorentzAnglePCLHarvester(const edm::ParameterSet& iConfig)
: geomEsToken_(esConsumes<edm::Transition::BeginRun>()),
topoEsTokenBR_(esConsumes<edm::Transition::BeginRun>()),
topoEsTokenER_(esConsumes<edm::Transition::EndRun>()),
siPixelLAEsToken_(esConsumes<edm::Transition::BeginRun>()),
magneticFieldToken_(esConsumes<edm::Transition::BeginRun>()),
newmodulelist_(iConfig.getParameter<std::vector<std::string>>("newmodulelist")),
dqmDir_(iConfig.getParameter<std::string>("dqmDir")),
doChebyshevFit_(iConfig.getParameter<bool>("doChebyshevFit")),
order_(iConfig.getParameter<int>("order")),
fitChi2Cut_(iConfig.getParameter<double>("fitChi2Cut")),
fitRange_(iConfig.getParameter<std::vector<double>>("fitRange")),
minHitsCut_(iConfig.getParameter<int>("minHitsCut")),
recordName_(iConfig.getParameter<std::string>("record")) {
// initialize the fit range
if (fitRange_.size() == 2) {
theFitRange_.first = fitRange_[0];
theFitRange_.second = fitRange_[1];
} else {
throw cms::Exception("SiPixelLorentzAnglePCLHarvester") << "Too many fit range parameters specified";
}
// first ensure DB output service is available
edm::Service<cond::service::PoolDBOutputService> poolDbService;
if (!poolDbService.isAvailable())
throw cms::Exception("SiPixelLorentzAnglePCLHarvester") << "PoolDBService required";
}
//------------------------------------------------------------------------------
void SiPixelLorentzAnglePCLHarvester::beginRun(const edm::Run& iRun, const edm::EventSetup& iSetup) {
// geometry
const TrackerGeometry* geom = &iSetup.getData(geomEsToken_);
const TrackerTopology* tTopo = &iSetup.getData(topoEsTokenBR_);
const MagneticField* magField = &iSetup.getData(magneticFieldToken_);
currentLorentzAngle_ = &iSetup.getData(siPixelLAEsToken_);
// B-field value
// inverseBzAtOriginInGeV() returns the inverse of field z component for this map in GeV
// for the conversion please consult https://github.com/cms-sw/cmssw/blob/master/MagneticField/Engine/src/MagneticField.cc#L17
// theInverseBzAtOriginInGeV = 1.f / (at0z * 2.99792458e-3f);
// ==> at0z = 1.f / (theInverseBzAtOriginInGeV * 2.99792458e-3f)
theMagField_ = 1.f / (magField->inverseBzAtOriginInGeV() * teslaToInverseGeV_);
PixelTopologyMap map = PixelTopologyMap(geom, tTopo);
hists_.nlay = geom->numberOfLayers(PixelSubdetector::PixelBarrel);
hists_.nModules_.resize(hists_.nlay);
hists_.nLadders_.resize(hists_.nlay);
for (int i = 0; i < hists_.nlay; i++) {
hists_.nModules_[i] = map.getPXBModules(i + 1);
hists_.nLadders_[i] = map.getPXBLadders(i + 1);
}
// list of modules already filled, then return (we already entered here)
if (!hists_.BPixnewDetIds_.empty() || !hists_.FPixnewDetIds_.empty())
return;
if (!newmodulelist_.empty()) {
for (auto const& modulename : newmodulelist_) {
if (modulename.find("BPix_") != std::string::npos) {
PixelBarrelName bn(modulename, true);
const auto& detId = bn.getDetId(tTopo);
hists_.BPixnewmodulename_.push_back(modulename);
hists_.BPixnewDetIds_.push_back(detId.rawId());
hists_.BPixnewModule_.push_back(bn.moduleName());
hists_.BPixnewLayer_.push_back(bn.layerName());
} else if (modulename.find("FPix_") != std::string::npos) {
PixelEndcapName en(modulename, true);
const auto& detId = en.getDetId(tTopo);
hists_.FPixnewmodulename_.push_back(modulename);
hists_.FPixnewDetIds_.push_back(detId.rawId());
hists_.FPixnewDisk_.push_back(en.diskName());
hists_.FPixnewBlade_.push_back(en.bladeName());
}
}
}
uint count = 0;
for (const auto& id : hists_.BPixnewDetIds_) {
LogDebug("SiPixelLorentzAnglePCLHarvester") << id;
count++;
}
LogDebug("SiPixelLorentzAnglePCLHarvester") << "Stored a total of " << count << " new detIds.";
// list of modules already filled, return (we already entered here)
if (!hists_.detIdsList.empty())
return;
std::vector<uint32_t> treatedIndices;
for (const auto& det : geom->detsPXB()) {
const PixelGeomDetUnit* pixelDet = dynamic_cast<const PixelGeomDetUnit*>(det);
width_ = pixelDet->surface().bounds().thickness();
const auto& layer = tTopo->pxbLayer(pixelDet->geographicalId());
const auto& module = tTopo->pxbModule(pixelDet->geographicalId());
int i_index = module + (layer - 1) * hists_.nModules_[layer - 1];
uint32_t rawId = pixelDet->geographicalId().rawId();
// if the detId is already accounted for in the special class, do not attach it
if (std::find(hists_.BPixnewDetIds_.begin(), hists_.BPixnewDetIds_.end(), rawId) != hists_.BPixnewDetIds_.end())
continue;
if (std::find(treatedIndices.begin(), treatedIndices.end(), i_index) != treatedIndices.end()) {
hists_.detIdsList[i_index].push_back(rawId);
} else {
hists_.detIdsList.insert(std::pair<uint32_t, std::vector<uint32_t>>(i_index, {rawId}));
treatedIndices.push_back(i_index);
}
}
count = 0;
for (const auto& i : treatedIndices) {
for (const auto& id : hists_.detIdsList[i]) {
LogDebug("SiPixelLorentzAnglePCLHarvester") << id;
count++;
};
}
LogDebug("SiPixelLorentzAnglePCLHarvester") << "Stored a total of " << count << " detIds.";
}
//------------------------------------------------------------------------------
void SiPixelLorentzAnglePCLHarvester::endRun(edm::Run const& run, edm::EventSetup const& isetup) {
if (!theTrackerTopology_) {
theTrackerTopology_ = std::make_unique<TrackerTopology>(isetup.getData(topoEsTokenER_));
}
}
//------------------------------------------------------------------------------
void SiPixelLorentzAnglePCLHarvester::dqmEndJob(DQMStore::IBooker& iBooker, DQMStore::IGetter& iGetter) {
// go in the right directory
iGetter.cd();
iGetter.setCurrentFolder(dqmDir_);
// fetch the 2D histograms
for (int i_layer = 1; i_layer <= hists_.nlay; i_layer++) {
const auto& prefix_ = fmt::sprintf("%s/BPix/BPixLayer%i", dqmDir_, i_layer);
for (int i_module = 1; i_module <= hists_.nModules_[i_layer - 1]; i_module++) {
int i_index = i_module + (i_layer - 1) * hists_.nModules_[i_layer - 1];
hists_.h_drift_depth_[i_index] =
iGetter.get(fmt::format("{}/h_drift_depth_layer{}_module{}", prefix_, i_layer, i_module));
if (hists_.h_drift_depth_[i_index] == nullptr) {
edm::LogError("SiPixelLorentzAnglePCLHarvester::dqmEndJob")
<< "Failed to retrieve electron drift over depth for layer " << i_layer << ", module " << i_module << ".";
continue;
}
hists_.h_drift_depth_adc_[i_index] =
iGetter.get(fmt::format("{}/h_drift_depth_adc_layer{}_module{}", prefix_, i_layer, i_module));
hists_.h_drift_depth_adc2_[i_index] =
iGetter.get(fmt::format("{}/h_drift_depth_adc2_layer{}_module{}", prefix_, i_layer, i_module));
hists_.h_drift_depth_noadc_[i_index] =
iGetter.get(fmt::format("{}/h_drift_depth_noadc_layer{}_module{}", prefix_, i_layer, i_module));
hists_.h_mean_[i_index] = iGetter.get(fmt::format("{}/h_mean_layer{}_module{}", dqmDir_, i_layer, i_module));
hists_.h_drift_depth_[i_index]->divide(
hists_.h_drift_depth_adc_[i_index], hists_.h_drift_depth_noadc_[i_index], 1., 1., "");
}
}
// fetch the new modules 2D histograms
for (int i = 0; i < (int)hists_.BPixnewDetIds_.size(); i++) {
int new_index = i + 1 + hists_.nModules_[hists_.nlay - 1] + (hists_.nlay - 1) * hists_.nModules_[hists_.nlay - 1];
hists_.h_drift_depth_[new_index] = iGetter.get(
fmt::format("{}/h_BPixnew_drift_depth_{}", dqmDir_ + "/BPix/NewModules", hists_.BPixnewmodulename_[i]));
if (hists_.h_drift_depth_[new_index] == nullptr) {
edm::LogError("SiPixelLorentzAnglePCLHarvester")
<< "Failed to retrieve electron drift over depth for new module " << hists_.BPixnewmodulename_[i] << ".";
continue;
}
hists_.h_drift_depth_adc_[new_index] = iGetter.get(
fmt::format("{}/h_BPixnew_drift_depth_adc_{}", dqmDir_ + "/BPix/NewModules", hists_.BPixnewmodulename_[i]));
hists_.h_drift_depth_adc2_[new_index] = iGetter.get(
fmt::format("{}/h_BPixnew_drift_depth_adc2_{}", dqmDir_ + "/BPix/NewModules", hists_.BPixnewmodulename_[i]));
hists_.h_drift_depth_noadc_[new_index] = iGetter.get(
fmt::format("{}/h_BPixnew_drift_depth_noadc_{}", dqmDir_ + "/BPix/NewModules", hists_.BPixnewmodulename_[i]));
hists_.h_mean_[new_index] = iGetter.get(fmt::format("{}/h_BPixnew_mean_{}", dqmDir_, hists_.BPixnewmodulename_[i]));
hists_.h_drift_depth_[new_index]->divide(
hists_.h_drift_depth_adc_[new_index], hists_.h_drift_depth_noadc_[new_index], 1., 1., "");
}
hists_.h_bySectOccupancy_ = iGetter.get(fmt::format("{}/h_bySectorOccupancy", dqmDir_ + "/SectorMonitoring"));
if (hists_.h_bySectOccupancy_ == nullptr) {
edm::LogError("SiPixelLorentzAnglePCLHarvester") << "Failed to retrieve the hit on track occupancy.";
return;
}
int hist_drift_;
int hist_depth_;
double min_drift_;
double max_drift_;
if (hists_.h_drift_depth_adc_[1] != nullptr) {
hist_drift_ = hists_.h_drift_depth_adc_[1]->getNbinsX();
hist_depth_ = hists_.h_drift_depth_adc_[1]->getNbinsY();
min_drift_ = hists_.h_drift_depth_adc_[1]->getAxisMin(1);
max_drift_ = hists_.h_drift_depth_adc_[1]->getAxisMax(1);
} else {
hist_drift_ = 100;
hist_depth_ = 50;
min_drift_ = -500.;
max_drift_ = 500.;
}
iBooker.setCurrentFolder(fmt::format("{}Harvesting", dqmDir_));
MonitorElement* h_drift_depth_adc_slice_ =
iBooker.book1D("h_drift_depth_adc_slice", "slice of adc histogram", hist_drift_, min_drift_, max_drift_);
// book histogram of differences
MonitorElement* h_diffLA = iBooker.book1D(
"h_diffLA", "difference in #mu_{H}; #Delta #mu_{H}/#mu_{H} (old-new)/old [%];n. modules", 100, -150, 150);
// retrieve the number of bins from the other monitoring histogram
const auto& maxSect = hists_.h_bySectOccupancy_->getNbinsX();
const double lo = -0.5;
const double hi = maxSect - 0.5;
// this will be booked in the Harvesting folder
iBooker.setCurrentFolder(fmt::format("{}Harvesting/SectorMonitoring", dqmDir_));
std::string repText = "%s tan#theta_{LA}/B by sector;pixel sector;%s tan(#theta_{LA})/B [1/T]";
hists_.h_bySectMeasLA_ =
iBooker.book1D("h_LAbySector_Measured", fmt::sprintf(repText, "measured", "measured"), maxSect, lo, hi);
hists_.h_bySectSetLA_ =
iBooker.book1D("h_LAbySector_Accepted", fmt::sprintf(repText, "accepted", "accepted"), maxSect, lo, hi);
hists_.h_bySectRejectLA_ =
iBooker.book1D("h_LAbySector_Rejected", fmt::sprintf(repText, "rejected", "rejected"), maxSect, lo, hi);
hists_.h_bySectLA_ = iBooker.book1D("h_LAbySector", fmt::sprintf(repText, "payload", "payload"), maxSect, lo, hi);
hists_.h_bySectDeltaLA_ =
iBooker.book1D("h_deltaLAbySector", fmt::sprintf(repText, "#Delta", "#Delta"), maxSect, lo, hi);
hists_.h_bySectChi2_ =
iBooker.book1D("h_bySectorChi2", "Fit #chi^{2}/ndf by sector;pixel sector; fit #chi^{2}/ndf", maxSect, lo, hi);
hists_.h_bySectFitStatus_ =
iBooker.book1D("h_bySectFitStatus", "Fit Status by sector;pixel sector; fit status", maxSect, lo, hi);
hists_.h_bySectCovMatrixStatus_ = iBooker.book1D(
"h_bySectorCovMatrixStatus", "Fit Covariance Matrix Status by sector;pixel sector; fit status", maxSect, lo, hi);
hists_.h_bySectDriftError_ =
iBooker.book1D("h_bySectorDriftError",
"square error on the measured drift at half-width by sector;pixel sector;#Delta d^{2}(t/2)",
maxSect,
lo,
hi);
// set the bin labels for the fit quality dashboard histogram
std::vector<std::string> labels = {"#chi^{2}!=0", "#chi^{2} cut", "covStat>=2", "n. entries cut"};
hists_.h_bySectFitQuality_ = iBooker.book2D("h_bySectFitQuality",
"Fit quality by sector;pixel sector;quality cut",
maxSect,
lo,
hi,
labels.size(),
-0.5,
labels.size() - 0.5);
// copy the bin labels from the occupancy histogram
for (int bin = 1; bin <= maxSect; bin++) {
const auto& binName = hists_.h_bySectOccupancy_->getTH1()->GetXaxis()->GetBinLabel(bin);
hists_.h_bySectMeasLA_->setBinLabel(bin, binName);
hists_.h_bySectSetLA_->setBinLabel(bin, binName);
hists_.h_bySectRejectLA_->setBinLabel(bin, binName);
hists_.h_bySectLA_->setBinLabel(bin, binName);
hists_.h_bySectDeltaLA_->setBinLabel(bin, binName);
hists_.h_bySectChi2_->setBinLabel(bin, binName);
hists_.h_bySectFitStatus_->setBinLabel(bin, binName);
hists_.h_bySectCovMatrixStatus_->setBinLabel(bin, binName);
hists_.h_bySectDriftError_->setBinLabel(bin, binName);
hists_.h_bySectFitQuality_->setBinLabel(bin, binName, 1);
}
for (unsigned int binY = 1; binY <= labels.size(); binY++) {
hists_.h_bySectFitQuality_->setBinLabel(binY, labels[binY - 1], 2);
}
// this will be booked in the Harvesting folder
iBooker.setCurrentFolder(fmt::format("{}Harvesting/LorentzAngleMaps", dqmDir_));
for (int i = 0; i < hists_.nlay; i++) {
std::string repName = "h2_byLayerLA_%i";
std::string repText = "BPix Layer %i tan#theta_{LA}/B;module number;ladder number;tan#theta_{LA}/B [1/T]";
hists_.h2_byLayerLA_.emplace_back(iBooker.book2D(fmt::sprintf(repName, i + 1),
fmt::sprintf(repText, i + 1),
hists_.nModules_[i],
0.5,
hists_.nModules_[i] + 0.5,
hists_.nLadders_[i],
0.5,
hists_.nLadders_[i] + 0.5));
repName = "h2_byLayerDiff_%i";
repText = "BPix Layer %i #Delta#mu_{H}/#mu_{H};module number;ladder number;#Delta#mu_{H}/#mu_{H} [%%]";
hists_.h2_byLayerDiff_.emplace_back(iBooker.book2D(fmt::sprintf(repName, i + 1),
fmt::sprintf(repText, i + 1),
hists_.nModules_[i],
0.5,
hists_.nModules_[i] + 0.5,
hists_.nLadders_[i],
0.5,
hists_.nLadders_[i] + 0.5));
}
// clang-format off
edm::LogPrint("LorentzAngle") << "module" << "\t" << "layer" << "\t"
<< "offset" << "\t" << "e0" << "\t"
<< "slope" << "\t" << "e1" << "\t"
<< "rel.err" << "\t" << "pull" << "\t"
<< "p2" << "\t" << "e2" << "\t"
<< "p3" << "\t" << "e3" << "\t"
<< "p4" << "\t" << "e4" << "\t"
<< "p5" << "\t" << "e5" << "\t"
<< "chi2" << "\t" << "prob" << "\t"
<< "newDetId" << "\t" << "tan(LA)" << "\t"
<< "Error(LA)" ;
// clang-format on
// payload to be written out
std::shared_ptr<SiPixelLorentzAngle> LorentzAngle = std::make_shared<SiPixelLorentzAngle>();
// fill the map of simulation values
double p1_simul_newmodule = 0.294044;
double p1_simul[hists_.nlay + 1][hists_.nModules_[hists_.nlay - 1]];
for (int i_layer = 1; i_layer <= hists_.nlay; i_layer++) {
for (int i_module = 1; i_module <= hists_.nModules_[i_layer - 1]; i_module++) {
if (i_layer == 1)
p1_simul[i_layer - 1][i_module - 1] = 0.436848;
else if (i_layer == 2)
p1_simul[i_layer - 1][i_module - 1] = 0.25802;
else if (i_layer == 3 && i_module <= 4)
p1_simul[i_layer - 1][i_module - 1] = 0.29374;
else if (i_layer == 3 && i_module >= 5)
p1_simul[i_layer - 1][i_module - 1] = 0.31084;
else if (i_layer == 4 && i_module <= 4)
p1_simul[i_layer - 1][i_module - 1] = 0.29944;
else
p1_simul[i_layer - 1][i_module - 1] = 0.31426;
}
}
// fictitious n-th layer to store the values of new modules
for (int i_module = 1; i_module <= hists_.nModules_[hists_.nlay - 1]; i_module++) {
p1_simul[hists_.nlay][i_module - 1] = p1_simul_newmodule;
}
// loop over "new" BPix modules
for (int j = 0; j < (int)hists_.BPixnewDetIds_.size(); j++) {
//uint32_t rawId = hists_.BPixnewDetIds_[j];
int new_index = j + 1 + hists_.nModules_[hists_.nlay - 1] + (hists_.nlay - 1) * hists_.nModules_[hists_.nlay - 1];
if (hists_.h_drift_depth_adc_[new_index] == nullptr)
continue;
for (int i = 1; i <= hist_depth_; i++) {
findMean(h_drift_depth_adc_slice_, i, new_index);
}
// fit the distributions and store the LA in the payload
const auto& res = fitAndStore(LorentzAngle, new_index, hists_.BPixnewLayer_[j], hists_.BPixnewModule_[j]);
edm::LogPrint("SiPixelLorentzAngle") << std::setprecision(4) << hists_.BPixnewModule_[j] << "\t"
<< hists_.BPixnewLayer_[j] << "\t" << res.p0 << "\t" << res.e0 << "\t"
<< res.p1 << std::setprecision(3) << "\t" << res.e1 << "\t"
<< res.e1 / res.p1 * 100. << "\t"
<< (res.p1 - p1_simul[hists_.nlay][0]) / res.e1 << "\t" << res.p2 << "\t"
<< res.e2 << "\t" << res.p3 << "\t" << res.e3 << "\t" << res.p4 << "\t"
<< res.e4 << "\t" << res.p5 << "\t" << res.e5 << "\t" << res.chi2 << "\t"
<< res.prob << "\t" << hists_.BPixnewDetIds_[j] << "\t" << res.tan_LA << "\t"
<< res.error_LA;
} // loop on BPix new modules
//loop over modules and layers to fit the lorentz angle
for (int i_layer = 1; i_layer <= hists_.nlay; i_layer++) {
for (int i_module = 1; i_module <= hists_.nModules_[i_layer - 1]; i_module++) {
int i_index = i_module + (i_layer - 1) * hists_.nModules_[i_layer - 1];
if (hists_.h_drift_depth_adc_[i_index] == nullptr)
continue;
//loop over bins in depth (z-local-coordinate) (in order to fit slices)
for (int i = 1; i <= hist_depth_; i++) {
findMean(h_drift_depth_adc_slice_, i, i_index);
} // end loop over bins in depth
// fit the distributions and store the LA in the payload
const auto& res = fitAndStore(LorentzAngle, i_index, i_layer, i_module);
edm::LogPrint("SiPixelLorentzAngle")
<< std::setprecision(4) << i_module << "\t" << i_layer << "\t" << res.p0 << "\t" << res.e0 << "\t" << res.p1
<< std::setprecision(3) << "\t" << res.e1 << "\t" << res.e1 / res.p1 * 100. << "\t"
<< (res.p1 - p1_simul[i_layer - 1][i_module - 1]) / res.e1 << "\t" << res.p2 << "\t" << res.e2 << "\t"
<< res.p3 << "\t" << res.e3 << "\t" << res.p4 << "\t" << res.e4 << "\t" << res.p5 << "\t" << res.e5 << "\t"
<< res.chi2 << "\t" << res.prob << "\t"
<< "null"
<< "\t" << res.tan_LA << "\t" << res.error_LA;
}
} // end loop over modules and layers
// fill the rest of DetIds not filled above (for the moment FPix)
const auto& currentLAMap = currentLorentzAngle_->getLorentzAngles();
const auto& newLAMap = LorentzAngle->getLorentzAngles();
std::vector<unsigned int> currentLADets;
std::vector<unsigned int> newLADets;
std::transform(currentLAMap.begin(),
currentLAMap.end(),
std::back_inserter(currentLADets),
[](const std::map<unsigned int, float>::value_type& pair) { return pair.first; });
std::transform(newLAMap.begin(),
newLAMap.end(),
std::back_inserter(newLADets),
[](const std::map<unsigned int, float>::value_type& pair) { return pair.first; });
std::vector<unsigned int> notCommon;
std::set_symmetric_difference(
currentLADets.begin(), currentLADets.end(), newLADets.begin(), newLADets.end(), std::back_inserter(notCommon));
for (const auto& id : notCommon) {
float fPixLorentzAnglePerTesla_ = currentLorentzAngle_->getLorentzAngle(id);
if (!LorentzAngle->putLorentzAngle(id, fPixLorentzAnglePerTesla_)) {
edm::LogError("SiPixelLorentzAnglePCLHarvester")
<< "[SiPixelLorentzAnglePCLHarvester::dqmEndJob] filling rest of payload: detid already exists";
}
}
for (const auto& id : newLADets) {
float deltaMuHoverMuH = (currentLorentzAngle_->getLorentzAngle(id) - LorentzAngle->getLorentzAngle(id)) /
currentLorentzAngle_->getLorentzAngle(id);
h_diffLA->Fill(deltaMuHoverMuH * 100.f);
}
bool isPayloadChanged{false};
// fill the 2D output Lorentz Angle maps and check if the payload is different from the input one
for (const auto& [id, value] : LorentzAngle->getLorentzAngles()) {
DetId ID = DetId(id);
if (ID.subdetId() == PixelSubdetector::PixelBarrel) {
const auto& layer = theTrackerTopology_->pxbLayer(id);
const auto& ladder = theTrackerTopology_->pxbLadder(id);
const auto& module = theTrackerTopology_->pxbModule(id);
hists_.h2_byLayerLA_[layer - 1]->setBinContent(module, ladder, value);
float deltaMuHoverMuH =
(currentLorentzAngle_->getLorentzAngle(id) - value) / currentLorentzAngle_->getLorentzAngle(id);
hists_.h2_byLayerDiff_[layer - 1]->setBinContent(module, ladder, deltaMuHoverMuH * 100.f);
if (!isPayloadChanged && (deltaMuHoverMuH != 0.f))
isPayloadChanged = true;
}
}
if (isPayloadChanged) {
// fill the DB object record
edm::Service<cond::service::PoolDBOutputService> mydbservice;
if (mydbservice.isAvailable()) {
try {
mydbservice->writeOneIOV(*LorentzAngle, mydbservice->currentTime(), recordName_);
} catch (const cond::Exception& er) {
edm::LogError("SiPixelLorentzAngleDB") << er.what();
} catch (const std::exception& er) {
edm::LogError("SiPixelLorentzAngleDB") << "caught std::exception " << er.what();
}
} else {
edm::LogError("SiPixelLorentzAngleDB") << "Service is unavailable";
}
} else {
edm::LogPrint("SiPixelLorentzAngleDB") << __PRETTY_FUNCTION__ << " there is no new valid measurement to append! ";
}
}
//------------------------------------------------------------------------------
void SiPixelLorentzAnglePCLHarvester::findMean(MonitorElement* h_drift_depth_adc_slice_, int i, int i_ring) {
double nentries = 0;
h_drift_depth_adc_slice_->Reset();
int hist_drift_ = h_drift_depth_adc_slice_->getNbinsX();
// determine sigma and sigma^2 of the adc counts and average adc counts
//loop over bins in drift width
for (int j = 1; j <= hist_drift_; j++) {
if (hists_.h_drift_depth_noadc_[i_ring]->getBinContent(j, i) >= 1) {
double adc_error2 = (hists_.h_drift_depth_adc2_[i_ring]->getBinContent(j, i) -
hists_.h_drift_depth_adc_[i_ring]->getBinContent(j, i) *
hists_.h_drift_depth_adc_[i_ring]->getBinContent(j, i) /
hists_.h_drift_depth_noadc_[i_ring]->getBinContent(j, i)) /
hists_.h_drift_depth_noadc_[i_ring]->getBinContent(j, i);
hists_.h_drift_depth_adc_[i_ring]->setBinError(j, i, sqrt(adc_error2));
double error2 = adc_error2 / (hists_.h_drift_depth_noadc_[i_ring]->getBinContent(j, i) - 1.);
hists_.h_drift_depth_[i_ring]->setBinError(j, i, sqrt(error2));
} else {
hists_.h_drift_depth_[i_ring]->setBinError(j, i, 0);
hists_.h_drift_depth_adc_[i_ring]->setBinError(j, i, 0);
}
h_drift_depth_adc_slice_->setBinContent(j, hists_.h_drift_depth_adc_[i_ring]->getBinContent(j, i));
h_drift_depth_adc_slice_->setBinError(j, hists_.h_drift_depth_adc_[i_ring]->getBinError(j, i));
nentries += hists_.h_drift_depth_noadc_[i_ring]->getBinContent(j, i);
} // end loop over bins in drift width
double mean = h_drift_depth_adc_slice_->getMean(1);
double error = 0;
if (nentries != 0) {
error = h_drift_depth_adc_slice_->getRMS(1) / std::sqrt(nentries);
}
hists_.h_mean_[i_ring]->setBinContent(i, mean);
hists_.h_mean_[i_ring]->setBinError(i, error);
h_drift_depth_adc_slice_->Reset(); // clear again after extracting the parameters
}
//------------------------------------------------------------------------------
SiPixelLAHarvest::fitResults SiPixelLorentzAnglePCLHarvester::fitAndStore(
std::shared_ptr<SiPixelLorentzAngle> theLAPayload, int i_index, int i_layer, int i_module) {
// output results
SiPixelLAHarvest::fitResults res;
double half_width = width_ * siPixelLACalibration::cmToum / 2.f; // pixel half thickness in units of micro meter
if (doChebyshevFit_) {
const int npar = order_ + 1;
auto cheb = std::make_unique<siPixelLACalibration::Chebyshev>(order_, theFitRange_.first, theFitRange_.second);
f1_ = std::make_unique<TF1>("f1", cheb.release(), theFitRange_.first, theFitRange_.second, npar, "Chebyshev");
} else {
f1_ = std::make_unique<TF1>("f1",
"[0] + [1]*x + [2]*x*x + [3]*x*x*x + [4]*x*x*x*x + [5]*x*x*x*x*x",
theFitRange_.first,
theFitRange_.second);
}
// DO NOT REMOVE
// this is needed to ensure it stays synch with the render plugin:
// https://github.com/dmwm/deployment/blob/master/dqmgui/style/SiPixelLorentzAnglePCLRenderPlugin.cc#L199
// assert(std::string{f1_->GetName()}=="f1");
assert(strcmp(f1_->GetName(), "f1") == 0);
f1_->SetParName(0, "offset");
f1_->SetParName(1, "tan#theta_{LA}");
f1_->SetParName(2, "quad term");
f1_->SetParName(3, "cubic term");
f1_->SetParName(4, "quartic term");
f1_->SetParName(5, "quintic term");
f1_->SetParameter(0, 0);
f1_->SetParError(0, 0);
f1_->SetParameter(1, 0.4);
f1_->SetParError(1, 0);
f1_->SetParameter(2, 0.0);
f1_->SetParError(2, 0);
f1_->SetParameter(3, 0.0);
f1_->SetParError(3, 0);
f1_->SetParameter(4, 0.0);
f1_->SetParError(4, 0);
f1_->SetParameter(5, 0.0);
f1_->SetParError(5, 0);
f1_->SetChisquare(0);
TFitResultPtr result = hists_.h_mean_[i_index]->getTH1()->Fit(f1_.get(), "ERQS");
if (result.Get()) {
res.fitStatus = result->Status();
edm::LogInfo("SiPixelLorentzAnglePCLHarvester") << "Fit status: " << res.fitStatus;
} else {
edm::LogError("SiPixelLorentzAnglePCLHarvester") << "Could not retrieve the fit status! Setting it to 0 by default";
res.fitStatus = -1;
}
if (res.fitStatus >= 0) {
res.covMatrixStatus = result->CovMatrixStatus();
} else {
res.covMatrixStatus = SiPixelLAHarvest::kUndefined;
}
// compute the error on the drift-at-half-width parameter (d^2)
float dSq{0.};
float cov00{0.}; // needed later for the error on the tan(theta_LA)
if (!doChebyshevFit_) {
if (res.covMatrixStatus > SiPixelLAHarvest::kNotCalculated) {
for (int k = 0; k < order_; k++) {
for (int l = 0; l < order_; l++) {
dSq += (std::pow(half_width, k) * std::pow(half_width, l) * result->CovMatrix(k, l));
}
}
cov00 = result->CovMatrix(0, 0);
} // if the covariance matrix is valid
} // compute the error on the drift-at-half width only for the regular polynomial fit
res.dSq = dSq;
res.p0 = f1_->GetParameter(0);
res.e0 = f1_->GetParError(0);
res.p1 = f1_->GetParameter(1);
res.e1 = f1_->GetParError(1);
res.p2 = f1_->GetParameter(2);
res.e2 = f1_->GetParError(2);
res.p3 = f1_->GetParameter(3);
res.e3 = f1_->GetParError(3);
res.p4 = f1_->GetParameter(4);
res.e4 = f1_->GetParError(4);
res.p5 = f1_->GetParameter(5);
res.e5 = f1_->GetParError(5);
res.chi2 = f1_->GetChisquare();
res.ndf = f1_->GetNDF();
res.prob = f1_->GetProb();
res.redChi2 = res.ndf > 0. ? res.chi2 / res.ndf : 0.;
double f1_halfwidth = res.p0 + res.p1 * half_width + res.p2 * pow(half_width, 2) + res.p3 * pow(half_width, 3) +
res.p4 * pow(half_width, 4) + res.p5 * pow(half_width, 5);
double f1_zerowidth = res.p0;
// tan_LA = (f1(x = half_width) - f1(x = 0)) / (half_width - 0)
res.tan_LA = (f1_halfwidth - f1_zerowidth) / half_width;
double errsq_LA =
(pow(res.e1, 2) + pow((half_width * res.e2), 2) + pow((half_width * half_width * res.e3), 2) +
pow((half_width * half_width * half_width * res.e4), 2) +
pow((half_width * half_width * half_width * half_width * res.e5), 2)); // Propagation of uncertainty
res.error_LA = doChebyshevFit_ ? sqrt(errsq_LA) : sqrt(res.dSq + cov00) / half_width;
hists_.h_bySectMeasLA_->setBinContent(i_index, (res.tan_LA / theMagField_));
hists_.h_bySectMeasLA_->setBinError(i_index, (res.error_LA / theMagField_));
hists_.h_bySectChi2_->setBinContent(i_index, res.redChi2);
hists_.h_bySectChi2_->setBinError(i_index, 0.); // no errors
hists_.h_bySectFitStatus_->setBinContent(i_index, res.fitStatus);
hists_.h_bySectFitStatus_->setBinError(i_index, 0.); // no errors
hists_.h_bySectCovMatrixStatus_->setBinContent(i_index, res.covMatrixStatus);
hists_.h_bySectCovMatrixStatus_->setBinError(i_index, 0.); // no errors
hists_.h_bySectDriftError_->setBinContent(i_index, res.dSq);
hists_.h_bySectDriftError_->setBinError(i_index, 0.);
res.nentries = hists_.h_bySectOccupancy_->getBinContent(i_index); // number of on track hits in that sector
bool isNew = (i_index > hists_.nlay * hists_.nModules_[hists_.nlay - 1]);
int shiftIdx = i_index - hists_.nlay * hists_.nModules_[hists_.nlay - 1] - 1;
LogDebug("SiPixelLorentzAnglePCLHarvester")
<< " isNew: " << isNew << " i_index: " << i_index << " shift index: " << shiftIdx;
const auto& detIdsToFill =
isNew ? std::vector<unsigned int>({hists_.BPixnewDetIds_[shiftIdx]}) : hists_.detIdsList[i_index];
LogDebug("SiPixelLorentzAnglePCLHarvester")
<< "index: " << i_index << " i_module: " << i_module << " i_layer: " << i_layer;
for (const auto& id : detIdsToFill) {
LogDebug("SiPixelLorentzAnglePCLHarvester") << id << ",";
}
// no errors on the following MEs
hists_.h_bySectSetLA_->setBinError(i_index, 0.);
hists_.h_bySectRejectLA_->setBinError(i_index, 0.);
hists_.h_bySectLA_->setBinError(i_index, 0.);
hists_.h_bySectDeltaLA_->setBinError(i_index, 0.);
float LorentzAnglePerTesla_;
float currentLA = currentLorentzAngle_->getLorentzAngle(detIdsToFill.front());
// fill the fit status dashboard
bool goodFit = isFitGood(res);
for (unsigned int i_bin = 0; i_bin < res.quality.size(); i_bin++) {
if (res.quality[i_bin]) {
hists_.h_bySectFitQuality_->setBinContent(i_index, i_bin + 1, 1.);
} else {
hists_.h_bySectFitQuality_->setBinContent(i_index, i_bin + 1, 0.);
}
}
// if the fit quality is OK
if (goodFit) {
LorentzAnglePerTesla_ = res.tan_LA / theMagField_;
// fill the LA actually written to payload
hists_.h_bySectSetLA_->setBinContent(i_index, LorentzAnglePerTesla_);
hists_.h_bySectRejectLA_->setBinContent(i_index, 0.);
hists_.h_bySectLA_->setBinContent(i_index, LorentzAnglePerTesla_);
const auto& deltaLA = (LorentzAnglePerTesla_ - currentLA);
hists_.h_bySectDeltaLA_->setBinContent(i_index, deltaLA);
for (const auto& id : detIdsToFill) {
if (!theLAPayload->putLorentzAngle(id, LorentzAnglePerTesla_)) {
edm::LogError("SiPixelLorentzAnglePCLHarvester") << "[SiPixelLorentzAnglePCLHarvester::fitAndStore]: detid ("
<< i_layer << "," << i_module << ") already exists";
}
}
} else {
// just copy the values from the existing payload
hists_.h_bySectSetLA_->setBinContent(i_index, 0.);
hists_.h_bySectRejectLA_->setBinContent(i_index, (res.tan_LA / theMagField_));
hists_.h_bySectLA_->setBinContent(i_index, currentLA);
hists_.h_bySectDeltaLA_->setBinContent(i_index, 0.);
for (const auto& id : detIdsToFill) {
LorentzAnglePerTesla_ = currentLorentzAngle_->getLorentzAngle(id);
if (!theLAPayload->putLorentzAngle(id, LorentzAnglePerTesla_)) {
edm::LogError("SiPixelLorentzAnglePCLHarvester") << "[SiPixelLorentzAnglePCLHarvester::fitAndStore]: detid ("
<< i_layer << "," << i_module << ") already exists";
}
}
}
// return the struct of fit details
return res;
}
// function to check the fit quality
bool SiPixelLorentzAnglePCLHarvester::isFitGood(SiPixelLAHarvest::fitResults& res) {
// check if reduced chi2 is different from 0.
const bool notZeroCut = (res.redChi2 != 0.);
// check the result of the chi2 only if doing the chebyshev fit
const bool chi2Cut = doChebyshevFit_ ? (res.redChi2 < fitChi2Cut_) : true;
// check the covariance matrix status
const bool covMatrixStatusCut = (res.covMatrixStatus >= SiPixelLAHarvest::kMadePosDef);
// check that the number of entries is larger than the minimum amount
const bool nentriesCut = (res.nentries > minHitsCut_);
if (notZeroCut) {
res.setQualityCutBit(SiPixelLAHarvest::kZeroChi2);
}
if (chi2Cut) {
res.setQualityCutBit(SiPixelLAHarvest::kChi2Cut);
}
if (covMatrixStatusCut) {
res.setQualityCutBit(SiPixelLAHarvest::kCovStatus);
}
if (nentriesCut) {
res.setQualityCutBit(SiPixelLAHarvest::kNentries);
}
// check if all the bits are set
return (res.quality.all());
}
//------------------------------------------------------------------------------
void SiPixelLorentzAnglePCLHarvester::fillDescriptions(edm::ConfigurationDescriptions& descriptions) {
edm::ParameterSetDescription desc;
desc.setComment("Harvester module of the SiPixel Lorentz Angle PCL monitoring workflow");
desc.add<std::vector<std::string>>("newmodulelist", {})->setComment("the list of DetIds for new sensors");
desc.add<std::string>("dqmDir", "AlCaReco/SiPixelLorentzAngle")->setComment("the directory of PCL Worker output");
desc.add<bool>("doChebyshevFit", false)->setComment("use Chebyshev polynomials for the dript vs depth fit");
desc.add<int>("order", 5)->setComment("order of the Chebyshev polynomial used for the fit");
desc.add<double>("fitChi2Cut", 20.)->setComment("cut on fit chi2/ndof to accept measurement");
desc.add<std::vector<double>>("fitRange", {5., 280.})->setComment("range of depths to perform the LA fit");
desc.add<int>("minHitsCut", 10000)->setComment("cut on minimum number of on-track hits to accept measurement");
desc.add<std::string>("record", "SiPixelLorentzAngleRcd")->setComment("target DB record");
descriptions.addWithDefaultLabel(desc);
}
DEFINE_FWK_MODULE(SiPixelLorentzAnglePCLHarvester);
|