Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
#include "CalibTracker/SiStripLorentzAngle/plugins/MeasureLA.h"
#include "CalibTracker/SiStripLorentzAngle/interface/LA_Filler_Fitter.h"
#include "CalibTracker/SiStripCommon/interface/SiStripDetInfoFileReader.h"
#include "CalibTracker/StandaloneTrackerTopology/interface/StandaloneTrackerTopology.h"

#include <TChain.h>
#include <TFile.h>
#include <regex>
#include <fstream>

namespace sistrip {

  void MeasureLA::store_methods_and_granularity(const edm::VParameterSet& vpset) {
    for (auto const& p : vpset) {
      methods |= p.getParameter<int32_t>("Method");
      byModule = byModule || p.getParameter<int32_t>("Granularity");
      byLayer = byLayer || !p.getParameter<int32_t>("Granularity");
    }
  }

  MeasureLA::MeasureLA(const edm::ParameterSet& conf)
      : inputFiles(conf.getParameter<std::vector<std::string> >("InputFiles")),
        inFileLocation(conf.getParameter<std::string>("InFileLocation")),
        fp_(conf.getParameter<edm::FileInPath>("SiStripDetInfo")),
        reports(conf.getParameter<edm::VParameterSet>("Reports")),
        measurementPreferences(conf.getParameter<edm::VParameterSet>("MeasurementPreferences")),
        calibrations(conf.getParameter<edm::VParameterSet>("Calibrations")),
        methods(0),
        byModule(false),
        byLayer(false),
        localybin(conf.getUntrackedParameter<double>("LocalYBin", 0.0)),
        stripsperbin(conf.getUntrackedParameter<unsigned>("StripsPerBin", 0)),
        maxEvents(conf.getUntrackedParameter<unsigned>("MaxEvents", 0)),
        tTopo_(StandaloneTrackerTopology::fromTrackerParametersXMLFile(
            conf.getParameter<edm::FileInPath>("TrackerParameters").fullPath())) {
    store_methods_and_granularity(reports);
    store_methods_and_granularity(measurementPreferences);
    store_calibrations();

    TChain* const chain = new TChain("la_data");
    for (auto const& file : inputFiles)
      chain->Add((file + inFileLocation).c_str());

    LA_Filler_Fitter laff(methods, byLayer, byModule, localybin, stripsperbin, maxEvents, &tTopo_);
    laff.fill(chain, book);
    laff.fit(book);
    summarize_module_muH_byLayer(laff);
    process_reports();

    setWhatProduced(this, &MeasureLA::produce);
  }

  std::unique_ptr<SiStripLorentzAngle> MeasureLA::produce(const SiStripLorentzAngleRcd&) {
    auto lorentzAngle = std::make_unique<SiStripLorentzAngle>();
    /*
  std::map<uint32_t,LA_Filler_Fitter::Result> 
    module_results = LA_Filler_Fitter::module_results(book, LA_Filler_Fitter::SQRTVAR);
  
  BOOST_FOREACH(const uint32_t& detid, SiStripDetInfoFileReader::read(fp_.fullPath()).getAllDetIds()) {
    float la = module_results[detid].measure / module_results[detid].field ;
    lorentzAngle->putLorentzAngle( detid, la );
  }
  */
    return lorentzAngle;
  }

  void MeasureLA::summarize_module_muH_byLayer(const LA_Filler_Fitter& laff) {
    for (int m = LA_Filler_Fitter::FIRST_METHOD; m <= LA_Filler_Fitter::LAST_METHOD; m <<= 1) {
      const LA_Filler_Fitter::Method method = (LA_Filler_Fitter::Method)m;
      for (auto& result : LA_Filler_Fitter::module_results(book, method)) {
        calibrate(calibration_key(result.first, method), result.second);
        std::string label =
            laff.layerLabel(result.first) + granularity(MODULESUMMARY) + LA_Filler_Fitter::method(method);
        label = std::regex_replace(label, std::regex("layer"), "");

        const double mu_H = -result.second.calMeasured.first / result.second.field;
        const double sigma_mu_H = result.second.calMeasured.second / result.second.field;
        const double weight = pow(1. / sigma_mu_H, 2);

        book.fill(mu_H, label, 150, -0.05, 0.1, weight);
      }
      for (Book::iterator it = book.begin(".*" + granularity(MODULESUMMARY) + ".*"); it != book.end(); ++it) {
        if (it->second->GetEntries())
          it->second->Fit("gaus", "LLQ");
      }
    }
  }

  void MeasureLA::process_reports() const {
    for (auto const& p : reports) {
      const GRANULARITY gran = (GRANULARITY)p.getParameter<int32_t>("Granularity");
      const std::string name = p.getParameter<std::string>("ReportName");
      const LA_Filler_Fitter::Method method = (LA_Filler_Fitter::Method)p.getParameter<int32_t>("Method");

      write_report_plots(name, method, gran);
      switch (gran) {
        case LAYER:
          write_report_text(name, method, LA_Filler_Fitter::layer_results(book, method));
          break;
        case MODULE:
          write_report_text(name, method, LA_Filler_Fitter::module_results(book, method));
          break;
        case MODULESUMMARY:
          write_report_text_ms(name, method);
          break;
      }
    }

    {
      TFile widthsFile("widths.root", "RECREATE");
      for (Book::const_iterator it = book.begin(".*_width"); it != book.end(); it++)
        if (it->second)
          it->second->Write();
      widthsFile.Close();
    }
  }

  void MeasureLA::write_report_plots(std::string name, LA_Filler_Fitter::Method method, GRANULARITY gran) const {
    TFile file((name + ".root").c_str(), "RECREATE");
    const std::string key = ".*" + granularity(gran) + ".*(" + LA_Filler_Fitter::method(method) + "|" +
                            LA_Filler_Fitter::method(method, false) + ".*)";
    for (Book::const_iterator hist = book.begin(key); hist != book.end(); ++hist)
      if (hist->second)
        hist->second->Write();
    file.Close();
  }

  template <class T>
  void MeasureLA::write_report_text(std::string name,
                                    const LA_Filler_Fitter::Method& _method,
                                    const std::map<T, LA_Filler_Fitter::Result>& _results) const {
    LA_Filler_Fitter::Method method = _method;
    std::map<T, LA_Filler_Fitter::Result> results = _results;
    std::fstream file((name + ".dat").c_str(), std::ios::out);
    for (auto& result : results) {
      calibrate(calibration_key(result.first, method), result.second);
      file << result.first << "\t" << result.second << std::endl;
    }
    file.close();
  }

  void MeasureLA::write_report_text_ms(std::string name, LA_Filler_Fitter::Method method) const {
    std::fstream file((name + ".dat").c_str(), std::ios::out);
    const std::string key = ".*" + granularity(MODULESUMMARY) + LA_Filler_Fitter::method(method);
    for (Book::const_iterator it = book.begin(key); it != book.end(); ++it) {
      const TF1* const f = it->second->GetFunction("gaus");
      if (f) {
        file << it->first << "\t" << f->GetParameter(1) << "\t" << f->GetParError(1) << "\t" << f->GetParameter(2)
             << "\t" << f->GetParError(2) << std::endl;
      }
    }
    file.close();
  }

  void MeasureLA::store_calibrations() {
    for (auto const& p : calibrations) {
      LA_Filler_Fitter::Method method = (LA_Filler_Fitter::Method)p.getParameter<int32_t>("Method");
      std::vector<double> slopes(p.getParameter<std::vector<double> >("Slopes"));
      assert(slopes.size() == 14);
      std::vector<double> offsets(p.getParameter<std::vector<double> >("Offsets"));
      assert(offsets.size() == 14);
      std::vector<double> pulls(p.getParameter<std::vector<double> >("Pulls"));
      assert(pulls.size() == 14);

      for (unsigned i = 0; i < 14; i++) {
        const std::pair<unsigned, LA_Filler_Fitter::Method> key(i, method);
        offset[key] = offsets[i];
        slope[key] = slopes[i];
        error_scaling[key] = pulls[i];
      }
    }
  }

  inline void MeasureLA::calibrate(const std::pair<unsigned, LA_Filler_Fitter::Method> key,
                                   LA_Filler_Fitter::Result& result) const {
    result.calMeasured = std::make_pair<float, float>(
        (result.measured.first - offset.find(key)->second) / slope.find(key)->second,
        result.measured.second * error_scaling.find(key)->second / slope.find(key)->second);
  }

  std::pair<uint32_t, LA_Filler_Fitter::Method> MeasureLA::calibration_key(
      const std::string layer, const LA_Filler_Fitter::Method method) const {
    std::regex format(".*(T[IO]B)_layer(\\d)([as]).*");
    const bool isTIB = "TIB" == std::regex_replace(layer, format, "\\1");
    const bool stereo = "s" == std::regex_replace(layer, format, "\\3");
    const unsigned layerNum = std::stoul(std::regex_replace(layer, format, "\\2"));
    return std::make_pair(LA_Filler_Fitter::layer_index(isTIB, stereo, layerNum), method);
  }

  std::pair<uint32_t, LA_Filler_Fitter::Method> MeasureLA::calibration_key(
      const uint32_t detid, const LA_Filler_Fitter::Method method) const {
    const bool isTIB = SiStripDetId(detid).subDetector() == SiStripDetId::TIB;
    const bool stereo = isTIB ? tTopo_.tibStereo(detid) : tTopo_.tobStereo(detid);
    const unsigned layer = isTIB ? tTopo_.tibLayer(detid) : tTopo_.tobStereo(detid);

    return std::make_pair(LA_Filler_Fitter::layer_index(isTIB, stereo, layer), method);
  }

}  // namespace sistrip