Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
{
// 	setTDRStyle();
	
TFile *f = new TFile("lorentzangle.root");
f->cd();
	
TF1 *f1 = new TF1("f1","[0] + [1]*x",50., 235.); 
f1->SetParName(0,"p0");
f1->SetParName(1,"p1");
f1->SetParameter(0,0);
f1->SetParameter(1,0.4);
	
int hist_drift_ = 200;
int hist_depth_ = 50;
double min_drift_ = -1000;
double max_drift_ = 1000;
double min_depth_ = -100;
double max_depth_ = 400;
double width_ = 0.0285;
// 	ofstream fLorentzFit( "lorentzFit.txt", ios::trunc );
// 	fLorentzFit.precision( 4 );
// 	fLorentzFit << "module" << "\t" << "layer" << "\t" << "offset" << "\t" << "error" << "\t" << "slope" << "\t" << "error" << "\t" "rel.err" << "\t" "pull" << "\t" << "chi2" << "\t" << "prob" << endl;
TH2F * h_drift_depth_adc = new TH2F("h_drift_depth_adc", "h_drift_depth_adc",hist_drift_ , min_drift_, max_drift_, hist_depth_, min_depth_, max_depth_);
TH2F * h_drift_depth_adc2 = new TH2F("h_drift_depth_adc2","h_drift_depth_adc2",hist_drift_ , min_drift_, max_drift_, hist_depth_, min_depth_, max_depth_);
TH2F * h_drift_depth_noadc = new TH2F("h_drift_depth_noadc","h_drift_depth_noadc;drift in #mum;depth in #mum",hist_drift_ , min_drift_, max_drift_, hist_depth_, min_depth_, max_depth_);
	
int run_;
int event_;
int module_;
int ladder_;
int layer_;
int isflipped_;
float pt_;
float eta_;
float phi_;
double chi2_;
double ndof_;
int maxpix = 200;
struct Pixinfo
{
  int npix;
  float row[maxpix];
  float col[maxpix];
  float adc[maxpix];
  float x[maxpix];
  float y[maxpix];
} pixinfo_;
	
struct Hit{
  float x;
  float y;
  double alpha;
  double beta;
  double gamma;
}; 
Hit simhit_, trackhit_;
	
struct Clust {
  float x;
  float y;
  float charge;
  int size_x;
  int size_y;
  int maxPixelCol;
  int maxPixelRow;
  int minPixelCol;
  int minPixelRow;
} clust_;
	
struct Rechit {
  float x;
  float y;
} rechit_;
	
// fill the histrograms with the ntpl
TTree * LATree = (TTree*)f->Get("SiPixelLorentzAngleTree_");
int nentries = LATree->GetEntries();
LATree->SetBranchAddress("run", &run_);
LATree->SetBranchAddress("event", &event_);
LATree->SetBranchAddress("module", &module_);
LATree->SetBranchAddress("ladder", &ladder_);
LATree->SetBranchAddress("layer", &layer_);
LATree->SetBranchAddress("isflipped", &isflipped_);
LATree->SetBranchAddress("pt", &pt_);
LATree->SetBranchAddress("eta", &eta_);
LATree->SetBranchAddress("phi", &phi_);
LATree->SetBranchAddress("chi2", &chi2_);
LATree->SetBranchAddress("ndof", &ndof_);
LATree->SetBranchAddress("trackhit", &trackhit_);
LATree->SetBranchAddress("simhit", &simhit_);
LATree->SetBranchAddress("npix", &pixinfo_.npix);
LATree->SetBranchAddress("rowpix", pixinfo_.row);
LATree->SetBranchAddress("colpix", pixinfo_.col);
LATree->SetBranchAddress("adc", pixinfo_.adc);
LATree->SetBranchAddress("xpix", pixinfo_.x);
LATree->SetBranchAddress("ypix", pixinfo_.y);
LATree->SetBranchAddress("clust", &clust_); // charge is given in 1000 e
LATree->SetBranchAddress("rechit", &rechit_);
	
cout << "Running over " << nentries << " hits" << endl;
	
for(int ientrie = 0 ; ientrie < nentries ; ientrie++){
  LATree->GetEntry(ientrie);  
  bool large_pix = false;
  for (int j = 0; j <  pixinfo_.npix; j++){
    int colpos = static_cast<int>(pixinfo_.col[j]);
    if (pixinfo_.row[j] == 0 || pixinfo_.row[j] == 79 || pixinfo_.row[j] == 80 || pixinfo_.row[j] == 159 || colpos % 52 == 0 || colpos % 52 == 51 ){
      large_pix = true;	
    }
  }

  double residual = TMath::Sqrt( (trackhit_.x - rechit_.x) * (trackhit_.x - rechit_.x) + (trackhit_.y - rechit_.y) * (trackhit_.y - rechit_.y) );
  if( (clust_.size_y >= 4) && (chi2_/ndof_) < 2 && !large_pix && residual < 0.005 && clust_.charge < 120){
    for (int j = 0; j <  pixinfo_.npix; j++){
      float dx = (pixinfo_.x[j]  - (trackhit_.x - width_/2. / TMath::Tan(trackhit_.alpha))) * 10000.;
      float dy = (pixinfo_.y[j]  - (trackhit_.y - width_/2. / TMath::Tan(trackhit_.beta))) * 10000.;
      float depth = dy * tan(trackhit_.beta);
      float drift = dx - dy * tan(trackhit_.gamma);
      h_drift_depth_adc->Fill(drift, depth, pixinfo_.adc[j]);
      h_drift_depth_adc2->Fill(drift, depth, pixinfo_.adc[j]*pixinfo_.adc[j]);
      h_drift_depth_noadc->Fill(drift, depth);					
    }
  } 
}
	
TH1F * h_mean = new TH1F("h_mean","h_mean;depth in #mum;drift in #mum", hist_depth_, min_depth_, max_depth_);
TH1F * h_drift_depth_adc_slice_ = new TH1F("h_slice","h_slice", hist_drift_, min_drift_, max_drift_);
//loop over bins in depth (z-local-coordinate) (in order to fit slices)
for( int i = 1; i <= hist_depth_; i++){
  // 				findMean(i, (i_module + (i_layer - 1) * 8));
  double npix = 0;

  h_drift_depth_adc_slice_->Reset("ICE");
		
  // determine sigma and sigma^2 of the adc counts and average adc counts
  //loop over bins in drift width
  for( int j = 1; j<= hist_drift_; j++){
    if(h_drift_depth_noadc->GetBinContent(j, i) >= 1){
      double adc_error2 = (h_drift_depth_adc2->GetBinContent(j,i) - h_drift_depth_adc->GetBinContent(j,i)*h_drift_depth_adc->GetBinContent(j, i) / h_drift_depth_noadc->GetBinContent(j, i)) /  h_drift_depth_noadc->GetBinContent(j, i);
      h_drift_depth_adc_slice_->SetBinContent(j, h_drift_depth_adc->GetBinContent(j,i));
      h_drift_depth_adc_slice_->SetBinError(j, sqrt(adc_error2));
      npix += h_drift_depth_noadc->GetBinContent(j,i);	
    }else{
      h_drift_depth_adc_slice_->SetBinContent(j, h_drift_depth_adc->GetBinContent(j,i));
      h_drift_depth_adc_slice_->SetBinError(j, 0);
    }
  } // end loop over bins in drift width
			
  double mean = h_drift_depth_adc_slice_->GetMean(1); 
  double error = 0;
  if(npix != 0){
    error = h_drift_depth_adc_slice_->GetRMS(1) / sqrt(npix);
  }
			
  h_mean->SetBinContent(i, mean);
  h_mean->SetBinError(i, error);	
}// end loop over bins in depth 
	
TCanvas * c1 = new TCanvas("c1", "c1", 1200, 600);
c1->Divide(2,1);
c1->cd(1);
// 	h_drift_depth_noadc->
h_drift_depth_noadc->Draw("colz");
// 	c1->cd(2);
// 	h_drift_depth_adc->Draw();
c1->cd(2);
h_mean->Draw();
// 	c1->cd(4);
	
h_mean->Fit(f1,"ERQ");
double p0 = f1->GetParameter(0);
double e0 = f1->GetParError(0);
double p1 = f1->GetParameter(1);
double e1 = f1->GetParError(1);
double chi2 = f1->GetChisquare();
double prob = f1->GetProb();	
	
// 	delete h_mean;
// 	delete h_drift_depth_adc_slice_;
cout << "offset" << "\t" << "error" << "\t" << "slope" << "\t" << "error" << "\t" "rel.err" << "\t" << "chi2" << "\t" << "prob" << endl;
cout  << p0 << "\t" << e0 << "\t" << p1 << "\t" << e1 << "\t" << e1 / p1 *100. << "\t" << chi2 << "\t" << prob << endl;
	
}