1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
|
#include "CalibTracker/SiStripAPVAnalysis/interface/ApvAnalysisFactory.h"
//#include "DataFormats/SiStripCommon/interface/SiStripConstants.h"
#include "CalibTracker/SiStripAPVAnalysis/interface/TT6NTPedestalCalculator.h"
using namespace std;
ApvAnalysisFactory::ApvAnalysisFactory(string theAlgorithmType,
int theNumCMstripsInGroup,
int theMaskCalcFlag,
float theMaskNoiseCut,
float theMaskDeadCut,
float theMaskTruncCut,
float theCutToAvoidSignal,
int theEventInitNumber,
int theEventIterNumber) {
theAlgorithmType_ = theAlgorithmType;
theNumCMstripsInGroup_ = theNumCMstripsInGroup;
theMaskCalcFlag_ = theMaskCalcFlag;
theMaskNoiseCut_ = theMaskNoiseCut;
theMaskDeadCut_ = theMaskDeadCut;
theMaskTruncCut_ = theMaskTruncCut;
theCutToAvoidSignal_ = theCutToAvoidSignal;
theEventInitNumber_ = theEventInitNumber;
theEventIterNumber_ = theEventIterNumber;
}
ApvAnalysisFactory::ApvAnalysisFactory(const edm::ParameterSet& pset) {
theCMType_ = pset.getParameter<string>("CMType");
useDB_ = pset.getParameter<bool>("useDB");
theAlgorithmType_ = pset.getParameter<string>("CalculatorAlgorithm");
theNumCMstripsInGroup_ = pset.getParameter<int>("NumCMstripsInGroup");
theMaskCalcFlag_ = pset.getParameter<int>("MaskCalculationFlag");
theMaskNoiseCut_ = pset.getParameter<double>("MaskNoiseCut");
theMaskDeadCut_ = pset.getParameter<double>("MaskDeadCut");
theMaskTruncCut_ = pset.getParameter<double>("MaskTruncationCut");
theCutToAvoidSignal_ = pset.getParameter<double>("CutToAvoidSignal");
theEventInitNumber_ = pset.getParameter<int>("NumberOfEventsForInit");
theEventIterNumber_ = pset.getParameter<int>("NumberOfEventsForIteration");
apvMap_.clear();
}
//----------------------------------
ApvAnalysisFactory::~ApvAnalysisFactory() {
ApvAnalysisFactory::ApvAnalysisMap::iterator it = apvMap_.begin();
for (; it != apvMap_.end(); it++) {
vector<ApvAnalysis*>::iterator myApv = (*it).second.begin();
for (; myApv != (*it).second.end(); myApv++)
deleteApv(*myApv);
}
apvMap_.clear();
}
//----------------------------------
bool ApvAnalysisFactory::instantiateApvs(uint32_t detId, int numberOfApvs) {
ApvAnalysisFactory::ApvAnalysisMap::iterator CPos = apvMap_.find(detId);
if (CPos != apvMap_.end()) {
cout << " APVs for Detector Id " << detId << " already created !!!" << endl;
;
return false;
}
vector<ApvAnalysis*> temp;
for (int i = 0; i < numberOfApvs; i++) {
ApvAnalysis* apvTmp = new ApvAnalysis(theEventIterNumber_);
// constructAuxiliaryApvClasses(apvTmp);
constructAuxiliaryApvClasses(apvTmp, detId, i);
temp.push_back(apvTmp);
}
apvMap_.insert(pair<uint32_t, vector<ApvAnalysis*> >(detId, temp));
return true;
}
std::vector<ApvAnalysis*> ApvAnalysisFactory::getApvAnalysis(const uint32_t nDET_ID) {
ApvAnalysisMap::const_iterator _apvAnalysisIter = apvMap_.find(nDET_ID);
return apvMap_.end() != _apvAnalysisIter ? _apvAnalysisIter->second : std::vector<ApvAnalysis*>();
}
void ApvAnalysisFactory::constructAuxiliaryApvClasses(ApvAnalysis* theAPV, uint32_t detId, int thisApv) {
//----------------------------------------------------------------
// Create the ped/noise/CMN calculators, zero suppressors etc.
// (Is called by addDetUnitAndConstructApvs()).
//
// N.B. Don't call this twice for the same APV!
//-----------------------------------------------------------------
// cout<<"VirtualApvAnalysisFactory::constructAuxiliaryApvClasses"<<endl;
TkPedestalCalculator* thePedestal = nullptr;
TkNoiseCalculator* theNoise = nullptr;
TkApvMask* theMask = nullptr;
TkCommonModeCalculator* theCM = nullptr;
TkCommonMode* theCommonMode = new TkCommonMode();
TkCommonModeTopology* theTopology = new TkCommonModeTopology(128, theNumCMstripsInGroup_);
theCommonMode->setTopology(theTopology);
// Create desired algorithms.
if (theAlgorithmType_ == "TT6") {
theMask = new TT6ApvMask(theMaskCalcFlag_, theMaskNoiseCut_, theMaskDeadCut_, theMaskTruncCut_);
theNoise = new TT6NoiseCalculator(theEventInitNumber_, theEventIterNumber_, theCutToAvoidSignal_);
thePedestal = new TT6PedestalCalculator(theEventInitNumber_, theEventIterNumber_, theCutToAvoidSignal_);
theCM = new TT6CommonModeCalculator(theNoise, theMask, theCutToAvoidSignal_);
} else if ("TT6NT" == theAlgorithmType_) {
theMask = new TT6ApvMask(theMaskCalcFlag_, theMaskNoiseCut_, theMaskDeadCut_, theMaskTruncCut_);
theNoise = new TT6NoiseCalculator(theEventInitNumber_, theEventIterNumber_, theCutToAvoidSignal_);
thePedestal = new TT6NTPedestalCalculator;
theCM = new TT6CommonModeCalculator(theNoise, theMask, theCutToAvoidSignal_);
} else if (theAlgorithmType_ == "MIX") {
// the mask as to be defined also for SimplePedCalculator
theMask = new TT6ApvMask(theMaskCalcFlag_, theMaskNoiseCut_, theMaskDeadCut_, theMaskTruncCut_);
thePedestal = new SimplePedestalCalculator(theEventInitNumber_);
theNoise = new SimpleNoiseCalculator(theEventInitNumber_, useDB_);
if (theCMType_ == "Median") {
theCM = new MedianCommonModeCalculator();
} else {
cout << "Sorry Only Median is available for now, Mean and FastLinear are coming soon" << endl;
delete theCommonMode;
delete theMask;
delete thePedestal;
delete theNoise;
return;
}
} else {
cout << "ApvAnalysisFactory: algorithm " << theAlgorithmType_ << " not supported" << endl;
delete theCommonMode;
return;
}
if (theCommonMode)
theCM->setCM(theCommonMode);
if (thePedestal)
theAPV->setPedestalCalculator(*thePedestal);
if (theNoise)
theAPV->setNoiseCalculator(*theNoise);
if (theMask)
theAPV->setMask(*theMask);
if (theCM)
theAPV->setCommonModeCalculator(*theCM);
}
void ApvAnalysisFactory::updatePair(uint32_t detId, size_t pairNumber, const edm::DetSet<SiStripRawDigi>& in) {
map<uint32_t, vector<ApvAnalysis*> >::const_iterator apvAnalysisIt = apvMap_.find(detId);
if (apvAnalysisIt != apvMap_.end()) {
size_t iter = 0;
for (vector<ApvAnalysis*>::const_iterator apvIt = (apvAnalysisIt->second).begin();
apvIt != (apvAnalysisIt->second).end();
apvIt++) {
if (iter == pairNumber * 2 || iter == (2 * pairNumber + 1)) {
// cout << "ApvAnalysisFactory::updatePair pair number " << pairNumber << endl;
// cout << "ApvAnlysis will be updated for the apv # " << iter << endl;
edm::DetSet<SiStripRawDigi> tmpRawDigi;
tmpRawDigi.data.reserve(128);
size_t startStrip = 128 * (iter % 2);
size_t stopStrip = startStrip + 128;
for (size_t istrip = startStrip; istrip < stopStrip; istrip++) {
if (in.data.size() <= istrip)
tmpRawDigi.data.push_back(SiStripRawDigi(0));
else
tmpRawDigi.data.push_back(in.data[istrip]); //maybe dangerous
}
(*apvIt)->newEvent();
(*apvIt)->updateCalibration(tmpRawDigi);
}
iter++;
}
}
} // void
void ApvAnalysisFactory::update(uint32_t detId, const edm::DetSet<SiStripRawDigi>& in) {
map<uint32_t, vector<ApvAnalysis*> >::const_iterator apvAnalysisIt = apvMap_.find(detId);
if (apvAnalysisIt != apvMap_.end()) {
size_t i = 0;
for (vector<ApvAnalysis*>::const_iterator apvIt = (apvAnalysisIt->second).begin();
apvIt != (apvAnalysisIt->second).end();
apvIt++) {
edm::DetSet<SiStripRawDigi> tmpRawDigi;
//it is missing the detId ...
tmpRawDigi.data.reserve(128);
size_t startStrip = 128 * i;
size_t stopStrip = startStrip + 128;
for (size_t istrip = startStrip; istrip < stopStrip; istrip++) {
if (in.data.size() <= istrip)
tmpRawDigi.data.push_back(SiStripRawDigi(0));
else
tmpRawDigi.data.push_back(in.data[istrip]); //maybe dangerous
}
(*apvIt)->newEvent();
(*apvIt)->updateCalibration(tmpRawDigi);
i++;
}
}
}
void ApvAnalysisFactory::getPedestal(uint32_t detId, int apvNumber, ApvAnalysis::PedestalType& peds) {
//Get the pedestal for a given apv
peds.clear();
map<uint32_t, vector<ApvAnalysis*> >::const_iterator apvAnalysisIt = apvMap_.find(detId);
if (apvAnalysisIt != apvMap_.end()) {
vector<ApvAnalysis*> myApvs = apvAnalysisIt->second;
peds = myApvs[apvNumber]->pedestalCalculator().pedestal();
}
}
void ApvAnalysisFactory::getPedestal(uint32_t detId, ApvAnalysis::PedestalType& peds) {
//Get the pedestal for a given apv
peds.clear();
map<uint32_t, vector<ApvAnalysis*> >::const_iterator apvAnalysisIt = apvMap_.find(detId);
if (apvAnalysisIt != apvMap_.end()) {
vector<ApvAnalysis*> theApvs = apvAnalysisIt->second;
for (vector<ApvAnalysis*>::const_iterator it = theApvs.begin(); it != theApvs.end(); it++) {
ApvAnalysis::PedestalType tmp = (*it)->pedestalCalculator().pedestal();
for (ApvAnalysis::PedestalType::const_iterator pit = tmp.begin(); pit != tmp.end(); pit++)
peds.push_back(*pit);
}
}
}
float ApvAnalysisFactory::getStripPedestal(uint32_t detId, int stripNumber) {
//Get the pedestal for a given apv
ApvAnalysis::PedestalType temp;
int apvNumb = int(stripNumber / 128.);
int stripN = (stripNumber - apvNumb * 128);
getPedestal(detId, apvNumb, temp);
return temp[stripN];
}
void ApvAnalysisFactory::getNoise(uint32_t detId, int apvNumber, ApvAnalysis::PedestalType& noise) {
//Get the pedestal for a given apv
noise.clear();
map<uint32_t, vector<ApvAnalysis*> >::const_iterator apvAnalysisIt = apvMap_.find(detId);
if (apvAnalysisIt != apvMap_.end()) {
vector<ApvAnalysis*> theApvs = apvAnalysisIt->second;
noise = theApvs[apvNumber]->noiseCalculator().noise();
}
}
float ApvAnalysisFactory::getStripNoise(uint32_t detId, int stripNumber) {
//Get the pedestal for a given apv
ApvAnalysis::PedestalType temp;
int apvNumb = int(stripNumber / 128.);
int stripN = (stripNumber - apvNumb * 128);
getNoise(detId, apvNumb, temp);
return temp[stripN];
}
void ApvAnalysisFactory::getNoise(uint32_t detId, ApvAnalysis::PedestalType& peds) {
//Get the pedestal for a given apv
peds.clear();
map<uint32_t, vector<ApvAnalysis*> >::const_iterator theApvs_map = apvMap_.find(detId);
if (theApvs_map != apvMap_.end()) {
vector<ApvAnalysis*>::const_iterator theApvs = (theApvs_map->second).begin();
for (; theApvs != (theApvs_map->second).end(); theApvs++) {
ApvAnalysis::PedestalType tmp = (*theApvs)->noiseCalculator().noise();
for (ApvAnalysis::PedestalType::const_iterator pit = tmp.begin(); pit != tmp.end(); pit++)
peds.push_back(*pit);
}
}
}
void ApvAnalysisFactory::getRawNoise(uint32_t detId, int apvNumber, ApvAnalysis::PedestalType& noise) {
//Get the pedestal for a given apv
noise.clear();
map<uint32_t, vector<ApvAnalysis*> >::const_iterator apvAnalysisIt = apvMap_.find(detId);
if (apvAnalysisIt != apvMap_.end()) {
vector<ApvAnalysis*> theApvs = apvAnalysisIt->second;
noise = theApvs[apvNumber]->pedestalCalculator().rawNoise();
}
}
float ApvAnalysisFactory::getStripRawNoise(uint32_t detId, int stripNumber) {
//Get the pedestal for a given apv
ApvAnalysis::PedestalType temp;
int apvNumb = int(stripNumber / 128.);
int stripN = (stripNumber - apvNumb * 128);
getRawNoise(detId, apvNumb, temp);
return temp[stripN];
}
void ApvAnalysisFactory::getRawNoise(uint32_t detId, ApvAnalysis::PedestalType& peds) {
//Get the pedestal for a given apv
peds.clear();
map<uint32_t, vector<ApvAnalysis*> >::const_iterator theApvs_map = apvMap_.find(detId);
if (theApvs_map != apvMap_.end()) {
vector<ApvAnalysis*>::const_iterator theApvs = (theApvs_map->second).begin();
for (; theApvs != (theApvs_map->second).end(); theApvs++) {
ApvAnalysis::PedestalType tmp = (*theApvs)->pedestalCalculator().rawNoise();
for (ApvAnalysis::PedestalType::const_iterator pit = tmp.begin(); pit != tmp.end(); pit++)
peds.push_back(*pit);
}
}
}
vector<float> ApvAnalysisFactory::getCommonMode(uint32_t detId, int apvNumber) {
vector<float> tmp;
tmp.clear();
map<uint32_t, vector<ApvAnalysis*> >::const_iterator theApvs_map = apvMap_.find(detId);
if (theApvs_map != apvMap_.end()) {
vector<ApvAnalysis*> theApvs = theApvs_map->second;
tmp = theApvs[apvNumber]->commonModeCalculator().commonMode()->returnAsVector();
}
return tmp;
}
void ApvAnalysisFactory::getCommonMode(uint32_t detId, ApvAnalysis::PedestalType& tmp) {
map<uint32_t, vector<ApvAnalysis*> >::const_iterator apvAnalysisIt = apvMap_.find(detId);
if (apvAnalysisIt != apvMap_.end()) {
vector<ApvAnalysis*> theApvs = apvAnalysisIt->second;
for (unsigned int i = 0; i < theApvs.size(); i++) {
//To be fixed. We return only the first one in the vector.
vector<float> tmp_cm = theApvs[i]->commonModeCalculator().commonMode()->returnAsVector();
for (unsigned int it = 0; it < tmp_cm.size(); it++)
tmp.push_back(tmp_cm[it]);
}
}
}
void ApvAnalysisFactory::getMask(uint32_t det_id, TkApvMask::MaskType& tmp) {
map<uint32_t, vector<ApvAnalysis*> >::const_iterator apvAnalysisIt = apvMap_.find(det_id);
if (apvAnalysisIt != apvMap_.end()) {
vector<ApvAnalysis*> theApvs = apvAnalysisIt->second;
for (unsigned int i = 0; i < theApvs.size(); i++) {
TkApvMask::MaskType theMaskType = (theApvs[i]->mask()).mask();
//cout <<"theMaskType size "<<theMaskType.size()<<endl;
for (unsigned int ii = 0; ii < theMaskType.size(); ii++) {
tmp.push_back(theMaskType[ii]);
//cout <<"The Value "<<theMaskType[ii]<<" "<<ii<<endl;
}
}
}
}
bool ApvAnalysisFactory::isUpdating(uint32_t detId) {
bool updating = true;
map<uint32_t, vector<ApvAnalysis*> >::const_iterator apvAnalysisIt = apvMap_.find(detId);
if (apvAnalysisIt != apvMap_.end()) {
for (vector<ApvAnalysis*>::const_iterator apvIt = (apvAnalysisIt->second).begin();
apvIt != (apvAnalysisIt->second).end();
apvIt++) {
if (!((*apvIt)->pedestalCalculator().status()->isUpdating()))
updating = false;
}
}
return updating;
}
void ApvAnalysisFactory::deleteApv(ApvAnalysis* apv) {
delete &(apv->pedestalCalculator());
delete &(apv->noiseCalculator());
delete &(apv->mask());
delete &(apv->commonModeCalculator().commonMode()->topology());
delete (apv->commonModeCalculator().commonMode());
delete &(apv->commonModeCalculator());
delete apv;
}
//
// -- Get Common Mode Slope
//
float ApvAnalysisFactory::getCommonModeSlope(uint32_t detId, int apvNumber) {
map<uint32_t, vector<ApvAnalysis*> >::const_iterator theApvs_map = apvMap_.find(detId);
float tmp = -100.0;
if (theApvs_map != apvMap_.end()) {
vector<ApvAnalysis*> theApvs = theApvs_map->second;
tmp = theApvs[apvNumber]->commonModeCalculator().getCMSlope();
return tmp;
}
return tmp;
}
void ApvAnalysisFactory::getCommonModeSlope(uint32_t detId, ApvAnalysis::PedestalType& tmp) {
tmp.clear();
map<uint32_t, vector<ApvAnalysis*> >::const_iterator apvAnalysisIt = apvMap_.find(detId);
if (apvAnalysisIt != apvMap_.end()) {
vector<ApvAnalysis*> theApvs = apvAnalysisIt->second;
for (unsigned int i = 0; i < theApvs.size(); i++) {
tmp.push_back(theApvs[i]->commonModeCalculator().getCMSlope());
}
}
}
|