1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
|
#include <memory>
#include <cmath>
#include "FWCore/Framework/interface/Frameworkfwd.h"
#include "FWCore/Framework/interface/MakerMacros.h"
#include "FWCore/ParameterSet/interface/ParameterSet.h"
#include "Calibration/EcalCalibAlgos/interface/InvRingCalib.h"
#include "Calibration/EcalCalibAlgos/interface/IMACalibBlock.h"
#include "Calibration/EcalCalibAlgos/interface/L3CalibBlock.h"
#include "DataFormats/Common/interface/Handle.h"
#include "Calibration/Tools/interface/calibXMLwriter.h"
#include "CalibCalorimetry/CaloMiscalibTools/interface/MiscalibReaderFromXMLEcalBarrel.h"
#include "CalibCalorimetry/CaloMiscalibTools/interface/MiscalibReaderFromXMLEcalEndcap.h"
#include "DataFormats/EgammaReco/interface/SuperCluster.h"
#include "DataFormats/EgammaReco/interface/BasicCluster.h"
#include "RecoEcal/EgammaCoreTools/interface/EcalClusterTools.h"
#include "Calibration/EcalCalibAlgos/interface/MatrixFillMap.h"
#include "Calibration/EcalCalibAlgos/interface/ClusterFillMap.h"
//Not to remain in the final version
#include "TH2.h"
#include "TFile.h"
//----------------------------------------------------------------
//ctor
InvRingCalib::InvRingCalib(const edm::ParameterSet& iConfig)
: m_barrelAlCa(iConfig.getParameter<edm::InputTag>("barrelAlca")),
m_endcapAlCa(iConfig.getParameter<edm::InputTag>("endcapAlca")),
m_ElectronLabel(iConfig.getParameter<edm::InputTag>("ElectronLabel")),
m_recoWindowSidex(iConfig.getParameter<int>("recoWindowSidex")),
m_recoWindowSidey(iConfig.getParameter<int>("recoWindowSidey")),
m_minEnergyPerCrystal(iConfig.getParameter<double>("minEnergyPerCrystal")),
m_maxEnergyPerCrystal(iConfig.getParameter<double>("maxEnergyPerCrystal")),
m_etaStart(iConfig.getParameter<int>("etaStart")),
m_etaEnd(iConfig.getParameter<int>("etaEnd")),
m_etaWidth(iConfig.getParameter<int>("etaWidth")),
m_maxSelectedNumPerRing(iConfig.getParameter<int>("maxNumPerRing")),
m_minCoeff(iConfig.getParameter<double>("minCoeff")),
m_maxCoeff(iConfig.getParameter<double>("maxCoeff")),
m_usingBlockSolver(iConfig.getParameter<int>("usingBlockSolver")),
m_startRing(iConfig.getParameter<int>("startRing")),
m_endRing(iConfig.getParameter<int>("endRing")),
m_EBcoeffFile(iConfig.getParameter<std::string>("EBcoeffs")),
m_EEcoeffFile(iConfig.getParameter<std::string>("EEcoeffs")),
m_EEZone(iConfig.getParameter<int>("EEZone")),
m_ebRecHitToken(consumes<EBRecHitCollection>(m_barrelAlCa)),
m_eeRecHitToken(consumes<EERecHitCollection>(m_endcapAlCa)),
m_gsfElectronToken(consumes<reco::GsfElectronCollection>(m_ElectronLabel)),
m_geometryToken(esConsumes()) {
//controls if the parameters inputed are correct
if ((m_etaEnd * m_etaStart) > 0)
assert(!((m_etaEnd - m_etaStart) % m_etaWidth));
if ((m_etaEnd * m_etaStart) < 0)
assert(!((m_etaEnd - m_etaStart - 1) % m_etaWidth));
assert(m_etaStart >= -85 && m_etaStart <= 86);
assert(m_etaEnd >= m_etaStart && m_etaEnd <= 86);
assert(m_startRing > -1 && m_startRing <= 40);
assert(m_endRing >= m_startRing && m_endRing <= 40);
assert(!((m_endRing - m_startRing) % m_etaWidth));
assert((abs(m_EEZone) <= 1));
m_loops = (unsigned int)iConfig.getParameter<int>("loops") - 1;
//LP CalibBlock vector instantiation
edm::LogInfo("IML") << "[InvRingCalib][ctor] Calib Block";
std::string algorithm = iConfig.getParameter<std::string>("algorithm");
m_mapFillerType = iConfig.getParameter<std::string>("FillType");
int eventWeight = iConfig.getUntrackedParameter<int>("L3EventWeight", 1);
for (int i = 0; i < EBRegionNum(); ++i) {
if (algorithm == "IMA")
m_IMACalibBlocks.push_back(new IMACalibBlock(m_etaWidth));
else if (algorithm == "L3")
m_IMACalibBlocks.push_back(new L3CalibBlock(m_etaWidth, eventWeight));
else {
edm::LogError("building") << algorithm << " is not a valid calibration algorithm";
exit(1);
}
}
int EEBlocks = 0;
if (m_EEZone == 0)
EEBlocks = 2 * EERegionNum();
if (m_EEZone == 1 || m_EEZone == -1)
EEBlocks = EERegionNum();
for (int i = 0; i < EEBlocks; ++i) {
if (algorithm == "IMA")
m_IMACalibBlocks.push_back(new IMACalibBlock(m_etaWidth));
else if (algorithm == "L3")
m_IMACalibBlocks.push_back(new L3CalibBlock(m_etaWidth, eventWeight));
else {
edm::LogError("building") << algorithm << " is not a valid calibration algorithm";
exit(1);
}
}
edm::LogInfo("IML") << " [InvRingCalib][ctor] end of creator";
}
//-------------------------------------------------------------- end ctor
//!destructor
InvRingCalib::~InvRingCalib() {}
//---------------------------------------------------
//!BeginOfJob
void InvRingCalib::beginOfJob() { isfirstcall_ = true; }
//--------------------------------------------------------
//!startingNewLoop
void InvRingCalib::startingNewLoop(unsigned int ciclo) {
edm::LogInfo("IML") << "[InvMatrixCalibLooper][Start] entering loop " << ciclo;
for (std::vector<VEcalCalibBlock*>::iterator calibBlock = m_IMACalibBlocks.begin();
calibBlock != m_IMACalibBlocks.end();
++calibBlock) {
//LP empties the energies vector, to fill DuringLoop.
(*calibBlock)->reset();
}
for (std::map<int, int>::const_iterator ring = m_xtalRing.begin(); ring != m_xtalRing.end(); ++ring)
m_RingNumOfHits[ring->second] = 0;
return;
}
//--------------------------------------------------------
//!duringLoop
edm::EDLooper::Status InvRingCalib::duringLoop(const edm::Event& iEvent, const edm::EventSetup& iSetup) {
if (isfirstcall_) {
edm::LogInfo("IML") << "[InvRingCalib][beginOfJob]";
//gets the geometry from the event setup
const auto& geometry = iSetup.getData(m_geometryToken);
edm::LogInfo("IML") << "[InvRingCalib] Event Setup read";
//fills a vector with all the cells
m_barrelCells = geometry.getValidDetIds(DetId::Ecal, EcalBarrel);
m_endcapCells = geometry.getValidDetIds(DetId::Ecal, EcalEndcap);
//Defines the EB regions
edm::LogInfo("IML") << "[InvRingCalib] Defining Barrel Regions";
EBRegionDef();
//Defines what is a ring in the EE
edm::LogInfo("IML") << "[InvRingCalib] Defining endcap Rings";
EERingDef(iSetup);
//Defines the regions in the EE
edm::LogInfo("IML") << "[InvRingCalib] Defining endcap Regions";
EERegionDef();
if (m_mapFillerType == "Cluster")
m_MapFiller = new ClusterFillMap(m_recoWindowSidex,
m_recoWindowSidey,
m_xtalRegionId,
m_minEnergyPerCrystal,
m_maxEnergyPerCrystal,
m_RinginRegion,
&m_barrelMap,
&m_endcapMap);
if (m_mapFillerType == "Matrix")
m_MapFiller = new MatrixFillMap(m_recoWindowSidex,
m_recoWindowSidey,
m_xtalRegionId,
m_minEnergyPerCrystal,
m_maxEnergyPerCrystal,
m_RinginRegion,
&m_barrelMap,
&m_endcapMap);
edm::LogInfo("IML") << "[InvRingCalib] Initializing the coeffs";
//Sets the initial coefficients to 1.
//Graphs to check ring, regions and so on, not needed in the final version
TH2F EBRegion("EBRegion", "EBRegion", 171, -85, 86, 360, 1, 361);
TH2F EBRing("EBRing", "EBRing", 171, -85, 86, 360, 1, 361);
for (std::vector<DetId>::const_iterator it = m_barrelCells.begin(); it != m_barrelCells.end(); ++it) {
EBDetId eb(*it);
EBRing.Fill(eb.ieta(), eb.iphi(), m_RinginRegion[it->rawId()]);
EBRegion.Fill(eb.ieta(), eb.iphi(), m_xtalRegionId[it->rawId()]);
}
TH2F EEPRegion("EEPRegion", "EEPRegion", 100, 1, 101, 100, 1, 101);
TH2F EEPRing("EEPRing", "EEPRing", 100, 1, 101, 100, 1, 101);
TH2F EEPRingReg("EEPRingReg", "EEPRingReg", 100, 1, 101, 100, 1, 101);
TH2F EEMRegion("EEMRegion", "EEMRegion", 100, 1, 101, 100, 1, 101);
TH2F EEMRing("EEMRing", "EEMRing", 100, 1, 101, 100, 1, 101);
TH2F EEMRingReg("EEMRingReg", "EEMRingReg", 100, 1, 101, 100, 1, 101);
// TH1F eta ("eta","eta",250,-85,165);
for (std::vector<DetId>::const_iterator it = m_endcapCells.begin(); it != m_endcapCells.end(); ++it) {
EEDetId ee(*it);
if (ee.zside() > 0) {
EEPRegion.Fill(ee.ix(), ee.iy(), m_xtalRegionId[ee.rawId()]);
EEPRing.Fill(ee.ix(), ee.iy(), m_xtalRing[ee.rawId()]);
EEPRingReg.Fill(ee.ix(), ee.iy(), m_RinginRegion[ee.rawId()]);
}
if (ee.zside() < 0) {
EEMRegion.Fill(ee.ix(), ee.iy(), m_xtalRegionId[ee.rawId()]);
EEMRing.Fill(ee.ix(), ee.iy(), m_xtalRing[ee.rawId()]);
EEMRingReg.Fill(ee.ix(), ee.iy(), m_RinginRegion[ee.rawId()]);
}
}
// for (std::map<int,float>::iterator it=m_eta.begin();
// it!=m_eta.end();++it)
// eta.Fill(it->first,it->second);
TFile out("EBZone.root", "recreate");
EBRegion.Write();
EBRing.Write();
EEPRegion.Write();
EEPRing.Write();
EEPRingReg.Write();
EEMRegion.Write();
EEMRing.Write();
// eta.Write();
EEMRingReg.Write();
out.Close();
edm::LogInfo("IML") << "[InvRingCalib] Start to acquire the coeffs";
CaloMiscalibMapEcal EBmap;
EBmap.prefillMap();
MiscalibReaderFromXMLEcalBarrel barrelreader(EBmap);
if (!m_EBcoeffFile.empty())
barrelreader.parseXMLMiscalibFile(m_EBcoeffFile);
EcalIntercalibConstants costants(EBmap.get());
m_barrelMap = costants.getMap();
CaloMiscalibMapEcal EEmap;
EEmap.prefillMap();
MiscalibReaderFromXMLEcalEndcap endcapreader(EEmap);
if (!m_EEcoeffFile.empty())
endcapreader.parseXMLMiscalibFile(m_EEcoeffFile);
EcalIntercalibConstants EEcostants(EEmap.get());
m_endcapMap = EEcostants.getMap();
isfirstcall_ = false;
} // if isfirstcall
//gets the barrel recHits
double pSubtract = 0.;
double pTk = 0.;
const EcalRecHitCollection* barrelHitsCollection = nullptr;
edm::Handle<EBRecHitCollection> barrelRecHitsHandle;
iEvent.getByToken(m_ebRecHitToken, barrelRecHitsHandle);
barrelHitsCollection = barrelRecHitsHandle.product();
if (!barrelRecHitsHandle.isValid()) {
edm::LogError("IML") << "[EcalEleCalibLooper] barrel rec hits not found";
return kContinue;
}
//gets the endcap recHits
const EcalRecHitCollection* endcapHitsCollection = nullptr;
edm::Handle<EERecHitCollection> endcapRecHitsHandle;
iEvent.getByToken(m_eeRecHitToken, endcapRecHitsHandle);
endcapHitsCollection = endcapRecHitsHandle.product();
if (!endcapRecHitsHandle.isValid()) {
edm::LogError("IML") << "[EcalEleCalibLooper] endcap rec hits not found";
return kContinue;
}
//gets the electrons
edm::Handle<reco::GsfElectronCollection> pElectrons;
iEvent.getByToken(m_gsfElectronToken, pElectrons);
if (!pElectrons.isValid()) {
edm::LogError("IML") << "[EcalEleCalibLooper] electrons not found";
return kContinue;
}
//loops over the electrons in the event
for (reco::GsfElectronCollection::const_iterator eleIt = pElectrons->begin(); eleIt != pElectrons->end(); ++eleIt) {
pSubtract = 0;
pTk = eleIt->trackMomentumAtVtx().R();
std::map<int, double> xtlMap;
DetId Max = 0;
if (std::abs(eleIt->eta()) < 1.49)
Max = EcalClusterTools::getMaximum(eleIt->superCluster()->hitsAndFractions(), barrelHitsCollection).first;
else
Max = EcalClusterTools::getMaximum(eleIt->superCluster()->hitsAndFractions(), endcapHitsCollection).first;
if (Max.det() == 0)
continue;
m_MapFiller->fillMap(
eleIt->superCluster()->hitsAndFractions(), Max, barrelHitsCollection, endcapHitsCollection, xtlMap, pSubtract);
if (m_xtalRegionId[Max.rawId()] == -1)
continue;
pSubtract += eleIt->superCluster()->preshowerEnergy();
++m_RingNumOfHits[m_xtalRing[Max.rawId()]];
//fills the calibBlock
m_IMACalibBlocks.at(m_xtalRegionId[Max.rawId()])->Fill(xtlMap.begin(), xtlMap.end(), pTk, pSubtract);
}
return kContinue;
} //end of duringLoop
//-------------------------------------
//EndOfLoop
edm::EDLooper::Status InvRingCalib::endOfLoop(const edm::EventSetup& dumb, unsigned int iCounter) {
std::map<int, double> InterRings;
edm::LogInfo("IML") << "[InvMatrixCalibLooper][endOfLoop] Start to invert the matrixes";
//call the autoexplaining "solve" method for every calibBlock
for (std::vector<VEcalCalibBlock*>::iterator calibBlock = m_IMACalibBlocks.begin();
calibBlock != m_IMACalibBlocks.end();
++calibBlock)
(*calibBlock)->solve(m_usingBlockSolver, m_minCoeff, m_maxCoeff);
edm::LogInfo("IML") << "[InvRingLooper][endOfLoop] Starting to write the coeffs";
TH1F* coeffDistr = new TH1F("coeffdistr", "coeffdistr", 100, 0.7, 1.4);
TH1F* coeffMap = new TH1F("coeffRingMap", "coeffRingMap", 250, -85, 165);
TH1F* ringDistr = new TH1F("ringDistr", "ringDistr", 250, -85, 165);
TH1F* RingFill = new TH1F("RingFill", "RingFill", 250, -85, 165);
for (std::map<int, int>::const_iterator it = m_xtalRing.begin(); it != m_xtalRing.end(); ++it)
ringDistr->Fill(it->second + 0.1);
int ID;
std::map<int, int> flag;
for (std::map<int, int>::const_iterator it = m_xtalRing.begin(); it != m_xtalRing.end(); ++it)
flag[it->second] = 0;
for (std::vector<DetId>::const_iterator it = m_barrelCells.begin(); it != m_barrelCells.end(); ++it) {
ID = it->rawId();
if (m_xtalRegionId[ID] == -1)
continue;
if (flag[m_xtalRing[ID]])
continue;
flag[m_xtalRing[ID]] = 1;
RingFill->Fill(m_xtalRing[ID], m_RingNumOfHits[m_xtalRing[ID]]);
InterRings[m_xtalRing[ID]] = m_IMACalibBlocks.at(m_xtalRegionId[ID])->at(m_RinginRegion[ID]);
coeffMap->Fill(m_xtalRing[ID] + 0.1, InterRings[m_xtalRing[ID]]);
coeffDistr->Fill(InterRings[m_xtalRing[ID]]);
}
for (std::vector<DetId>::const_iterator it = m_endcapCells.begin(); it != m_endcapCells.end(); ++it) {
ID = it->rawId();
if (m_xtalRegionId[ID] == -1)
continue;
if (flag[m_xtalRing[ID]])
continue;
flag[m_xtalRing[ID]] = 1;
InterRings[m_xtalRing[ID]] = m_IMACalibBlocks.at(m_xtalRegionId[ID])->at(m_RinginRegion[ID]);
RingFill->Fill(m_xtalRing[ID], m_RingNumOfHits[m_xtalRing[ID]]);
coeffMap->Fill(m_xtalRing[ID], InterRings[m_xtalRing[ID]]);
coeffDistr->Fill(InterRings[m_xtalRing[ID]]);
}
char filename[80];
sprintf(filename, "coeff%d.root", iCounter);
TFile out(filename, "recreate");
coeffDistr->Write();
coeffMap->Write();
ringDistr->Write();
RingFill->Write();
out.Close();
for (std::vector<DetId>::const_iterator it = m_barrelCells.begin(); it != m_barrelCells.end(); ++it) {
m_barrelMap[*it] *= InterRings[m_xtalRing[it->rawId()]];
}
for (std::vector<DetId>::const_iterator it = m_endcapCells.begin(); it != m_endcapCells.end(); ++it)
m_endcapMap[*it] *= InterRings[m_xtalRing[it->rawId()]];
if (iCounter < m_loops - 1)
return kContinue;
else
return kStop;
}
//---------------------------------------
//LP endOfJob
void InvRingCalib::endOfJob() {
edm::LogInfo("IML") << "[InvMatrixCalibLooper][endOfJob] saving calib coeffs";
calibXMLwriter barrelWriter(EcalBarrel);
calibXMLwriter endcapWriter(EcalEndcap);
for (std::vector<DetId>::const_iterator barrelIt = m_barrelCells.begin(); barrelIt != m_barrelCells.end();
++barrelIt) {
EBDetId eb(*barrelIt);
barrelWriter.writeLine(eb, m_barrelMap[eb]);
}
for (std::vector<DetId>::const_iterator endcapIt = m_endcapCells.begin(); endcapIt != m_endcapCells.end();
++endcapIt) {
EEDetId ee(*endcapIt);
endcapWriter.writeLine(ee, m_endcapMap[ee]);
}
}
//------------------------------------//
// definition of functions //
//------------------------------------//
//------------------------------------------------------------
//!EE ring definition
void InvRingCalib::EERingDef(const edm::EventSetup& iSetup) {
//Gets the geometry of the endcap
const auto& geometry = iSetup.getData(m_geometryToken);
const CaloSubdetectorGeometry* endcapGeometry = geometry.getSubdetectorGeometry(DetId::Ecal, EcalEndcap);
//for every xtal gets the position Vector and the phi position
// for (std::vector<DetId>::const_iterator barrelIt = m_barrelCells.begin();
// barrelIt!=m_barrelCells.end();
// ++barrelIt) {
// const CaloCellGeometry *cellGeometry = barrelGeometry->getGeometry(*barrelIt);
// GlobalPoint point;
// EBDetId eb (*barrelIt);
// point=cellGeometry->getPosition();
// m_eta[eb.ieta()]=point.eta() ; //cellGeometry->getPosition().eta();
// }
for (std::vector<DetId>::const_iterator endcapIt = m_endcapCells.begin(); endcapIt != m_endcapCells.end();
++endcapIt) {
auto cellGeometry = endcapGeometry->getGeometry(*endcapIt);
m_cellPos[endcapIt->rawId()] = cellGeometry->getPosition();
m_cellPhi[endcapIt->rawId()] = cellGeometry->getPosition().phi();
}
//takes the first 39 xtals at a fixed y varying the x coordinate and saves their eta coordinate
float eta_ring[39];
for (int ring = 0; ring < 39; ring++)
if (EEDetId::validDetId(ring, 50, 1)) {
EEDetId det = EEDetId(ring, 50, 1, EEDetId::XYMODE);
eta_ring[ring] = m_cellPos[det.rawId()].eta();
}
//defines the bonduary of the rings as the average eta of a xtal
double etaBonduary[40];
etaBonduary[0] = 1.49;
etaBonduary[39] = 4.0;
for (int ring = 1; ring < 39; ++ring)
etaBonduary[ring] = (eta_ring[ring] + eta_ring[ring - 1]) / 2.;
//assign to each xtal a ring number
int CRing;
for (int ring = 0; ring < 39; ring++)
for (std::vector<DetId>::const_iterator endcapIt = m_endcapCells.begin(); endcapIt != m_endcapCells.end();
++endcapIt) {
if (fabs(m_cellPos[endcapIt->rawId()].eta()) > etaBonduary[ring] &&
fabs(m_cellPos[endcapIt->rawId()].eta()) < etaBonduary[ring + 1]) {
EEDetId ee(*endcapIt);
if (ee.zside() > 0)
CRing = ring + 86;
else
CRing = ring + 125;
m_xtalRing[endcapIt->rawId()] = CRing;
// m_eta[CRing]=m_cellPos[endcapIt->rawId()].eta();
}
}
return;
}
//------------------------------------------------------------
//!Gives the Id of the region given the id of the xtal
int InvRingCalib::EERegId(int id) {
int reg;
int ring;
EEDetId ee(id);
//sets the reg to -1 if the ring doesn't exist or is outside the region of interest
if (m_xtalRing[id] == -1)
return -1;
//avoid the calibration in the wrong zside
if (m_EEZone == 1) {
if (ee.zside() < 0)
return -1;
ring = m_xtalRing[id] - 86;
if (ring >= m_endRing)
return -1;
if (ring < m_startRing)
return -1;
reg = (ring - m_startRing) / m_etaWidth;
m_RinginRegion[id] = (ring - m_startRing) % m_etaWidth;
return reg;
}
if (m_EEZone == -1) {
if (ee.zside() > 0)
return -1;
ring = m_xtalRing[id] - 125;
if (ring >= m_endRing)
return -1;
if (ring < m_startRing)
return -1;
reg = (ring - m_startRing) / m_etaWidth;
m_RinginRegion[id] = (ring - m_startRing) % m_etaWidth;
return reg;
}
if (ee.zside() > 0)
ring = m_xtalRing[id] - 86;
else
ring = m_xtalRing[id] - 125;
if (ring >= m_endRing)
return -1;
if (ring < m_startRing)
return -1;
reg = (ring - m_startRing) / m_etaWidth;
m_RinginRegion[id] = (ring - m_startRing) % m_etaWidth;
return reg;
}
//----------------------------------------
//!Loops over all the endcap xtals and sets for each xtal the value of the region
//!the xtal is in, and the ringNumber inside the region
void InvRingCalib::EERegionDef() {
int reg;
for (std::vector<DetId>::const_iterator endcapIt = m_endcapCells.begin(); endcapIt != m_endcapCells.end();
++endcapIt) {
EEDetId ee(*endcapIt);
reg = EERegId(endcapIt->rawId());
//If the ring is not of interest saves only the region Id(-1)
if (reg == -1)
m_xtalRegionId[endcapIt->rawId()] = reg;
//sums the number of region in EB or EB+EE to have different regionsId in different regions
else {
if (ee.zside() > 0)
reg += EBRegionNum();
else
reg += EBRegionNum() + EERegionNum();
m_xtalRegionId[endcapIt->rawId()] = reg;
}
}
}
//------------------------------------------------------------
//!Number of Regions in EE
inline int InvRingCalib::EERegionNum() const { return ((m_endRing - m_startRing) / m_etaWidth); }
//! number of Ring in EB
int InvRingCalib::EBRegionNum() const {
if ((m_etaEnd * m_etaStart) > 0)
return ((m_etaEnd - m_etaStart) / m_etaWidth);
if ((m_etaEnd * m_etaStart) < 0)
return ((m_etaEnd - m_etaStart - 1) / m_etaWidth);
return 0;
}
//!Divides the barrel in region, necessary to take into
//! account the missing 0 xtal
void InvRingCalib::RegPrepare() {
int k = 0;
for (int i = m_etaStart; i < m_etaEnd; ++i) {
if (i == 0)
continue;
m_Reg[i] = k / m_etaWidth;
++k;
}
}
//! gives the region Id given ieta
int InvRingCalib::EBRegId(const int ieta) {
if (ieta < m_etaStart || ieta >= m_etaEnd)
return -1;
else
return (m_Reg[ieta]);
}
//------------------------------------------------------------
//EB Region Definition
void InvRingCalib::EBRegionDef() {
RegPrepare();
for (std::vector<DetId>::const_iterator it = m_barrelCells.begin(); it != m_barrelCells.end(); ++it) {
EBDetId eb(it->rawId());
m_xtalRing[eb.rawId()] = eb.ieta();
m_xtalRegionId[eb.rawId()] = EBRegId(eb.ieta());
if (m_xtalRegionId[eb.rawId()] == -1)
continue;
m_RinginRegion[eb.rawId()] = (eb.ieta() - m_etaStart) % m_etaWidth;
}
}
//------------------------------------------------------------
|