1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
|
// -*- C++ -*-
// Dec 2015 : Added bool m_cosmic to choose cosmic or collision run through python file
//integrate the code with some 8_0_X or 7_6_X recent IB and run the
// following tests: 4.22, 8.0, 25.0, 140.53. You can always activate them using
//runTheMatrix.py -l 4.22
// 7th Nov 2015 : tmpHOCalib.ecal03 = iso05.sumPt; // iso03.emEt+muonenr.em;
// tmpHOCalib.pileup=lumiScale->begin()->pileup();
//
// April 2015 : Remove all digi part
// Also look for HO geometry in CMSSW in parallel with stanalone one.
// Official one has problem in reco geometry, particularly tiles at the edge of wheel
// Remove all histogrammes except occupancy one
// Remove Trigger bits
// But addition of these variables, ilumi (analyser), pileup (analyser), nprim
// Feb09 2009
// Move the initialisation of SteppingHelixPropagator from ::beginJob() to ::produce()
//
// Oct3 2008
// Difference in tag V00-02-45 with previous code
// 1. One new object on data format, which was realised in
// CRUZET data analysis.
//2. Remove all histogram and cout in the code
//3. An upgrade in code, which increases the acceptance of
// muon near the edge (this also realised in CRUZET data).
// Difference in wrt V00-02-45
// 1. initialisation tmpHOCalib.htime = -1000;
// 2. By mistake HLT was commented out
// Package: AlCaHOCalibProducer
// Class: AlCaHOCalibProducer
//
/**\class AlCaHOCalibProducer AlCaHOCalibProducer.cc Calibration/AlCaHOCalibProducer/src/AlCaHOCalibProducer.cc
change magnetic field inside
../data/HOCosmicCalib_RecoLocalMuon.cff
../data/HOCosmicCalib_RecoLocalTracker.cff
Description: <one line class summary>
Implementation:
<Notes on implementation>
Missing towers : eta=5, phi=18-19
: eta = -5, phi =11-14
HO tile sizes
Ring +-2 : width Tray 6:404.6, 5&4:347.6, 3:352.6, 2:364.6, 1:315.6
(phi ordering is opposite)
lenght Tile 1:420.1, 2:545.1, 3:583.3, 4:626.0, 5:335.5
(five tiles, 1 is close to Ring 1 and 5 is towardslc endcap)
Ring +-1 : width Tray 6:404.6, 5&4:347.6, 3:352.6, 2:364.6, 1:315.6 (same as Ring+-2)
lenght Tile 1:391.5, 2:394.2, 3:411.0, 4:430.9, 5:454.0, 6:426.0
(1: near R0 and 6 near R2)
Ring 0 L1 : Width Tray (6:290.6, 5&4:345.6, 3:350.6, 2:362.6, 1:298.6
lenght 1:351.2, 2:353.8, 3:359.2, 4:189.1 (4 is towards Ring1)
Ring 0 L0 : Width Tray 6:266.6, 5&4:325.6, 3:330.6, 2:341.6, 1:272.6
length 1:331.5, 2:334.0, 3:339.0, 4:248.8 (4 is towards Ring1)
*/
//
// Original Author: Gobinda Majumder
// Created: Fri Jul 6 17:17:21 CEST 2007
//
//
// system include files
#include <memory>
// user include files
#include "FWCore/Framework/interface/Frameworkfwd.h"
#include "FWCore/Framework/interface/one/EDProducer.h"
#include "FWCore/Framework/interface/Event.h"
#include "FWCore/Framework/interface/EventSetup.h"
#include "FWCore/Framework/interface/MakerMacros.h"
#include "FWCore/MessageLogger/interface/MessageLogger.h"
#include "FWCore/ParameterSet/interface/ParameterSet.h"
#include "FWCore/ParameterSet/interface/ConfigurationDescriptions.h"
#include "FWCore/Utilities/interface/InputTag.h"
#include "DataFormats/CaloTowers/interface/CaloTowerCollection.h"
#include "DataFormats/HcalCalibObjects/interface/HOCalibVariables.h"
#include "DataFormats/HcalDetId/interface/HcalDetId.h"
#include "DataFormats/HcalDetId/interface/HcalSubdetector.h"
#include "DataFormats/HcalRecHit/interface/HcalRecHitCollections.h"
#include "DataFormats/GeometrySurface/interface/PlaneBuilder.h"
#include "DataFormats/Luminosity/interface/LumiDetails.h"
#include "DataFormats/OnlineMetaData/interface/OnlineLuminosityRecord.h"
#include "DataFormats/Math/interface/Error.h"
#include "DataFormats/MuonReco/interface/Muon.h"
#include "DataFormats/RecoCandidate/interface/IsoDeposit.h"
#include "DataFormats/Scalers/interface/LumiScalers.h"
#include "DataFormats/TrackReco/interface/Track.h"
#include "DataFormats/TrackReco/interface/TrackFwd.h"
#include "DataFormats/TrajectorySeed/interface/PropagationDirection.h"
#include "DataFormats/TrajectorySeed/interface/TrajectorySeedCollection.h"
#include "DataFormats/VertexReco/interface/Vertex.h"
#include "DataFormats/VertexReco/interface/VertexFwd.h"
#include "Geometry/CaloGeometry/interface/CaloSubdetectorGeometry.h"
#include "Geometry/CaloGeometry/interface/CaloCellGeometry.h"
#include "Geometry/CaloGeometry/interface/CaloGeometry.h"
#include "Geometry/Records/interface/CaloGeometryRecord.h"
#include "Geometry/Records/interface/IdealGeometryRecord.h"
#include "Geometry/Records/interface/MuonGeometryRecord.h"
#include "MagneticField/Engine/interface/MagneticField.h"
#include "MagneticField/Records/interface/IdealMagneticFieldRecord.h"
#include "TrackingTools/TrajectoryState/interface/FreeTrajectoryState.h"
#include "TrackPropagation/SteppingHelixPropagator/interface/SteppingHelixPropagator.h"
#include "FWCore/ServiceRegistry/interface/Service.h"
#include "CommonTools/UtilAlgos/interface/TFileService.h"
// Necessary includes for identify severity of flagged problems in HO rechits
//#include "RecoLocalCalo/HcalRecAlgos/interface/HcalCaloFlagLabels.h"
#include "RecoLocalCalo/HcalRecAlgos/interface/HcalSeverityLevelComputer.h"
#include "RecoLocalCalo/HcalRecAlgos/interface/HcalSeverityLevelComputerRcd.h"
#include "CondFormats/HcalObjects/interface/HcalChannelQuality.h"
#include "CondFormats/DataRecord/interface/HcalChannelQualityRcd.h"
#include <CLHEP/Vector/LorentzVector.h>
#include <CLHEP/Units/GlobalPhysicalConstants.h>
#include <CLHEP/Units/SystemOfUnits.h>
#include "TH2F.h"
/* C++ Headers */
#include <string>
#include <iostream>
#include <fstream>
//
// class decleration
//
class AlCaHOCalibProducer : public edm::one::EDProducer<edm::one::SharedResources> {
public:
explicit AlCaHOCalibProducer(const edm::ParameterSet&);
~AlCaHOCalibProducer() override = default;
static void fillDescriptions(edm::ConfigurationDescriptions& descriptions);
typedef Basic3DVector<float> PositionType;
typedef Basic3DVector<float> DirectionType;
typedef Basic3DVector<float> RotationType;
private:
void produce(edm::Event&, const edm::EventSetup&) override;
void beginJob() override;
void endJob() override;
void fillHOStore(const reco::TrackRef& ncosm,
HOCalibVariables& tmpHOCalib,
std::unique_ptr<HOCalibVariableCollection>& hostore,
int Noccu_old,
int indx,
edm::Handle<reco::TrackCollection> cosmicmuon,
edm::View<reco::Muon>::const_iterator muon1,
const edm::Event& iEvent,
const CaloSubdetectorGeometry*,
const MagneticField&);
void findHOEtaPhi(int iphsect, int& ietaho, int& iphiho);
// virtual void endRun(edm::Run const &, edm::EventSetup const &) override;
// ----------member data ---------------------------
float xhor0; //x-position in ring 0
float yhor0; //y-position in ring 0
float xhor1; //x-position in ring 1
float yhor1; //y-position in ring 1
int iring; //Ring number -2,-1,0,1,2
float localxhor0; //local x-distance from edege in ring 0
float localyhor0; //local y-distance from edege in ring 0
float localxhor1; //local x-distance from edege in ring 1
float localyhor1; //local y-distance from edege in ring 1
TH2F* ho_occupency[5];
bool m_occupancy;
bool m_cosmic;
const int netabin = 16;
const int nphimx = 72;
const int netamx = 32;
const int ncidmx = 5;
const double rHOL0 = 382.0;
const double rHOL1 = 407.0;
edm::InputTag muonTags_; // cosmicMuons (for cosmic run) or muons (for collision run)
edm::EDGetTokenT<reco::TrackCollection> tok_muonsCosmic_;
edm::EDGetTokenT<edm::View<reco::Muon> > tok_muons_;
edm::EDGetTokenT<reco::VertexCollection> tok_vertex_;
// edm::EDGetTokenT<LumiDetails> tok_lumi_;
edm::EDGetTokenT<LumiScalersCollection> tok_lumi_;
edm::EDGetTokenT<OnlineLuminosityRecord> tok_metaData_;
edm::EDGetTokenT<HBHERecHitCollection> tok_hbhe_;
edm::EDGetTokenT<HORecHitCollection> tok_ho_;
edm::EDGetTokenT<CaloTowerCollection> tok_tower_;
edm::ESGetToken<HcalChannelQuality, HcalChannelQualityRcd> tok_hcalChStatus_;
edm::ESGetToken<CaloGeometry, CaloGeometryRecord> tok_geom_;
edm::ESGetToken<HcalSeverityLevelComputer, HcalSeverityLevelComputerRcd> tok_hcalSevLvlComputer_;
edm::ESGetToken<MagneticField, IdealMagneticFieldRecord> tok_magField_;
bool m_hbinfo;
int m_startTS;
int m_endTS;
double m_sigma;
typedef math::Error<5>::type CovarianceMatrix;
int Noccu;
int nRuns;
// SteppingHelixPropagator* stepProp;
FreeTrajectoryState getFreeTrajectoryState(const reco::Track& tk, const MagneticField* field, int itag, bool dir);
unsigned int Ntp; // # of HLT trigger paths (should be the same for all events!)
std::map<std::string, bool> fired;
//hcal severity ES
const HcalChannelQuality* theHcalChStatus;
const HcalSeverityLevelComputer* theHcalSevLvlComputer;
int Nevents;
};
//
// constants, enums and typedefs
//
//
// static data member definitions
//
//
// constructors and destructor
//
AlCaHOCalibProducer::AlCaHOCalibProducer(const edm::ParameterSet& iConfig) {
usesResource(TFileService::kSharedResource);
//register your products
m_hbinfo = iConfig.getUntrackedParameter<bool>("hbinfo", false);
m_sigma = iConfig.getUntrackedParameter<double>("sigma", 0.05);
m_occupancy = iConfig.getUntrackedParameter<bool>("plotOccupancy", false);
m_cosmic = iConfig.getUntrackedParameter<bool>("CosmicData", false);
// keep InputTag muonTags_ since it is used below. - cowden
muonTags_ = iConfig.getUntrackedParameter<edm::InputTag>("muons");
tok_muonsCosmic_ = consumes<reco::TrackCollection>(muonTags_);
tok_muons_ = consumes<edm::View<reco::Muon> >(muonTags_);
tok_vertex_ = consumes<reco::VertexCollection>(iConfig.getParameter<edm::InputTag>("vertexTags"));
// tok_lumi_ = consumes<LumiDetails ,edm::InLumi>(iConfig.getParameter<edm::InputTag>("lumiTags"));
tok_lumi_ = consumes<LumiScalersCollection>(iConfig.getParameter<edm::InputTag>("lumiTags"));
tok_metaData_ = consumes<OnlineLuminosityRecord>(iConfig.getParameter<edm::InputTag>("metadata"));
tok_ho_ = consumes<HORecHitCollection>(iConfig.getParameter<edm::InputTag>("hoInput"));
tok_hbhe_ = consumes<HBHERecHitCollection>(iConfig.getParameter<edm::InputTag>("hbheInput"));
tok_tower_ = consumes<CaloTowerCollection>(iConfig.getParameter<edm::InputTag>("towerInput"));
tok_hcalChStatus_ = esConsumes<HcalChannelQuality, HcalChannelQualityRcd>(edm::ESInputTag("", "withTopo"));
tok_geom_ = esConsumes<CaloGeometry, CaloGeometryRecord>();
tok_hcalSevLvlComputer_ = esConsumes<HcalSeverityLevelComputer, HcalSeverityLevelComputerRcd>();
tok_magField_ = esConsumes<MagneticField, IdealMagneticFieldRecord>();
produces<HOCalibVariableCollection>("HOCalibVariableCollection").setBranchAlias("HOCalibVariableCollection");
if (m_occupancy) {
edm::Service<TFileService> fs;
char title[200];
for (int ij = 0; ij < 5; ij++) {
sprintf(title, "ho_occupency (>%i #sigma)", ij + 2);
ho_occupency[ij] =
fs->make<TH2F>(title, title, netamx + 1, -netamx - 0.5, netamx / 2 + 0.5, nphimx, 0.5, nphimx + 0.5);
}
}
}
//
// member functions
//
void AlCaHOCalibProducer::fillDescriptions(edm::ConfigurationDescriptions& descriptions) {
edm::ParameterSetDescription desc;
desc.add<edm::InputTag>("hbheInput", edm::InputTag("hbhereco"));
desc.addUntracked<bool>("hotime", false);
desc.addUntracked<bool>("hbinfo", false);
desc.addUntracked<double>("sigma", 1.0);
desc.addUntracked<bool>("plotOccupancy", false);
desc.addUntracked<bool>("CosmicData", false);
desc.add<edm::InputTag>("hoInput", edm::InputTag("horeco"));
desc.add<edm::InputTag>("towerInput", edm::InputTag("towerMaker"));
desc.addUntracked<std::string>("RootFileName", "test.root");
desc.addUntracked<double>("m_scale", 4.0);
desc.addUntracked<bool>("debug", false);
desc.addUntracked<edm::InputTag>("muons", edm::InputTag("muons"));
desc.add<edm::InputTag>("vertexTags", edm::InputTag("offlinePrimaryVertices"));
desc.add<edm::InputTag>("lumiTags", edm::InputTag("scalersRawToDigi"));
desc.add<edm::InputTag>("metadata", edm::InputTag("onlineMetaDataDigis"));
descriptions.add("alcaHOCalibProducer", desc);
}
// ------------ method called to produce the data ------------
void AlCaHOCalibProducer::produce(edm::Event& iEvent, const edm::EventSetup& iSetup) {
int irun = iEvent.id().run();
// int ilumi = iEvent.luminosityBlock();
Nevents++;
if (Nevents % 5000 == 1)
edm::LogInfo("HOCalib") << "AlCaHOCalibProducer Processing event # " << Nevents << " " << Noccu << " " << irun
<< " " << iEvent.id().event();
theHcalChStatus = &iSetup.getData(tok_hcalChStatus_);
auto hostore = std::make_unique<HOCalibVariableCollection>();
edm::Handle<reco::TrackCollection> cosmicmuon;
edm::Handle<edm::View<reco::Muon> > collisionmuon;
bool muonOK(true);
HOCalibVariables tmpHOCalib;
tmpHOCalib.nprim = -1;
tmpHOCalib.pileup = -1.;
if (m_cosmic) {
cosmicmuon = iEvent.getHandle(tok_muonsCosmic_);
muonOK = (cosmicmuon.isValid() && !cosmicmuon->empty());
} else {
collisionmuon = iEvent.getHandle(tok_muons_);
muonOK = (collisionmuon.isValid() && !collisionmuon->empty());
if (iEvent.isRealData()) {
auto const& primaryVertices = iEvent.getHandle(tok_vertex_);
if (primaryVertices.isValid()) {
tmpHOCalib.nprim = primaryVertices->size();
}
tmpHOCalib.pileup = 0.;
auto const& lumiScale = iEvent.getHandle(tok_lumi_);
auto const& metaData = iEvent.getHandle(tok_metaData_);
// by default use Run-3 access (onlineMetaDataDigis)
if (metaData.isValid()) {
tmpHOCalib.pileup = metaData->avgPileUp();
} else if (lumiScale.isValid() && !lumiScale->empty()) {
if (lumiScale->begin() != lumiScale->end()) {
tmpHOCalib.pileup = lumiScale->begin()->pileup();
}
} else {
edm::LogWarning("HOCalib") << "Neither LumiScalers nor OnlineMetadata collections found in the event";
}
}
}
if (muonOK) {
int Noccu_old = Noccu;
edm::View<reco::Muon>::const_iterator muon1;
theHcalSevLvlComputer = &iSetup.getData(tok_hcalSevLvlComputer_);
MagneticField const& magField = iSetup.getData(tok_magField_);
const CaloGeometry& geo = iSetup.getData(tok_geom_);
const CaloSubdetectorGeometry* gHO = geo.getSubdetectorGeometry(DetId::Hcal, HcalOuter);
if (m_cosmic) {
int indx(0);
for (reco::TrackCollection::const_iterator ncosm = cosmicmuon->begin(); ncosm != cosmicmuon->end();
++ncosm, ++indx) {
if ((*ncosm).ndof() < 15)
continue;
if ((*ncosm).normalizedChi2() > 30.0)
continue;
reco::TrackRef tRef = reco::TrackRef(cosmicmuon, indx);
fillHOStore(tRef, tmpHOCalib, hostore, Noccu_old, indx, cosmicmuon, muon1, iEvent, gHO, magField);
}
} else {
for (muon1 = collisionmuon->begin(); muon1 < collisionmuon->end(); muon1++) {
if ((!muon1->isGlobalMuon()) || (!muon1->isTrackerMuon()))
continue;
reco::TrackRef ncosm = muon1->innerTrack();
fillHOStore(ncosm, tmpHOCalib, hostore, Noccu_old, 0, cosmicmuon, muon1, iEvent, gHO, magField);
}
}
}
iEvent.put(std::move(hostore), "HOCalibVariableCollection");
}
// ------------ method called once each job just before starting event loop ------------
void AlCaHOCalibProducer::beginJob() {
Nevents = 0;
nRuns = 0;
Noccu = 0;
}
// ------------ method called once each job just after ending the event loop ------------
void AlCaHOCalibProducer::endJob() {
if (m_occupancy) {
for (int ij = 0; ij < 5; ij++) {
ho_occupency[ij]->Scale(1. / std::max(1, Noccu));
}
}
edm::LogInfo("HOCalib") << " AlCaHOCalibProducer processed event " << Nevents;
}
void AlCaHOCalibProducer::fillHOStore(const reco::TrackRef& ncosm,
HOCalibVariables& tmpHOCalib,
std::unique_ptr<HOCalibVariableCollection>& hostore,
int Noccu_old,
int indx,
edm::Handle<reco::TrackCollection> cosmicmuon,
edm::View<reco::Muon>::const_iterator muon1,
const edm::Event& iEvent,
const CaloSubdetectorGeometry* gHO,
const MagneticField& magField) {
// Get Hcal Severity Level Computer, so that the severity of each rechit flag/status may be determined
int charge = ncosm->charge();
double innerr = (*ncosm).innerPosition().Perp2();
double outerr = (*ncosm).outerPosition().Perp2();
int iiner = (innerr < outerr) ? 1 : 0;
//---------------------------------------------------
// in_to_out Dir in_to_out Dir
// StandAlone ^ ^ Cosmic ^ |
// | | | v
//---------------------------------------------------Y=0
// StandAlone | | Cosmic ^ |
// v v | v
//----------------------------------------------------
double posx, posy, posz;
double momx, momy, momz;
if (iiner == 1) {
posx = (*ncosm).innerPosition().X();
posy = (*ncosm).innerPosition().Y();
posz = (*ncosm).innerPosition().Z();
momx = (*ncosm).innerMomentum().X();
momy = (*ncosm).innerMomentum().Y();
momz = (*ncosm).innerMomentum().Z();
} else {
posx = (*ncosm).outerPosition().X();
posy = (*ncosm).outerPosition().Y();
posz = (*ncosm).outerPosition().Z();
momx = (*ncosm).outerMomentum().X();
momy = (*ncosm).outerMomentum().Y();
momz = (*ncosm).outerMomentum().Z();
}
PositionType trkpos(posx, posy, posz);
CLHEP::Hep3Vector tmpmuon3v(posx, posy, posz);
CLHEP::Hep3Vector tmpmuondir(momx, momy, momz);
bool samedir = (tmpmuon3v.dot(tmpmuondir) > 0) ? true : false;
for (int ij = 0; ij < 3; ij++) {
tmpHOCalib.caloen[ij] = 0.0;
}
int inearbymuon = 0;
localxhor0 = localyhor0 = 20000; //GM for 22OCT07 data
if (m_cosmic) {
int ind(0);
for (reco::TrackCollection::const_iterator ncosmcor = cosmicmuon->begin(); ncosmcor != cosmicmuon->end();
++ncosmcor, ++ind) {
if (indx == ind)
continue;
CLHEP::Hep3Vector tmpmuon3vcor;
CLHEP::Hep3Vector tmpmom3v;
if (iiner == 1) {
tmpmuon3vcor = CLHEP::Hep3Vector(
(*ncosmcor).innerPosition().X(), (*ncosmcor).innerPosition().Y(), (*ncosmcor).innerPosition().Z());
tmpmom3v = CLHEP::Hep3Vector(
(*ncosmcor).innerMomentum().X(), (*ncosmcor).innerMomentum().Y(), (*ncosmcor).innerMomentum().Z());
} else {
tmpmuon3vcor = CLHEP::Hep3Vector(
(*ncosmcor).outerPosition().X(), (*ncosmcor).outerPosition().Y(), (*ncosmcor).outerPosition().Z());
tmpmom3v = CLHEP::Hep3Vector(
(*ncosmcor).outerMomentum().X(), (*ncosmcor).outerMomentum().Y(), (*ncosmcor).outerMomentum().Z());
}
if (tmpmom3v.mag() < 0.2 || (*ncosmcor).ndof() < 5)
continue;
double angle = tmpmuon3v.angle(tmpmuon3vcor);
if (angle < 7.5 * CLHEP::deg) {
inearbymuon = 1;
} // break;}
// if (muonTagsi_.label() =="cosmicMuons") {
if (angle < 7.5 * CLHEP::deg) {
tmpHOCalib.caloen[0] += 1.;
}
if (angle < 15.0 * CLHEP::deg) {
tmpHOCalib.caloen[1] += 1.;
}
if (angle < 35.0 * CLHEP::deg) {
tmpHOCalib.caloen[2] += 1.;
}
}
} else {
// if (muonTags_.label() =="muons") {
auto const& calotower = iEvent.getHandle(tok_tower_);
for (CaloTowerCollection::const_iterator calt = calotower->begin(); calt != calotower->end(); calt++) {
//CMSSW_2_1_x const math::XYZVector towermom = (*calt).momentum();
double ith = (*calt).momentum().theta();
double iph = (*calt).momentum().phi();
CLHEP::Hep3Vector calo3v(sin(ith) * cos(iph), sin(ith) * sin(iph), cos(ith));
double angle = tmpmuon3v.angle(calo3v);
if (angle < 7.5 * CLHEP::deg) {
tmpHOCalib.caloen[0] += calt->emEnergy() + calt->hadEnergy();
}
if (angle < 15 * CLHEP::deg) {
tmpHOCalib.caloen[1] += calt->emEnergy() + calt->hadEnergy();
}
if (angle < 35 * CLHEP::deg) {
tmpHOCalib.caloen[2] += calt->emEnergy() + calt->hadEnergy();
}
}
}
if ((m_cosmic) || (tmpHOCalib.caloen[0] <= 10.0)) {
GlobalPoint glbpt(posx, posy, posz);
double mom = sqrt(momx * momx + momy * momy + momz * momz);
momx /= mom;
momy /= mom;
momz /= mom;
DirectionType trkdir(momx, momy, momz);
tmpHOCalib.trkdr = (*ncosm).d0();
tmpHOCalib.trkdz = (*ncosm).dz();
tmpHOCalib.nmuon = (m_cosmic) ? cosmicmuon->size() : 1;
tmpHOCalib.trkvx = glbpt.x();
tmpHOCalib.trkvy = glbpt.y();
tmpHOCalib.trkvz = glbpt.z();
tmpHOCalib.trkmm = mom * charge;
tmpHOCalib.trkth = trkdir.theta();
tmpHOCalib.trkph = trkdir.phi();
tmpHOCalib.isect2 = -2;
tmpHOCalib.isect = -2;
tmpHOCalib.hodx = -100;
tmpHOCalib.hody = -100;
tmpHOCalib.hoang = -2.0;
tmpHOCalib.momatho = -2;
tmpHOCalib.ndof = (inearbymuon == 0) ? (int)(*ncosm).ndof() : -(int)(*ncosm).ndof();
tmpHOCalib.chisq = (*ncosm).normalizedChi2(); // max(1.,tmpHOCalib.ndof);
if (!m_cosmic) {
reco::MuonEnergy muonenr = muon1->calEnergy();
reco::MuonIsolation iso03 = muon1->isolationR03();
reco::MuonIsolation iso05 = muon1->isolationR05();
tmpHOCalib.tkpt03 = iso03.sumPt;
tmpHOCalib.ecal03 = iso05.sumPt; // iso03.emEt+muonenr.em;
tmpHOCalib.hcal03 = iso03.hadEt + muonenr.had;
}
tmpHOCalib.therr = 0.;
tmpHOCalib.pherr = 0.;
if (iiner == 1) {
reco::TrackBase::CovarianceMatrix innercov = (*ncosm).innerStateCovariance();
tmpHOCalib.therr = innercov(1, 1); //thetaError();
tmpHOCalib.pherr = innercov(2, 2); //phi0Error();
} else {
reco::TrackBase::CovarianceMatrix outercov = (*ncosm).outerStateCovariance();
tmpHOCalib.therr = outercov(1, 1); //thetaError();
tmpHOCalib.pherr = outercov(2, 2); //phi0Error();
}
SteppingHelixPropagator myHelix(&magField, anyDirection);
myHelix.setMaterialMode(false);
myHelix.applyRadX0Correction(true);
double phiho = trkpos.phi();
if (phiho < 0)
phiho += CLHEP::twopi;
int iphisect_dt = int(6 * (phiho + 10.0 * CLHEP::deg) / CLHEP::pi); //for u 18/12/06
if (iphisect_dt >= 12)
iphisect_dt = 0;
int iphisect = -1;
bool ipath = false;
for (int kl = 0; kl <= 2; kl++) {
int iphisecttmp = (kl < 2) ? iphisect_dt + kl : iphisect_dt - 1;
if (iphisecttmp < 0)
iphisecttmp = 11;
if (iphisecttmp >= 12)
iphisecttmp = 0;
double phipos = iphisecttmp * CLHEP::pi / 6.;
double phirot = phipos;
GlobalVector xLocal(-sin(phirot), cos(phirot), 0.);
GlobalVector yLocal(0., 0., 1.);
GlobalVector zLocal = xLocal.cross(yLocal).unit();
// GlobalVector zLocal(cos(phirot), sin(phirot), 0.0);
FreeTrajectoryState freetrajectorystate_ = getFreeTrajectoryState(*ncosm, &(magField), iiner, samedir);
Surface::RotationType rot(xLocal, yLocal, zLocal);
for (int ik = 1; ik >= 0; ik--) { //propagate track in two HO layers
double radial = rHOL1;
if (ik == 0)
radial = rHOL0;
Surface::PositionType pos(radial * cos(phipos), radial * sin(phipos), 0.);
PlaneBuilder::ReturnType aPlane = PlaneBuilder().plane(pos, rot);
auto aPlane2 = new Plane(pos, rot);
SteppingHelixStateInfo steppingHelixstateinfo_;
myHelix.propagate(SteppingHelixStateInfo(freetrajectorystate_), (*aPlane2), steppingHelixstateinfo_);
if (steppingHelixstateinfo_.isValid()) {
GlobalPoint hotrkpos2xx(steppingHelixstateinfo_.position().x(),
steppingHelixstateinfo_.position().y(),
steppingHelixstateinfo_.position().z());
if (ik == 1) {
HcalDetId ClosestCell = (HcalDetId)gHO->getClosestCell(hotrkpos2xx);
int ixeta = ClosestCell.ieta();
int ixphi = ClosestCell.iphi();
tmpHOCalib.isect2 = 100 * std::abs(ixeta + 50) + std::abs(ixphi);
}
GlobalVector hotrkpos2(steppingHelixstateinfo_.position().x(),
steppingHelixstateinfo_.position().y(),
steppingHelixstateinfo_.position().z());
CLHEP::Hep3Vector hotrkdir2(steppingHelixstateinfo_.momentum().x(),
steppingHelixstateinfo_.momentum().y(),
steppingHelixstateinfo_.momentum().z());
LocalVector lclvt0 = (*aPlane).toLocal(hotrkpos2);
double xx = lclvt0.x();
double yy = lclvt0.y();
if (ik == 1) {
if ((std::abs(yy) < 130 && xx > -64.7 && xx < 138.2) //Ring-0
|| (std::abs(yy) > 130 && std::abs(yy) < 700 && xx > -76.3 && xx < 140.5)) { //Ring +-1,2
ipath = true; //Only look for tracks which as hits in layer 1
iphisect = iphisecttmp;
}
}
if (iphisect != iphisecttmp)
continue; //Look for ring-0 only when ring1 is accepted for that sector
switch (ik) {
case 0:
xhor0 = xx; //lclvt0.x();
yhor0 = yy; //lclvt0.y();
break;
case 1:
xhor1 = xx; //lclvt0.x();
yhor1 = yy; //lclvt0.y();
tmpHOCalib.momatho = hotrkdir2.mag();
tmpHOCalib.hoang = CLHEP::Hep3Vector(zLocal.x(), zLocal.y(), zLocal.z()).dot(hotrkdir2.unit());
break;
default:
break;
}
} else {
break;
}
}
if (ipath)
break;
}
if (ipath) { //If muon crossed HO laeyrs
int ietaho = 50;
int iphiho = -1;
for (int ij = 0; ij < 9; ij++) {
tmpHOCalib.hosig[ij] = -100.0;
}
for (int ij = 0; ij < 18; ij++) {
tmpHOCalib.hocorsig[ij] = -100.0;
}
for (int ij = 0; ij < 9; ij++) {
tmpHOCalib.hbhesig[ij] = -100.0;
}
tmpHOCalib.hocro = -100;
tmpHOCalib.htime = -1000;
int isect = 0;
findHOEtaPhi(iphisect, ietaho, iphiho);
if (ietaho != 0 && iphiho != 0 && std::abs(iring) <= 2) { //Muon passed through a tower
isect = 100 * std::abs(ietaho + 50) + std::abs(iphiho);
if (std::abs(ietaho) >= netabin || iphiho < 0)
isect *= -1; //Not extrapolated to any tower
if (std::abs(ietaho) >= netabin)
isect -= 1000000; //not matched with eta
if (iphiho < 0)
isect -= 2000000; //not matched with phi
tmpHOCalib.isect = isect;
tmpHOCalib.hodx = localxhor1;
tmpHOCalib.hody = localyhor1;
if (iring == 0) {
tmpHOCalib.hocorsig[8] = localxhor0;
tmpHOCalib.hocorsig[9] = localyhor0;
}
int etamn = -4;
int etamx = 4;
if (iring == 1) {
etamn = 5;
etamx = 10;
}
if (iring == 2) {
etamn = 11;
etamx = 16;
}
if (iring == -1) {
etamn = -10;
etamx = -5;
}
if (iring == -2) {
etamn = -16;
etamx = -11;
}
int phimn = 1;
int phimx = 2;
if (iring == 0) {
phimx = 2 * int((iphiho + 1) / 2.);
phimn = phimx - 1;
} else {
phimn = 3 * int((iphiho + 1) / 3.) - 1;
phimx = phimn + 2;
}
if (phimn < 1)
phimn += nphimx;
if (phimx > 72)
phimx -= nphimx;
if (m_hbinfo) {
for (int ij = 0; ij < 9; ij++) {
tmpHOCalib.hbhesig[ij] = -100.0;
}
auto const& hbheht = iEvent.getHandle(tok_hbhe_); // iEvent.getByType(hbheht);
if (!(*hbheht).empty()) {
if ((*hbheht).empty())
throw (int)(*hbheht).size();
for (HBHERecHitCollection::const_iterator jk = (*hbheht).begin(); jk != (*hbheht).end(); jk++) {
HcalDetId id = (*jk).id();
int tmpeta = id.ieta();
int tmpphi = id.iphi();
int deta = tmpeta - ietaho;
if (tmpeta < 0 && ietaho > 0)
deta += 1;
if (tmpeta > 0 && ietaho < 0)
deta -= 1;
// if (tmpeta==-1 && ietaho== 1) deta = -1;
// if (tmpeta== 1 && ietaho==-1) deta = 1;
int dphi = tmpphi - iphiho;
if (dphi > nphimx / 2) {
dphi -= nphimx;
}
if (dphi < -nphimx / 2) {
dphi += nphimx;
}
// if (phimn >phimx) {
// if (dphi==71) dphi=-1;
// if (dphi==-71) dphi=1;
// }
if (m_occupancy) {
float signal = (*jk).energy();
// int tmpeta1 = (tmpeta>0) ? tmpeta -1 : -tmpeta +14;
if (signal > -100 && Noccu == Noccu_old) {
for (int ij = 0; ij < 5; ij++) {
if (signal > (ij + 2) * m_sigma) {
ho_occupency[ij]->Fill(tmpeta, tmpphi);
}
}
}
}
int ipass2 = (std::abs(deta) <= 1 && std::abs(dphi) <= 1) ? 1 : 0; //NEED correction in full CMS detector
if (ipass2 == 0)
continue;
float signal = (*jk).energy();
if (3 * (deta + 1) + dphi + 1 < 9)
tmpHOCalib.hbhesig[3 * (deta + 1) + dphi + 1] = signal;
}
}
} //m_hbinfo #endif
auto const& hoht = iEvent.getHandle(tok_ho_);
if (!(*hoht).empty()) {
for (HORecHitCollection::const_iterator jk = (*hoht).begin(); jk != (*hoht).end(); jk++) {
HcalDetId id = (*jk).id();
int tmpeta = id.ieta();
int tmpphi = id.iphi();
int ipass1 = 0;
if (tmpeta >= etamn && tmpeta <= etamx) {
if (phimn < phimx) {
ipass1 = (tmpphi >= phimn && tmpphi <= phimx) ? 1 : 0;
} else {
ipass1 = (tmpphi == 71 || tmpphi == 72 || tmpphi == 1) ? 1 : 0;
}
}
int deta = tmpeta - ietaho;
int dphi = tmpphi - iphiho;
if (tmpeta < 0 && ietaho > 0)
deta += 1;
if (tmpeta > 0 && ietaho < 0)
deta -= 1;
// if (tmpeta==-1 && ietaho== 1) deta = -1;
// if (tmpeta== 1 && ietaho==-1) deta = 1;
if (dphi > nphimx / 2) {
dphi -= nphimx;
}
if (dphi < -nphimx / 2) {
dphi += nphimx;
}
// if (phimn>phimx) {
// if (dphi==71) dphi=-1;
// if (dphi==-71) dphi=1;
// }
float signal = (*jk).energy();
int ipass2 = (std::abs(deta) <= 1 && std::abs(dphi) <= 1) ? 1 : 0;
if (ipass1 == 0 && ipass2 == 0)
continue;
if (ipass1 == 1) {
int tmpdph = tmpphi - phimn;
if (tmpdph < 0)
tmpdph = 2; //only case of iphi==1, where phimn=71
int ilog = 2 * (tmpeta - etamn) + tmpdph;
if (iring != 0) {
if (iring > 0) {
ilog = 3 * (tmpeta - etamn) + tmpdph; //Again CMS correction
} else {
ilog = 3 * (etamx - tmpeta) + tmpdph; //Again CMS correction
}
}
if (ilog > -1 && ilog < 18) {
tmpHOCalib.hocorsig[ilog] = signal;
}
}
if (ipass2 == 1) {
if (3 * (deta + 1) + dphi + 1 < 9) {
tmpHOCalib.hosig[3 * (deta + 1) + dphi + 1] = signal; //Again CMS azimuthal near phi 1&72
}
}
if (deta == 0 && dphi == 0) {
tmpHOCalib.htime = (*jk).time();
tmpHOCalib.hoflag = (*jk).flags();
// Get Channel Quality information for the given detID
unsigned theStatusValue = theHcalChStatus->getValues(id)->getValue();
// Now get severity of problems for the given detID, based on the rechit flag word and the channel quality status value
int hitSeverity = theHcalSevLvlComputer->getSeverityLevel(id, (*jk).flags(), theStatusValue);
tmpHOCalib.hoflag = hitSeverity;
int crphi = tmpphi + 6;
if (crphi > 72)
crphi -= 72;
for (HORecHitCollection::const_iterator jcr = (*hoht).begin(); jcr != (*hoht).end(); jcr++) {
const HORecHit reccr = (const HORecHit)(*jcr);
HcalDetId idcr = reccr.id();
int etacr = idcr.ieta();
int phicr = idcr.iphi();
if (tmpeta == etacr && crphi == phicr) {
tmpHOCalib.hocro = reccr.energy();
}
}
}
}
}
}
//GMA Npass++;
if (Noccu == Noccu_old)
Noccu++;
hostore->push_back(tmpHOCalib);
} // if (ipath)
} // Cut on calo energy
}
void AlCaHOCalibProducer::findHOEtaPhi(int iphisect, int& ietaho, int& iphiho) {
//18/12/06 : use only position, not angle phi
const double etalow[16] = {0.025,
35.195,
70.625,
106.595,
141.565,
180.765,
220.235,
261.385,
304.525,
349.975,
410.025,
452.085,
506.645,
565.025,
627.725,
660.25};
const double etahgh[16] = {35.145,
70.575,
106.545,
125.505,
180.715,
220.185,
261.335,
304.475,
349.925,
392.575,
452.035,
506.595,
564.975,
627.675,
661.075,
700.25};
const double philow[6] = {-76.27, -35.11, 0.35, 35.81, 71.77, 108.93}; //Ring+/-1 & 2
const double phihgh[6] = {-35.81, -0.35, 35.11, 71.07, 108.23, 140.49};
const double philow00[6] = {-60.27, -32.91, 0.35, 33.61, 67.37, 102.23}; //Ring0 L0
const double phihgh00[6] = {-33.61, -0.35, 32.91, 66.67, 101.53, 129.49};
const double philow01[6] = {-64.67, -34.91, 0.35, 35.61, 71.37, 108.33}; //Ring0 L1
const double phihgh01[6] = {-35.61, -0.35, 34.91, 70.67, 107.63, 138.19};
iring = -10;
double tmpdy = std::abs(yhor1);
for (int ij = 0; ij < netabin; ij++) {
if (tmpdy > etalow[ij] && tmpdy < etahgh[ij]) {
ietaho = ij + 1;
float tmp1 = fabs(tmpdy - etalow[ij]);
float tmp2 = fabs(tmpdy - etahgh[ij]);
localyhor1 = (tmp1 < tmp2) ? -tmp1 : tmp2;
if (yhor1 < 0)
localyhor1 *= -1.;
if (ij < 4)
iring = 0;
if (ij >= 4 && ij < 10)
iring = 1;
if (ij >= 10 && ij < netabin)
iring = 2;
break;
}
}
int tmpphi = 0;
int tmpphi0 = 0;
if (ietaho > 4) { //Ring 1 and 2
for (int ij = 0; ij < 6; ij++) {
if (xhor1 > philow[ij] && xhor1 < phihgh[ij]) {
tmpphi = ij + 1;
float tmp1 = fabs(xhor1 - philow[ij]);
float tmp2 = fabs(xhor1 - phihgh[ij]);
localxhor1 = (tmp1 < tmp2) ? -tmp1 : tmp2;
break;
}
}
} else { //Ring 0
for (int ij = 0; ij < 6; ij++) {
if (xhor1 > philow01[ij] && xhor1 < phihgh01[ij]) {
tmpphi = ij + 1;
float tmp1 = fabs(xhor1 - philow01[ij]);
float tmp2 = fabs(xhor1 - phihgh01[ij]);
localxhor1 = (tmp1 < tmp2) ? -tmp1 : tmp2;
break;
}
}
for (int ij = 0; ij < 6; ij++) {
if (xhor0 > philow00[ij] && xhor0 < phihgh00[ij]) {
tmpphi0 = ij + 1;
float tmp1 = fabs(xhor0 - philow00[ij]);
float tmp2 = fabs(xhor0 - phihgh00[ij]);
localxhor0 = (tmp1 < tmp2) ? -tmp1 : tmp2;
if (tmpphi != tmpphi0)
localxhor0 += 10000.;
break;
}
}
double tmpdy = std::abs(yhor0);
for (int ij = 0; ij < 4; ij++) {
if (tmpdy > etalow[ij] && tmpdy < etahgh[ij]) {
float tmp1 = fabs(tmpdy - etalow[ij]);
float tmp2 = fabs(tmpdy - etahgh[ij]);
localyhor0 = (tmp1 < tmp2) ? -tmp1 : tmp2;
if (yhor0 < 0)
localyhor0 *= -1.;
if (ij + 1 != ietaho)
localyhor0 += 10000.;
break;
}
}
}
if (tmpphi != 0) {
iphiho = 6 * iphisect - 2 + tmpphi;
if (iphiho <= 0)
iphiho += nphimx;
if (iphiho > nphimx)
iphiho -= nphimx;
}
// isect2 = 15*iring+iphisect+1;
if (yhor1 < 0) {
if (std::abs(ietaho) > netabin) { //Initialised with 50
ietaho += 1;
} else {
ietaho *= -1;
}
// isect2 *=-1;
iring *= -1;
}
}
FreeTrajectoryState AlCaHOCalibProducer::getFreeTrajectoryState(const reco::Track& tk,
const MagneticField* field,
int iiner,
bool dir) {
if (iiner == 0) {
GlobalPoint gpos(tk.outerX(), tk.outerY(), tk.outerZ());
GlobalVector gmom(tk.outerPx(), tk.outerPy(), tk.outerPz());
if (dir)
gmom *= -1.;
GlobalTrajectoryParameters par(gpos, gmom, tk.charge(), field);
CurvilinearTrajectoryError err(tk.extra()->outerStateCovariance());
return FreeTrajectoryState(par, err);
} else {
GlobalPoint gpos(tk.innerPosition().X(), tk.innerPosition().Y(), tk.innerPosition().Z());
GlobalVector gmom(tk.innerMomentum().X(), tk.innerMomentum().Y(), tk.innerMomentum().Z());
if (dir)
gmom *= -1.;
GlobalTrajectoryParameters par(gpos, -gmom, tk.charge(), field);
CurvilinearTrajectoryError err(tk.extra()->innerStateCovariance());
return FreeTrajectoryState(par, err);
}
}
#include "FWCore/Framework/interface/MakerMacros.h"
//define this as a plug-in
DEFINE_FWK_MODULE(AlCaHOCalibProducer);
|