1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
|
double fitFunction(double *x, double *par)
{
double a;
if(x[0] < par[0]) a = par[1] + (x[0] - par[0]) * par[2] + (x[0] - par[0]) *(x[0] - par[0]) * par[4] + (x[0] - par[0]) * (x[0] - par[0]) *(x[0] - par[0]) * par[6];
else a = par[1] + (x[0] - par[0]) * par[3] + (x[0] - par[0]) * (x[0] - par[0]) * par[5] + (x[0] - par[0]) * (x[0] - par[0]) * (x[0] - par[0]) * par[7];
return a;
}
double fitFunction1(double *x, double *par)
{
double a;
if(x[0] < par[0]) a = par[1] + (x[0] - par[0]) * par[2] + (x[0] - par[0]) *(x[0] - par[0]) * par[4];
else a = par[1] + (x[0] - par[0]) * par[3] + (x[0] - par[0]) * (x[0] - par[0]) * par[5];
return a;
}
double fitFunction2(double *x, double *par)
{
double a;
if(x[0] < par[0]) a = par[1] + (x[0] - par[0]) * par[2];
else a = par[1] + (x[0] - par[0]) * par[3];
return a;
}
double fitFunction3(double *x, double *par)
{
return par[1] + TMath::Sqrt(par[2] + par[3] * (x[0] - par[0]) * (x[0] - par[0]) );
}
Double_t fitf(Double_t *x,Double_t *par)
{
Double_t arg;
if(x[0] < par[3]) {
arg = par[1]*par[1] + par[2]*par[2]*(x[0]-par[3])*(x[0]-par[3]);
} else {
arg = par[1]*par[1] + par[4]*par[4]*(x[0]-par[3])*(x[0]-par[3]);
}
Double_t fitval = par[0]+sqrt(arg);
return fitval;
}
int calculateLorentzAngleFromClusterSize()
{
int nhits = 0;
// setTDRStyle();
cout << "hallo" << endl;
// TFile *f = new TFile("/nfs/data5/wilke/TrackerPointing_ALL_V9/lorentzangle.root");
TFile *f = new TFile("/data1/Users/wilke/LorentzAngle/CMSSW_2_2_3/lorentzangle_0T.root");
f->cd();
//
TF1 *f1 = new TF1("f1",fitFunction,80, 150, 8);
f1->SetParName(0,"p0");
f1->SetParName(1,"p1");
f1->SetParName(2,"p2");
f1->SetParName(3,"p3");
f1->SetParName(4,"p4");
f1->SetParName(5,"p5");
f1->SetParameters(110,1,-0.01,0.01);
TF1 *f2 = new TF1("f2",fitFunction1, -1., 1.0, 6);
f2->SetParName(0,"p0");
f2->SetParName(1,"p1");
f2->SetParName(2,"p2");
f2->SetParName(3,"p3");
f2->SetParameters(-0.5, 1., -1.,1.0);
TF1 *func = new TF1("func", fitf, -1., 1.0, 5);
func->SetParameters(1.,0.1,1.6,-0.4,1.2);
func->SetParNames("Offset","RMS Constant","SlopeL","cot(alpha)_min","SlopeR");
TF1 *func_beta = new TF1("func_beta", fitf, -1., 1, 5);
func_beta->SetParameters(1.,0.1,1.6,-0.,1.2);
func_beta->SetParNames("Offset","RMS Constant","SlopeL","cot(beta)_min","SlopeR");
int hist_drift_ = 200;
int hist_depth_ = 50;
double min_drift_ = -1000;
double max_drift_ = 1000;
double min_depth_ = -100;
double max_depth_ = 400;
double width_ = 0.0285;
int anglebins = 90;
int anglebinscotan = 120;
TH2F * h_sizex_alpha = new TH2F("h_sizex_alpha", "h_sizex_alpha", anglebins, 0, 180,10 , .5, 10.5);
TH2F * h_sizex_alpha_cotan = new TH2F("h_sizex_cotanalpha", "h_sizex_cotanalpha", anglebinscotan, -3, 3,10 , .5, 10.5);
TH2F * h_sizey_beta_cotan = new TH2F("h_sizey_cotanbeta", "h_sizey_cotanbeta", anglebinscotan, -3, 3,10 , .5, 10.5);
TH2F * h_alpha_beta_cotan = new TH2F("h_cotanalpha_cotanbeta", "h_cotanalpha_cotanbeta", 100, -5, 5,100 , -5, 5);
TH2F * h_alpha_beta = new TH2F("h_alpha_beta", "h_alpha_beta", anglebins, -180, 180,anglebins, -180, 180);
TH1F * h_alpha_cotan = new TH1F("h_cotanalpha", "h_cotanalpha", anglebinscotan, -3, 3 );
TH1F * h_beta_cotan = new TH1F("h_cotanbeta", "h_cotanbeta", anglebinscotan, -3, 3 );
TH1F * h_alpha = new TH1F("h_alpha", "h_alpha", anglebins, -180, 180 );
TH1F * h_beta = new TH1F("h_beta", "h_beta", anglebins, -180, 180 );
TH1F * h_chi2 = new TH1F("h_chi2", "h_chi2", 200, 0, 10 );
TH1F * h_charge = new TH1F("h_chi2", "h_chi2", 200, 0, 200 );
int run_;
int event_;
int module_;
int ladder_;
int layer_;
int isflipped_;
float pt_;
float eta_;
float phi_;
double chi2_;
double ndof_;
const int maxpix = 300;
struct Pixinfo
{
int npix;
float row[300];
float col[300];
float adc[300];
float x[300];
float y[300];
} pixinfo_;
struct Hit{
float x;
float y;
double alpha;
double beta;
double gamma;
};
Hit simhit_, trackhit_;
struct Clust {
float x;
float y;
float charge;
int size_x;
int size_y;
int maxPixelCol;
int maxPixelRow;
int minPixelCol;
int minPixelRow;
} clust_;
struct Rechit {
float x;
float y;
} rechit_;
// fill the histrograms with the ntpl
TTree * LATree = (TTree*)f->Get("SiPixelLorentzAngleTree_");
int nentries = LATree->GetEntries();
LATree->SetBranchAddress("run", &run_);
LATree->SetBranchAddress("event", &event_);
LATree->SetBranchAddress("module", &module_);
LATree->SetBranchAddress("ladder", &ladder_);
LATree->SetBranchAddress("layer", &layer_);
LATree->SetBranchAddress("isflipped", &isflipped_);
LATree->SetBranchAddress("pt", &pt_);
LATree->SetBranchAddress("eta", &eta_);
LATree->SetBranchAddress("phi", &phi_);
LATree->SetBranchAddress("chi2", &chi2_);
LATree->SetBranchAddress("ndof", &ndof_);
LATree->SetBranchAddress("trackhit", &trackhit_);
LATree->SetBranchAddress("simhit", &simhit_);
LATree->SetBranchAddress("npix", &pixinfo_.npix);
LATree->SetBranchAddress("rowpix", pixinfo_.row);
LATree->SetBranchAddress("colpix", pixinfo_.col);
LATree->SetBranchAddress("adc", pixinfo_.adc);
LATree->SetBranchAddress("xpix", pixinfo_.x);
LATree->SetBranchAddress("ypix", pixinfo_.y);
LATree->SetBranchAddress("clust", &clust_);
LATree->SetBranchAddress("rechit", &rechit_);
cout << "Running over " << nentries << " hits" << endl;
ofstream fAngles( "cotanangles.txt", ios::trunc );
for(int ientrie = 0 ; ientrie < nentries ; ientrie++){
LATree->GetEntry(ientrie);
bool large_pix = false;
// is it a large pixel (needs to be excluded)
for (int j = 0; j < pixinfo_.npix; j++){
int colpos = static_cast<int>(pixinfo_.col[j]);
if (pixinfo_.row[j] == 0 || pixinfo_.row[j] == 79 || pixinfo_.row[j] == 80 || pixinfo_.row[j] == 159 || colpos % 52 == 0 || colpos % 52 == 51 ){
large_pix = true;
}
}
// is it one of the problematic half ladders? (needs to be excluded)
//if( (layer_ == 1 && (ladder_ == 5 || ladder_ == 6 || ladder_ == 15 || ladder_ == 16)) ||(layer_ == 2 && (ladder_ == 8 || ladder_ == 9 || ladder_ == 24 || ladder_ == 25)) ||(layer_ == 3 && (ladder_ ==11 || ladder_ == 12 || ladder_ == 33 || ladder_ == 34)) ) {
// continue;
//s }
if(clust_.size_y < 2) continue;
// double residual = TMath::Sqrt( (trackhit_.x - rechit_.x) * (trackhit_.x - rechit_.x) + (trackhit_.y - rechit_.y) * (trackhit_.y - rechit_.y) );
//if(!isflipped_) continue;
if(!large_pix){
h_chi2->Fill((chi2_/ndof_));
h_charge->Fill(clust_.charge);
}
if( (chi2_/ndof_) < 2 && !large_pix ){
nhits++;
if(trackhit_.alpha > 0){
h_sizex_alpha->Fill(trackhit_.alpha*180. / TMath::Pi(),clust_.size_x);
h_sizex_alpha_cotan->Fill(TMath::Tan(TMath::Pi()/2. - trackhit_.alpha),clust_.size_x);
h_sizey_beta_cotan->Fill(TMath::Tan(TMath::Pi()/2. - trackhit_.beta),clust_.size_y);
h_alpha_cotan->Fill(TMath::Tan(TMath::Pi()/2. - trackhit_.alpha));
h_beta_cotan->Fill(TMath::Tan(TMath::Pi()/2. - trackhit_.beta));
fAngles << TMath::Tan(TMath::Pi()/2. - trackhit_.alpha) << "\t" << TMath::Tan(TMath::Pi()/2. - trackhit_.beta) << endl;
}
else{
h_sizex_alpha->Fill( (trackhit_.alpha + TMath::Pi())*180. / TMath::Pi(),clust_.size_x);
h_sizex_alpha_cotan->Fill(TMath::Tan(TMath::Pi()/2. - trackhit_.alpha),clust_.size_x);
h_sizey_beta_cotan->Fill(TMath::Tan(TMath::Pi()/2. - trackhit_.beta),clust_.size_y);
h_alpha_cotan->Fill(TMath::Tan(TMath::Pi()/2. - trackhit_.alpha));
h_beta_cotan->Fill(TMath::Tan(TMath::Pi()/2. - trackhit_.beta));
fAngles << TMath::Tan(TMath::Pi()/2. - trackhit_.alpha) << "\t" << TMath::Tan(TMath::Pi()/2. - trackhit_.beta) << endl;
}
h_alpha->Fill( trackhit_.alpha*180. / TMath::Pi());
h_beta->Fill( trackhit_.beta*180. / TMath::Pi());
h_alpha_beta->Fill( trackhit_.alpha*180. / TMath::Pi(), trackhit_.beta*180. / TMath::Pi());
if(TMath::Tan(TMath::Pi()/2. - trackhit_.alpha) < -0.3 && TMath::Tan(TMath::Pi()/2. - trackhit_.alpha) > -0.5) h_alpha_beta_cotan->Fill(TMath::Tan(TMath::Pi()/2. - trackhit_.alpha), TMath::Tan(TMath::Pi()/2. - trackhit_.beta));
}
}
cout << TMath::Pi()/2. << endl;
TH1F * h_mean = new TH1F("h_mean","h_mean", anglebins, 0, 180);
TH1F * h_slice_ = new TH1F("h_slice","h_slice", 10, .5, 10.5);
TH1F * h_mean_cotan_alpha = new TH1F("h_mean_cotan_alpha","h_mean_contan_alpha", anglebinscotan, -3, 3);
TH1F * h_slice_cotan_alpha = new TH1F("h_slice_cotan_alpha","h_slice_cotan_alpha", 10, .5, 10.5);
TH1F * h_mean_cotan_beta = new TH1F("h_mean_cotan_beta","h_mean_contan_beta", anglebinscotan, -3, 3);
TH1F * h_slice_cotan_beta = new TH1F("h_slice_cotan_beta","h_slice_cotan_beta", 10, .5, 10.5);
//loop over bins in depth (z-local-coordinate) (in order to fit slices)
for( int i = 1; i <= anglebins; i++){
// findMean(i, (i_module + (i_layer - 1) * 8));
h_slice_->Reset("ICE");
// determine sigma and sigma^2 of the adc counts and average adc counts
//loop over bins in drift width
for( int j = 1; j<= 10; j++){
h_slice_->SetBinContent(j,h_sizex_alpha->GetBinContent(i,j));
} // end loop over bins in drift width
double mean = h_slice_->GetMean(1);
double error = h_slice_->GetMeanError(1);
h_mean->SetBinContent(i, mean);
h_mean->SetBinError(i, error);
}// end loop over bins in depth
for( int i = 1; i <= anglebinscotan; i++){
h_slice_cotan_alpha->Reset("ICE");
h_slice_cotan_beta->Reset("ICE");
//loop over bins in drift width
for( int j = 1; j<= 10; j++){
h_slice_cotan_alpha->SetBinContent(j,h_sizex_alpha_cotan->GetBinContent(i,j));
h_slice_cotan_beta->SetBinContent(j,h_sizey_beta_cotan->GetBinContent(i,j));
} // end loop over bins in drift width
double mean = h_slice_cotan_alpha->GetMean(1);
double error = h_slice_cotan_alpha->GetMeanError(1);
h_mean_cotan_alpha->SetBinContent(i, mean);
h_mean_cotan_alpha->SetBinError(i, error);
double mean_beta = h_slice_cotan_beta->GetMean(1);
double error_beta = h_slice_cotan_beta->GetMeanError(1);
h_mean_cotan_beta->SetBinContent(i, mean_beta);
h_mean_cotan_beta->SetBinError(i, error_beta);
}// end loop over bins in depth
gStyle->SetOptStat(0);
gStyle->SetOptTitle(0);
TCanvas * c1 = new TCanvas("c1", "c1", 1200, 600);
c1->Divide(2,1);
c1->cd(1);
h_sizex_alpha->GetXaxis()->SetTitle("#alpha [^{o}]");
h_sizex_alpha->GetYaxis()->SetTitle("cluster size [pixels]");
h_sizex_alpha->Draw("colz");
c1->cd(2);
h_mean->GetXaxis()->SetTitle("#alpha [^{o}]");
h_mean->GetYaxis()->SetTitle("average cluster size [pixels]");
h_mean->Draw();
h_mean->Fit(f1,"ERQ");
TCanvas * c2 = new TCanvas("c2", "c2", 600, 600);
//c2->Divide(2,1);
//c2->cd(1);
h_sizex_alpha_cotan->GetXaxis()->SetTitle("cotan(#alpha)");
h_sizex_alpha_cotan->GetYaxis()->SetTitle("cluster size x[pixels]");
h_sizex_alpha_cotan->Draw("col");
//c2->cd(2);
h_mean_cotan_alpha->GetXaxis()->SetTitle("cotan(#alpha)");
h_mean_cotan_alpha->GetYaxis()->SetTitle("transverse cluster size [pixels]");
//h_mean_cotan_alpha->Draw();
TCanvas * c3 = new TCanvas("c3", "c3", 600, 600);
h_mean_cotan_alpha->Draw();
h_mean_cotan_alpha->Fit(func,"ERQ");
double correlation = h_alpha_beta_cotan->GetCorrelationFactor();
cout << "corrlation between cotan(alpha) and cotan(beta): " << correlation << endl;
cout << "number of hits used: " << nhits << endl;
TCanvas * c8 = new TCanvas("c8", "c8", 600, 600);
h_mean_cotan_beta->GetXaxis()->SetTitle("cotan(#beta)");
h_mean_cotan_beta->GetYaxis()->SetTitle("longitudinal cluster size [pixels]");
h_mean_cotan_beta->Draw();
h_mean_cotan_beta->Fit(func_beta,"ERQ");
TCanvas * c4 = new TCanvas("c4", "c4", 600, 600);
h_alpha_cotan->Draw();
TCanvas * c5 = new TCanvas("c5", "c5", 600, 600);
h_beta_cotan->Draw();
TCanvas * c6 = new TCanvas("c6", "c6", 600, 600);
h_alpha->GetXaxis()->SetTitle("#alpha [^{o}]");
h_alpha->GetYaxis()->SetTitle("number of hits");
h_alpha->Draw();
TCanvas * c7 = new TCanvas("c7", "c7", 600, 600);
h_beta->GetXaxis()->SetTitle("#beta [^{o}]");
h_beta->GetYaxis()->SetTitle("number of hits");
h_beta->Draw();
TCanvas * c9 = new TCanvas("c9", "c9", 600, 600);
h_alpha_beta->GetXaxis()->SetTitle("#alpha [^{o}]");
h_alpha_beta->GetYaxis()->SetTitle("#beta [^{o}]");
h_alpha_beta->Draw("col");
TCanvas * c10 = new TCanvas("c10", "c10", 600, 600);
h_chi2->GetXaxis()->SetTitle("#chi^{2}/ndof");
h_chi2->GetYaxis()->SetTitle("number of hits");
h_chi2->Draw();
TCanvas * c11 = new TCanvas("c11", "c11", 600, 600);
h_charge->GetXaxis()->SetTitle("charge [1000 e^{-}]");
h_charge->GetYaxis()->SetTitle("number of hits");
h_charge->Draw();
return 0;
}
|