1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
|
#include "CalibTracker/SiStripLorentzAngle/interface/SymmetryFit.h"
#include <cmath>
#include <cassert>
#include <memory>
TH1* SymmetryFit::symmetryChi2(std::string basename,
const std::vector<TH1*>& candidates,
const std::pair<unsigned, unsigned> range) {
TH1* fake = (TH1*)(candidates[0]->Clone(basename.c_str()));
fake->Reset();
SymmetryFit combined(fake, range);
delete fake;
for (auto const* candidate : candidates) {
SymmetryFit sf(candidate, range);
combined += sf;
delete sf.chi2_;
}
int status = combined.fit();
if (status) {
delete combined.chi2_;
combined.chi2_ = nullptr;
}
return combined.chi2_;
}
TH1* SymmetryFit::symmetryChi2(const TH1* candidate, const std::pair<unsigned, unsigned> range) {
SymmetryFit sf(candidate, range);
int status = sf.fit();
if (status) {
delete sf.chi2_;
sf.chi2_ = nullptr;
}
return sf.chi2_;
}
SymmetryFit::SymmetryFit(const TH1* h, const std::pair<unsigned, unsigned> r)
: symm_candidate_(h),
minDF_(r.second - r.first),
range_(r),
minmaxUsable_(findUsableMinMax()),
ndf_(minmaxUsable_.first < minmaxUsable_.second ? minmaxUsable_.second - minmaxUsable_.first : 0),
chi2_(nullptr) {
makeChi2Histogram();
fillchi2();
}
void SymmetryFit::makeChi2Histogram() {
std::string XXname = name(symm_candidate_->GetName());
unsigned Nbins = 2 * (range_.second - range_.first) + 1;
double binwidth = symm_candidate_->GetBinWidth(1);
double low = symm_candidate_->GetBinCenter(range_.first) - 3 * binwidth / 4;
double up = symm_candidate_->GetBinCenter(range_.second - 1) + 3 * binwidth / 4;
chi2_ = new TH1F(XXname.c_str(), "", Nbins, low, up);
}
std::pair<unsigned, unsigned> SymmetryFit::findUsableMinMax() const {
unsigned NEAR(0), FAR(0);
const std::vector<std::pair<unsigned, unsigned> > cont = continuousRanges();
for (unsigned L = 0; L < cont.size(); L++) {
if (cont[L].first > range_.first)
continue;
for (unsigned R = L; R < cont.size(); R++) {
if (cont[R].second < range_.second)
continue;
const unsigned far = std::min(range_.first - cont[L].first, cont[R].second - range_.second);
const unsigned near = std::max(range_.second < cont[L].second ? 0 : range_.second - cont[L].second,
cont[R].first < range_.first ? 0 : cont[R].first - range_.first);
if ((far > near) && (far - near) > (FAR - NEAR)) {
FAR = far;
NEAR = near;
}
}
}
return std::make_pair(NEAR, FAR);
}
std::vector<std::pair<unsigned, unsigned> > SymmetryFit::continuousRanges() const {
std::vector<std::pair<unsigned, unsigned> > ranges;
const unsigned Nbins = symm_candidate_->GetNbinsX();
unsigned i = 0;
while (++i <= Nbins) {
if (symm_candidate_->GetBinError(i)) {
std::pair<unsigned, unsigned> range(i, i + 1);
while (++i <= Nbins && symm_candidate_->GetBinError(i))
range.second++;
ranges.push_back(range);
}
}
return ranges;
}
void SymmetryFit::fillchi2() {
if (ndf_ < minDF_)
return;
for (int i = 1; i <= chi2_->GetNbinsX(); ++i) {
const unsigned L(range_.first - 1 + (i - 1) / 2), R(range_.first + i / 2);
chi2_->SetBinContent(i, chi2(std::make_pair(L, R)));
}
}
float SymmetryFit::chi2(std::pair<unsigned, unsigned> point) {
point.first -= minmaxUsable_.first;
point.second += minmaxUsable_.first;
float XX = 0;
unsigned i = ndf_;
while (i-- > 0) {
XX += chi2_element(point);
point.first--;
point.second++;
}
return XX;
}
float SymmetryFit::chi2_element(std::pair<unsigned, unsigned> range) {
float y0(symm_candidate_->GetBinContent(range.first)), y1(symm_candidate_->GetBinContent(range.second)),
e0(symm_candidate_->GetBinError(range.first)), e1(symm_candidate_->GetBinError(range.second));
assert(e0 && e1);
return pow(y0 - y1, 2) / (e0 * e0 + e1 * e1);
}
int SymmetryFit::fit() {
std::vector<double> p = pol2_from_pol3(chi2_);
if (p.empty() || p[0] < chi2_->GetBinCenter(1) || p[0] > chi2_->GetBinCenter(chi2_->GetNbinsX()))
return 7;
std::unique_ptr<TF1> f(fitfunction());
f->SetParameter(0, p[0]);
f->SetParLimits(0, p[0], p[0]);
f->SetParameter(1, p[1]);
f->SetParLimits(1, p[1], p[1]);
f->SetParameter(2, p[2]);
f->SetParLimits(2, p[2], p[2]);
f->SetParameter(3, ndf_);
f->SetParLimits(3, ndf_, ndf_); //Fixed
chi2_->Fit(f.get(), "WQ");
return 0;
}
TF1* SymmetryFit::fitfunction() {
TF1* f = new TF1("SymmetryFit", "((x-[0])/[1])**2+[2]+0*[3]");
f->SetParName(0, "middle");
f->SetParName(1, "uncertainty");
f->SetParName(2, "chi2");
f->SetParName(3, "NDF");
return f;
}
std::vector<double> SymmetryFit::pol2_from_pol2(TH1* hist) {
std::vector<double> v;
//Need our own copy for thread safety
TF1 func("mypol2", "pol2");
int status = hist->Fit(&func, "WQ");
if (!status) {
std::vector<double> p;
p.push_back(func.GetParameter(0));
p.push_back(func.GetParameter(1));
p.push_back(func.GetParameter(2));
if (p[2] > 0) {
v.push_back(-0.5 * p[1] / p[2]);
v.push_back(1. / sqrt(p[2]));
v.push_back(p[0] - 0.25 * p[1] * p[1] / p[2]);
}
}
return v;
}
std::vector<double> SymmetryFit::pol2_from_pol3(TH1* hist) {
std::vector<double> v;
auto func = std::make_unique<TF1>("mypol3", "pol3");
int status = hist->Fit(func.get(), "WQ");
if (!status) {
std::vector<double> p;
p.push_back(func->GetParameter(0));
p.push_back(func->GetParameter(1));
p.push_back(func->GetParameter(2));
p.push_back(func->GetParameter(3));
double radical = p[2] * p[2] - 3 * p[1] * p[3];
if (radical > 0) {
double x0 = (-p[2] + sqrt(radical)) / (3 * p[3]);
v.push_back(x0);
v.push_back(pow(radical, -0.25));
v.push_back(p[0] + p[1] * x0 + p[2] * x0 * x0 + p[3] * x0 * x0 * x0);
}
}
return v;
}
|