Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
///////////////////////////////////////////////////////////////////////////////
//
//   HBHEMuonOfflineSimAnalyzer h1(infile, outfile, mode, maxDHB, maxDHE);
//   h1.Loop()
//
//      Offline analysis for MC files
//
//   infile     const char*  Name of the input file
//   outfile    const char*  Name of the output file
//                           (dyll_PU20_25_output.root)
//   mode       int          Geometry file used 0:(defined by maxDHB/HE);
//                           1 (Run 1; valid till 2016); 2 (Run 2; 2018);
//                           3 (Run 3; post LS2); 4 (2017 Plan 1);
//                           5 (Run 4; post LS3); default (3)
//   maxDHB     int          Maximum number of depths for HB (4)
//   maxDHE     int          Maximum number of depths for HE (7)
//
///////////////////////////////////////////////////////////////////////////////

#include <algorithm>
#include <cmath>
#include <iostream>
#include <vector>
#include <cstring>
#include <TCanvas.h>
#include <TChain.h>
#include <TFile.h>
#include <TH1.h>
#include <TH1D.h>
#include <TH2.h>
#include <TH2D.h>
#include <TProfile.h>
#include <TROOT.h>
#include <TStyle.h>
#include <TTree.h>

class HBHEMuonOfflineSimAnalyzer {
private:
  TTree *fChain;  //!pointer to the analyzed TTree or TChain
  Int_t fCurrent;

  UInt_t Run_No;
  UInt_t Event_No;
  UInt_t LumiNumber;
  UInt_t BXNumber;
  double pt_of_muon;
  double eta_of_muon;
  double phi_of_muon;
  double p_of_muon;
  double ecal_3x3;
  unsigned int ecal_detID;
  double hcal_1x1;
  double matchedId;
  unsigned int hcal_detID;
  unsigned int hcal_cellHot;
  double activeLength;
  double hcal_edepth1;
  double hcal_edepth2;
  double hcal_edepth3;
  double hcal_edepth4;
  double hcal_activeL1;
  double hcal_activeL2;
  double hcal_activeL3;
  double hcal_activeL4;
  double activeLengthHot;
  double hcal_edepthHot1;
  double hcal_edepthHot2;
  double hcal_edepthHot3;
  double hcal_edepthHot4;
  double hcal_activeHotL1;
  double hcal_activeHotL2;
  double hcal_activeHotL3;
  double hcal_activeHotL4;
  double hcal_edepth5;
  double hcal_activeL5;
  double hcal_edepthHot5;
  double hcal_activeHotL5;
  double hcal_edepth6;
  double hcal_activeL6;
  double hcal_edepthHot6;
  double hcal_activeHotL6;
  double hcal_edepth7;
  double hcal_activeL7;
  double hcal_edepthHot7;
  double hcal_activeHotL7;

  TBranch *b_Run_No;            //!
  TBranch *b_Event_No;          //!
  TBranch *b_LumiNumber;        //!
  TBranch *b_BXNumber;          //!
  TBranch *b_pt_of_muon;        //!
  TBranch *b_eta_of_muon;       //!
  TBranch *b_phi_of_muon;       //!
  TBranch *b_p_of_muon;         //!
  TBranch *b_ecal_3x3;          //!
  TBranch *b_ecal_detID;        //!
  TBranch *b_hcal_1x1;          //!
  TBranch *b_hcal_detID;        //!
  TBranch *b_hcal_cellHot;      //!
  TBranch *b_activeLength;      //!
  TBranch *b_hcal_edepth1;      //!
  TBranch *b_hcal_edepth2;      //!
  TBranch *b_hcal_edepth3;      //!
  TBranch *b_hcal_edepth4;      //!
  TBranch *b_hcal_activeL1;     //!
  TBranch *b_hcal_activeL2;     //!
  TBranch *b_hcal_activeL3;     //!
  TBranch *b_hcal_activeL4;     //!
  TBranch *b_activeLengthHot;   //!
  TBranch *b_hcal_edepthHot1;   //!
  TBranch *b_hcal_edepthHot2;   //!
  TBranch *b_hcal_edepthHot3;   //!
  TBranch *b_hcal_edepthHot4;   //!
  TBranch *b_hcal_activeHotL1;  //!
  TBranch *b_hcal_activeHotL2;  //!
  TBranch *b_hcal_activeHotL3;  //!
  TBranch *b_hcal_activeHotL4;  //!
  TBranch *b_hcal_edepth5;      //!
  TBranch *b_hcal_activeL5;     //!
  TBranch *b_hcal_edepthHot5;   //!
  TBranch *b_hcal_activeHotL5;  //!
  TBranch *b_hcal_edepth6;      //!
  TBranch *b_hcal_activeL6;     //!
  TBranch *b_hcal_edepthHot6;   //!
  TBranch *b_hcal_activeHotL6;  //!
  TBranch *b_hcal_edepth7;      //!
  TBranch *b_hcal_activeL7;     //!
  TBranch *b_hcal_edepthHot7;   //!
  TBranch *b_hcal_activeHotL7;  //!
  TBranch *b_matchedId;         //!

public:
  HBHEMuonOfflineSimAnalyzer(const char *infile,
                             const char *outfile = "dyll_PU20_25_output.root",
                             const int mode = 3,
                             const int maxDHB = 4,
                             const int maxDHE = 7);
  virtual ~HBHEMuonOfflineSimAnalyzer();
  virtual Int_t Cut(Long64_t entry);
  virtual Int_t GetEntry(Long64_t entry);
  virtual Long64_t LoadTree(Long64_t entry);
  virtual void Init(TTree *tree);
  virtual void Loop();
  virtual Bool_t Notify();
  virtual void Show(Long64_t entry = -1);

  std::vector<std::string> firedTriggers;
  void BookHistograms(const char *);
  void WriteHistograms();
  bool LooseMuon();
  bool tightMuon();
  bool SoftMuon();
  void etaPhiHcal(unsigned int detId, int &eta, int &phi, int &depth);
  void etaPhiEcal(unsigned int detId, int &type, int &zside, int &etaX, int &phiY, int &plane, int &strip);
  void calculateP(double pt, double eta, double &pM);
  void close();
  int NDepthBins(int ieta, int iphi);
  int NPhiBins(int ieta);

private:
  static const bool debug_ = false;
  static const int maxDep = 7;
  static const int maxEta = 29;
  static const int maxPhi = 72;
  //3x16x72x2 + 5x4x72x2 + 5x9x36x2
  static const int maxHist = 20000;  //13032;
  int modeLHC_, maxDepthHB_, maxDepthHE_, maxDepth_;
  int nHist, nDepths[maxEta], nDepthsPhi[maxEta], indxEta[maxEta][maxDep][maxPhi];
  TFile *output_file;

  TH1D *h_Pt_Muon[3], *h_Eta_Muon[3], *h_Phi_Muon[3], *h_P_Muon[3];
  TH1D *h_PF_Muon[3], *h_GlobTrack_Chi[3], *h_Global_Muon_Hits[3];
  TH1D *h_MatchedStations[3], *h_Tight_TransImpactparameter[3];
  TH1D *h_Tight_LongitudinalImpactparameter[3], *h_InnerTrackPixelHits[3];
  TH1D *h_TrackerLayer[3], *h_IsolationR04[3], *h_Global_Muon[3];
  TH1D *h_LongImpactParameter[3], *h_LongImpactParameterBin1[3], *h_LongImpactParameterBin2[3];

  TH1D *h_TransImpactParameter[3], *h_TransImpactParameterBin1[3], *h_TransImpactParameterBin2[3];
  TH1D *h_Hot_MuonEnergy_hcal_ClosestCell[3][maxHist], *h_Hot_MuonEnergy_hcal_HotCell[3][maxHist],
      *h_Hot_MuonEnergy_hcal_HotCell_VsActiveLength[3][maxHist], *h_HotCell_MuonEnergy_phi[3][maxHist];
  TH2D *h_2D_Bin1[3], *h_2D_Bin2[3];
  TH1D *h_ecal_energy[3], *h_hcal_energy[3], *h_3x3_ecal[3], *h_1x1_hcal[3];
  TH1D *h_MuonHittingEcal[3], *h_HotCell[3], *h_MuonEnergy_hcal[3][maxHist];
  TH1D *h_Hot_MuonEnergy_hcal[3][maxHist];
  TH2D *hcal_ietaVsEnergy[3];
  TProfile *h_EtaX_hcal[3], *h_PhiY_hcal[3], *h_EtaX_ecal[3], *h_PhiY_ecal[3];
  TProfile *h_Eta_ecal[3], *h_Phi_ecal[3];
  TProfile *h_MuonEnergy_eta[3][maxDep], *h_MuonEnergy_phi[3][maxDep], *h_MuonEnergy_muon_eta[3][maxDep];
  TProfile *h_Hot_MuonEnergy_eta[3][maxDep], *h_Hot_MuonEnergy_phi[3][maxDep], *h_Hot_MuonEnergy_muon_eta[3][maxDep];
  TProfile *h_IsoHot_MuonEnergy_eta[3][maxDep], *h_IsoHot_MuonEnergy_phi[3][maxDep],
      *h_IsoHot_MuonEnergy_muon_eta[3][maxDep];
  TProfile *h_IsoWithoutHot_MuonEnergy_eta[3][maxDep], *h_IsoWithoutHot_MuonEnergy_phi[3][maxDep],
      *h_IsoWithoutHot_MuonEnergy_muon_eta[3][maxDep];
  TProfile *h_HotWithoutIso_MuonEnergy_eta[3][maxDep], *h_HotWithoutIso_MuonEnergy_phi[3][maxDep],
      *h_HotWithoutIso_MuonEnergy_muon_eta[3][maxDep];
};

HBHEMuonOfflineSimAnalyzer::HBHEMuonOfflineSimAnalyzer(
    const char *infile, const char *outFileName, const int mode, const int maxDHB, const int maxDHE) {
  modeLHC_ = mode;
  maxDepthHB_ = maxDHB;
  maxDepthHE_ = maxDHE;
  maxDepth_ = (maxDepthHB_ > maxDepthHE_) ? maxDepthHB_ : maxDepthHE_;
  // if parameter tree is not specified (or zero), connect the file
  // used to generate this class and read the Tree.
  TFile *f = new TFile(infile);
  TDirectory *dir = (TDirectory *)f->Get("HcalHBHEMuonAnalyzer");
  TTree *tree(0);
  dir->GetObject("TREE", tree);
  Init(tree);

  //Now book histograms
  BookHistograms(outFileName);
}

HBHEMuonOfflineSimAnalyzer::~HBHEMuonOfflineSimAnalyzer() {
  if (!fChain)
    return;
  delete fChain->GetCurrentFile();
}

Int_t HBHEMuonOfflineSimAnalyzer::Cut(Long64_t) {
  // This function may be called from Loop.
  // returns  1 if entry is accepted.
  // returns -1 otherwise.
  return 1;
}

Int_t HBHEMuonOfflineSimAnalyzer::GetEntry(Long64_t entry) {
  // Read contents of entry.
  if (!fChain)
    return 0;
  return fChain->GetEntry(entry);
}

Long64_t HBHEMuonOfflineSimAnalyzer::LoadTree(Long64_t entry) {
  // Set the environment to read one entry
  if (!fChain)
    return -5;
  Long64_t centry = fChain->LoadTree(entry);
  if (centry < 0)
    return centry;
  if (fChain->GetTreeNumber() != fCurrent) {
    fCurrent = fChain->GetTreeNumber();
    Notify();
  }
  return centry;
}

void HBHEMuonOfflineSimAnalyzer::Init(TTree *tree) {
  // The Init() function is called when the selector needs to initialize
  // a new tree or chain. Typically here the branch addresses and branch
  // pointers of the tree will be set.
  // It is normally not necessary to make changes to the generated
  // code, but the routine can be extended by the user if needed.
  // Init() will be called many times when running on PROOF
  // (once per file to be processed).

  // Set object pointer
  pt_of_muon = 0;
  eta_of_muon = 0;
  phi_of_muon = 0;
  p_of_muon = 0;
  ecal_3x3 = 0;
  ecal_detID = 0;
  hcal_1x1 = 0;
  hcal_detID = 0;
  hcal_cellHot = 0;
  activeLength = 0;
  hcal_edepth1 = 0;
  hcal_edepth2 = 0;
  hcal_edepth3 = 0;
  hcal_edepth4 = 0;
  hcal_activeL1 = 0;
  hcal_activeL2 = 0;
  hcal_activeL3 = 0;
  hcal_activeL4 = 0;
  activeLengthHot = 0;
  hcal_edepthHot1 = 0;
  hcal_edepthHot2 = 0;
  hcal_edepthHot3 = 0;
  hcal_edepthHot4 = 0;
  hcal_activeHotL1 = 0;
  hcal_activeHotL2 = 0;
  hcal_activeHotL3 = 0;
  hcal_activeHotL4 = 0;
  hcal_edepth5 = 0;
  hcal_activeL5 = 0;
  hcal_edepthHot5 = 0;
  hcal_activeHotL5 = 0;
  hcal_edepth6 = 0;
  hcal_activeL6 = 0;
  hcal_edepthHot6 = 0;
  hcal_activeHotL6 = 0;
  hcal_edepth7 = 0;
  hcal_activeL7 = 0;
  hcal_edepthHot7 = 0;
  hcal_activeHotL7 = 0;
  matchedId = 0;
  if (!tree)
    return;
  fChain = tree;
  fCurrent = -1;
  fChain->SetMakeClass(1);

  fChain->SetBranchAddress("Run_No", &Run_No, &b_Run_No);
  fChain->SetBranchAddress("Event_No", &Event_No, &b_Event_No);
  fChain->SetBranchAddress("LumiNumber", &LumiNumber, &b_LumiNumber);
  fChain->SetBranchAddress("BXNumber", &BXNumber, &b_BXNumber);
  fChain->SetBranchAddress("pt_of_muon", &pt_of_muon, &b_pt_of_muon);
  fChain->SetBranchAddress("eta_of_muon", &eta_of_muon, &b_eta_of_muon);
  fChain->SetBranchAddress("phi_of_muon", &phi_of_muon, &b_phi_of_muon);
  fChain->SetBranchAddress("p_of_muon", &p_of_muon, &b_p_of_muon);
  fChain->SetBranchAddress("ecal_3x3", &ecal_3x3, &b_ecal_3x3);
  fChain->SetBranchAddress("ecal_detID", &ecal_detID, &b_ecal_detID);
  fChain->SetBranchAddress("hcal_1x1", &hcal_1x1, &b_hcal_1x1);
  fChain->SetBranchAddress("matchedId", &matchedId, &b_matchedId);
  fChain->SetBranchAddress("hcal_detID", &hcal_detID, &b_hcal_detID);
  fChain->SetBranchAddress("hcal_cellHot", &hcal_cellHot, &b_hcal_cellHot);
  fChain->SetBranchAddress("activeLength", &activeLength, &b_activeLength);
  fChain->SetBranchAddress("hcal_edepth1", &hcal_edepth1, &b_hcal_edepth1);
  fChain->SetBranchAddress("hcal_edepth2", &hcal_edepth2, &b_hcal_edepth2);
  fChain->SetBranchAddress("hcal_edepth3", &hcal_edepth3, &b_hcal_edepth3);
  fChain->SetBranchAddress("hcal_edepth4", &hcal_edepth4, &b_hcal_edepth4);
  fChain->SetBranchAddress("hcal_edepth5", &hcal_edepth5, &b_hcal_edepth5);
  fChain->SetBranchAddress("hcal_edepth6", &hcal_edepth6, &b_hcal_edepth6);
  fChain->SetBranchAddress("hcal_edepth7", &hcal_edepth7, &b_hcal_edepth7);
  fChain->SetBranchAddress("hcal_activeL1", &hcal_activeL1, &b_hcal_activeL1);
  fChain->SetBranchAddress("hcal_activeL2", &hcal_activeL2, &b_hcal_activeL2);
  fChain->SetBranchAddress("hcal_activeL3", &hcal_activeL3, &b_hcal_activeL3);
  fChain->SetBranchAddress("hcal_activeL4", &hcal_activeL4, &b_hcal_activeL4);
  fChain->SetBranchAddress("hcal_activeL5", &hcal_activeL5, &b_hcal_activeL5);
  fChain->SetBranchAddress("hcal_activeL6", &hcal_activeL6, &b_hcal_activeL6);
  fChain->SetBranchAddress("hcal_activeL7", &hcal_activeL7, &b_hcal_activeL7);
  fChain->SetBranchAddress("activeLengthHot", &activeLengthHot, &b_activeLengthHot);
  fChain->SetBranchAddress("hcal_edepthHot1", &hcal_edepthHot1, &b_hcal_edepthHot1);
  fChain->SetBranchAddress("hcal_edepthHot2", &hcal_edepthHot2, &b_hcal_edepthHot2);
  fChain->SetBranchAddress("hcal_edepthHot3", &hcal_edepthHot3, &b_hcal_edepthHot3);
  fChain->SetBranchAddress("hcal_edepthHot4", &hcal_edepthHot4, &b_hcal_edepthHot4);
  fChain->SetBranchAddress("hcal_edepthHot5", &hcal_edepthHot5, &b_hcal_edepthHot5);
  fChain->SetBranchAddress("hcal_edepthHot6", &hcal_edepthHot6, &b_hcal_edepthHot6);
  fChain->SetBranchAddress("hcal_edepthHot7", &hcal_edepthHot7, &b_hcal_edepthHot7);
  fChain->SetBranchAddress("hcal_activeHotL1", &hcal_activeHotL1, &b_hcal_activeHotL1);
  fChain->SetBranchAddress("hcal_activeHotL2", &hcal_activeHotL2, &b_hcal_activeHotL2);
  fChain->SetBranchAddress("hcal_activeHotL3", &hcal_activeHotL3, &b_hcal_activeHotL3);
  fChain->SetBranchAddress("hcal_activeHotL4", &hcal_activeHotL4, &b_hcal_activeHotL4);
  fChain->SetBranchAddress("hcal_activeHotL5", &hcal_activeHotL5, &b_hcal_activeHotL5);
  fChain->SetBranchAddress("hcal_activeHotL6", &hcal_activeHotL6, &b_hcal_activeHotL6);
  fChain->SetBranchAddress("hcal_activeHotL7", &hcal_activeHotL7, &b_hcal_activeHotL7);
  Notify();
}

void HBHEMuonOfflineSimAnalyzer::Loop() {
  //declarations
  if (fChain == 0)
    return;

  Long64_t nentries = fChain->GetEntriesFast();

  if (debug_)
    std::cout << "nevent = " << nentries << std::endl;

  Long64_t nbytes = 0, nb = 0;

  for (Long64_t jentry = 0; jentry < nentries; jentry++) {
    Long64_t ientry = LoadTree(jentry);
    if (ientry < 0)
      break;
    nb = fChain->GetEntry(jentry);
    nbytes += nb;

    if (debug_) {
      std::cout << "ecal_det_id " << ecal_detID << std::endl;
      std::cout << "hcal_det_id " << std::hex << hcal_detID << std::dec;
    }
    int etaHcal, phiHcal, depthHcal;
    etaPhiHcal(hcal_detID, etaHcal, phiHcal, depthHcal);

    int eta = (etaHcal > 0) ? (etaHcal - 1) : -(1 + etaHcal);
    int nDepth = NDepthBins(eta + 1, phiHcal);
    int nPhi = NPhiBins(eta + 1);

    double phiYHcal = (phiHcal - 0.5);
    if (debug_)
      std::cout << "phiHcal" << phiHcal << " phiYHcal" << phiYHcal << std::endl;

    for (int cut = 0; cut < 3; ++cut) {
      bool select(false);
      if (cut == 0)
        select = tightMuon();
      else if (cut == 1)
        select = SoftMuon();
      else
        select = LooseMuon();

      if (select) {
        //	  h_P_Muon[cut]->Fill(p_of_muon);
        h_P_Muon[cut]->Fill(p_of_muon);
        h_Pt_Muon[cut]->Fill(pt_of_muon);
        h_Eta_Muon[cut]->Fill(eta_of_muon);

        double energyFill;
        for (int dep = 0; dep < nDepth; ++dep) {
          if (debug_) {
            std::cout << "why on 15/2 only" << std::endl;
            std::cout << "dep:" << dep << std::endl;
          }
          int PHI = (nPhi > 36) ? (phiHcal - 1) : (phiHcal - 1) / 2;
          double en1(-9999), en2(-9999);
          if (dep == 0) {
            en1 = hcal_edepth1;
            en2 = hcal_edepthHot1;
            energyFill = (hcal_activeHotL1 > 0) ? hcal_activeHotL1 : 999;
          } else if (dep == 1) {
            en1 = hcal_edepth2;
            en2 = hcal_edepthHot2;
            energyFill = (hcal_activeHotL2 > 0) ? hcal_activeHotL2 : 999;
            if (debug_)
              std::cout << "problem here.. lets see if it got printed\n";
          } else if (dep == 2) {
            en1 = hcal_edepth3;
            en2 = hcal_edepthHot3;
            energyFill = (hcal_activeHotL3 > 0) ? hcal_activeHotL3 : 999;
          } else if (dep == 3) {
            en1 = hcal_edepth4;
            en2 = hcal_edepthHot4;
            if (debug_)
              std::cout << "Hello in 4" << std::endl;
            energyFill = (hcal_activeHotL4 > 0) ? hcal_activeHotL4 : 999;
          } else if (dep == 4) {
            en1 = hcal_edepth5;
            en2 = hcal_edepthHot5;
            energyFill = (hcal_activeHotL5 > 0) ? hcal_activeHotL5 : 999;
          } else if (dep == 5) {
            if (debug_)
              std::cout << "Energy in depth 6 " << maxDepth_ << ":" << hcal_edepth6 << ":" << hcal_edepthHot6
                        << std::endl;
            en1 = (maxDepth_ > 5) ? hcal_edepth6 : 0;
            en2 = (maxDepth_ > 5) ? hcal_edepthHot6 : 0;
            energyFill = (hcal_activeHotL6 > 0) ? hcal_activeHotL6 : 999;
          } else if (dep == 6) {
            if (debug_)
              std::cout << "Energy in depth 7 " << maxDepth_ << ":" << hcal_edepth7 << ":" << hcal_edepthHot7
                        << std::endl;
            en1 = (maxDepth_ > 6) ? hcal_edepth7 : 0;
            en2 = (maxDepth_ > 6) ? hcal_edepthHot7 : 0;
            energyFill = (hcal_activeHotL7 > 0) ? hcal_activeHotL7 : 999;
          }

          if (debug_) {
            std::cout << " Debug2" << std::endl;
            std::cout << "ok1" << en1 << std::endl;
            std::cout << "ok2" << en2 << std::endl;
          }
          bool ok1 = (en1 > -9999);
          bool ok2 = (en2 > -9999);

          if (debug_)
            std::cout << "Before Index" << std::endl;

          int ind = (etaHcal > 0) ? indxEta[eta][dep][PHI] : 1 + indxEta[eta][dep][PHI];

          if (debug_) {
            std::cout << "ieta " << eta << "depth " << dep << "indxEta[eta][dep]:" << indxEta[eta][dep][PHI]
                      << std::endl;
            std::cout << "index showing eta,depth:" << ind << std::endl;
            std::cout << "etaHcal: " << etaHcal << " eta " << eta << " dep " << dep << " indx " << ind << std::endl;
          }
          if (!(matchedId))
            continue;
          if (ok1) {
            if (debug_)
              std::cout << "enter ok1" << std::endl;
            if (hcal_cellHot == 1) {
              if (en2 > 0) {
                h_Hot_MuonEnergy_hcal_HotCell_VsActiveLength[cut][ind]->Fill(en2 / energyFill);
              }
              if (debug_)
                std::cout << "enter hot cell" << std::endl;
            }
          }

          if (ok2) {
            if (debug_)
              std::cout << "enter ok2" << std::endl;
            if (hcal_cellHot != 1) {
            }
          }

          if (debug_)
            std::cout << "ETA \t" << eta << "DEPTH \t" << dep << std::endl;
        }
      }
    }
  }
  close();
}

Bool_t HBHEMuonOfflineSimAnalyzer::Notify() {
  // The Notify() function is called when a new file is opened. This
  // can be either for a new TTree in a TChain or when when a new TTree
  // is started when using PROOF. It is normally not necessary to make changes
  // to the generated code, but the routine can be extended by the
  // user if needed. The return value is currently not used.

  return kTRUE;
}

void HBHEMuonOfflineSimAnalyzer::Show(Long64_t entry) {
  // Print contents of entry.
  // If entry is not specified, print current entry
  if (!fChain)
    return;
  fChain->Show(entry);
}

void HBHEMuonOfflineSimAnalyzer::BookHistograms(const char *fname) {
  output_file = TFile::Open(fname, "RECREATE");
  //output_file->cd();
  std::string type[] = {"tight", "soft", "loose"};
  char name[128], title[500];

  std::cout << "BookHistograms" << std::endl;

  nHist = 0;
  for (int eta = 0; eta < 29; ++eta) {
    int nDepth = NDepthBins(eta + 1, -1);
    int nPhi = NPhiBins(eta + 1);
    for (int depth = 0; depth < nDepth; depth++) {
      for (int PHI = 0; PHI < nPhi; ++PHI) {
        indxEta[eta][depth][PHI] = nHist;
        nHist += 2;
      }
    }
  }

  for (int i = 0; i < 3; ++i) {
    sprintf(name, "h_Pt_Muon_%s", type[i].c_str());
    sprintf(title, "p_{T} of %s muons (GeV)", type[i].c_str());
    h_Pt_Muon[i] = new TH1D(name, title, 100, 0, 200);

    sprintf(name, "h_Eta_Muon_%s", type[i].c_str());
    sprintf(title, "#eta of %s muons", type[i].c_str());
    h_Eta_Muon[i] = new TH1D(name, title, 50, -2.5, 2.5);

    sprintf(name, "h_Phi_Muon_%s", type[i].c_str());
    sprintf(title, "#phi of %s muons", type[i].c_str());
    h_Phi_Muon[i] = new TH1D(name, title, 100, -3.1415926, 3.1415926);

    sprintf(name, "h_P_Muon_%s", type[i].c_str());
    sprintf(title, "p of %s muons (GeV)", type[i].c_str());
    h_P_Muon[i] = new TH1D(name, title, 100, 0, 200);

    sprintf(name, "h_PF_Muon_%s", type[i].c_str());
    sprintf(title, "PF %s muons (GeV)", type[i].c_str());
    h_PF_Muon[i] = new TH1D(name, title, 2, 0, 2);

    sprintf(name, "h_Global_Muon_Chi2_%s", type[i].c_str());
    sprintf(title, "Chi2 Global %s muons (GeV)", type[i].c_str());
    h_GlobTrack_Chi[i] = new TH1D(name, title, 15, 0, 15);

    sprintf(name, "h_Global_Muon_Hits_%s", type[i].c_str());
    sprintf(title, "Global Hits %s muons (GeV)", type[i].c_str());
    h_Global_Muon_Hits[i] = new TH1D(name, title, 10, 0, 10);

    sprintf(name, "h_Matched_Stations_%s", type[i].c_str());
    sprintf(title, "Matched Stations %s muons (GeV)", type[i].c_str());
    h_MatchedStations[i] = new TH1D(name, title, 10, 0, 10);

    sprintf(name, "h_Transverse_ImpactParameter_%s", type[i].c_str());
    sprintf(title, "Transverse_ImpactParameter of %s muons (GeV)", type[i].c_str());
    h_Tight_TransImpactparameter[i] = new TH1D(name, title, 50, 0, 10);

    sprintf(name, "h_Longitudinal_ImpactParameter_%s", type[i].c_str());
    sprintf(title, "Longitudinal_ImpactParameter of %s muons (GeV)", type[i].c_str());
    h_Tight_LongitudinalImpactparameter[i] = new TH1D(name, title, 20, 0, 10);

    sprintf(name, "h_InnerTrack_PixelHits_%s", type[i].c_str());
    sprintf(title, "InnerTrack_PixelHits of %s muons (GeV)", type[i].c_str());
    h_InnerTrackPixelHits[i] = new TH1D(name, title, 20, 0, 20);

    sprintf(name, "h_TrackLayers_%s", type[i].c_str());
    sprintf(title, "No. of Tracker Layers of %s muons (GeV)", type[i].c_str());
    h_TrackerLayer[i] = new TH1D(name, title, 20, 0, 20);
    ;

    sprintf(name, "h_IsolationR04_%s", type[i].c_str());
    sprintf(title, "IsolationR04 %s muons (GeV)", type[i].c_str());
    h_IsolationR04[i] = new TH1D(name, title, 45, 0, 5);
    ;

    sprintf(name, "h_Global_Muon_%s", type[i].c_str());
    sprintf(title, "Global %s muons (GeV)", type[i].c_str());
    h_Global_Muon[i] = new TH1D(name, title, 2, 0, 2);

    sprintf(name, "h_TransImpactParameter_%s", type[i].c_str());
    sprintf(title, "TransImpactParameter of %s muons (GeV)", type[i].c_str());
    h_TransImpactParameter[i] = new TH1D(name, title, 100, 0, 0.5);

    sprintf(name, "h_TransImpactParameterBin1_%s", type[i].c_str());
    sprintf(title, "TransImpactParameter of %s muons (GeV) in -1.5 <= #phi <= 0.5", type[i].c_str());
    h_TransImpactParameterBin1[i] = new TH1D(name, title, 100, 0, 0.5);

    sprintf(name, "h_TransImpactParameterBin2_%s", type[i].c_str());
    sprintf(title, "TransImpactParameter of %s muons (GeV) in #phi> 0.5 and #phi< -1.5 ", type[i].c_str());
    h_TransImpactParameterBin2[i] = new TH1D(name, title, 100, 0, 0.5);
    //
    sprintf(name, "h_LongImpactParameter_%s", type[i].c_str());
    sprintf(title, "LongImpactParameter of %s muons (GeV)", type[i].c_str());
    h_LongImpactParameter[i] = new TH1D(name, title, 100, 0, 30);

    sprintf(name, "h_LongImpactParameterBin1_%s", type[i].c_str());
    sprintf(title, "LongImpactParameter of %s muons (GeV) in -1.5 <= #phi <= 0.5", type[i].c_str());
    h_LongImpactParameterBin1[i] = new TH1D(name, title, 100, 0, 30);

    sprintf(name, "h_LongImpactParameterBin2_%s", type[i].c_str());
    sprintf(title, "LongImpactParameter of %s muons (GeV) in #phi> 0.5 and #phi< -1.5 ", type[i].c_str());
    h_LongImpactParameterBin2[i] = new TH1D(name, title, 100, 0, 30);

    sprintf(name, "h_2D_Bin1_%s", type[i].c_str());
    sprintf(title, "Trans/Long ImpactParameter of %s muons (GeV) in -1.5 <= #phi< 0.5 ", type[i].c_str());
    h_2D_Bin1[i] = new TH2D(name, title, 100, 0, 0.5, 100, 0, 30);

    sprintf(name, "h_2D_Bin2_%s", type[i].c_str());
    sprintf(title, "Trans/Long ImpactParameter of %s muons (GeV) in #phi> 0.5 and #phi< -1.5 ", type[i].c_str());
    h_2D_Bin2[i] = new TH2D(name, title, 100, 0, 0.5, 100, 0, 30);

    sprintf(name, "h_ecal_energy_%s", type[i].c_str());
    sprintf(title, "ECAL energy for %s muons", type[i].c_str());
    h_ecal_energy[i] = new TH1D(name, title, 1000, -10.0, 90.0);

    sprintf(name, "h_hcal_energy_%s", type[i].c_str());
    sprintf(title, "HCAL energy for %s muons", type[i].c_str());
    h_hcal_energy[i] = new TH1D(name, title, 500, -10.0, 90.0);

    sprintf(name, "h_3x3_ecal_%s", type[i].c_str());
    sprintf(title, "ECAL energy in 3x3 for %s muons", type[i].c_str());
    h_3x3_ecal[i] = new TH1D(name, title, 1000, -10.0, 90.0);

    sprintf(name, "h_1x1_hcal_%s", type[i].c_str());
    sprintf(title, "HCAL energy in 1x1 for %s muons", type[i].c_str());
    h_1x1_hcal[i] = new TH1D(name, title, 500, -10.0, 90.0);

    sprintf(name, "h_EtaX_hcal_%s", type[i].c_str());
    sprintf(title, "HCAL energy as a function of i#eta for %s muons", type[i].c_str());
    h_EtaX_hcal[i] = new TProfile(name, title, 60, -30.0, 30.0);

    sprintf(name, "h_PhiY_hcal_%s", type[i].c_str());
    sprintf(title, "HCAL energy as a function of i#phi for %s muons", type[i].c_str());
    h_PhiY_hcal[i] = new TProfile(name, title, 72, 0, 72);

    sprintf(name, "h_EtaX_ecal_%s", type[i].c_str());
    sprintf(title, "EB energy as a function of i#eta for %s muons", type[i].c_str());
    h_EtaX_ecal[i] = new TProfile(name, title, 170, -85.0, 85.0);

    sprintf(name, "h_PhiY_ecal_%s", type[i].c_str());
    sprintf(title, "EB energy as a function of i#phi for %s muons", type[i].c_str());
    h_PhiY_ecal[i] = new TProfile(name, title, 360, 0, 360);

    sprintf(name, "h_Eta_ecal_%s", type[i].c_str());
    sprintf(title, "ECAL energy as a function of #eta for %s muons", type[i].c_str());
    h_Eta_ecal[i] = new TProfile(name, title, 100, -2.5, 2.5);

    sprintf(name, "h_Phi_ecal_%s", type[i].c_str());
    sprintf(title, "ECAL energy as a function of #phi for %s muons", type[i].c_str());
    h_Phi_ecal[i] = new TProfile(name, title, 100, -3.1415926, 3.1415926);

    sprintf(name, "h_MuonHittingEcal_%s", type[i].c_str());
    sprintf(title, "%s muons hitting ECAL", type[i].c_str());
    h_MuonHittingEcal[i] = new TH1D(name, title, 100, 0, 5.0);

    sprintf(name, "h_HotCell_%s", type[i].c_str());
    sprintf(title, "Hot cell for %s muons", type[i].c_str());
    h_HotCell[i] = new TH1D(name, title, 100, 0, 2);

    std::cout << "problem here" << std::endl;
    for (int eta = 0; eta < 29; ++eta) {
      int nDepth = NDepthBins(eta + 1, -1);
      int nPhi = NPhiBins(eta + 1);
      for (int depth = 0; depth < nDepth; ++depth) {
        for (int PHI = 0; PHI < nPhi; ++PHI) {
          int PHI0 = (nPhi == 72) ? PHI + 1 : 2 * PHI + 1;
          int ih = indxEta[eta][depth][PHI];
          std::cout << "eta:" << eta << " depth:" << depth << " PHI:" << PHI << ":" << PHI0 << " ih:" << ih
                    << std::endl;

          sprintf(name,
                  "h_Hot_MuonEnergy_hc_%d_%d_%d_%s_HotCell_ByActiveLength",
                  (eta + 1),
                  (depth + 1),
                  PHI0,
                  type[i].c_str());
          sprintf(title,
                  "HCAL energy in hot tower (i#eta=%d, depth=%d, i#phi = %d) for extrapolated %s muons (Hot Cell) "
                  "divided by Active Length",
                  (eta + 1),
                  (depth + 1),
                  PHI0,
                  type[i].c_str());
          h_Hot_MuonEnergy_hcal_HotCell_VsActiveLength[i][ih] = new TH1D(name, title, 4000, 0.0, 1.0);
          h_Hot_MuonEnergy_hcal_HotCell_VsActiveLength[i][ih]->Sumw2();

          ih++;
          sprintf(name,
                  "h_Hot_MuonEnergy_hc_%d_%d_%d_%s_HotCell_ByActiveLength",
                  -(eta + 1),
                  (depth + 1),
                  PHI0,
                  type[i].c_str());
          sprintf(title,
                  "HCAL energy in hot tower (i#eta=%d, depth=%d, i#phi=%d) for extrapolated %s muons (Hot Cell) "
                  "divided by Active Length",
                  -(eta + 1),
                  (depth + 1),
                  PHI0,
                  type[i].c_str());
          h_Hot_MuonEnergy_hcal_HotCell_VsActiveLength[i][ih] = new TH1D(name, title, 4000, 0.0, 1.0);
          h_Hot_MuonEnergy_hcal_HotCell_VsActiveLength[i][ih]->Sumw2();
        }
      }
      //output_file->cd();
    }
  }
  //output_file->cd();
}

bool HBHEMuonOfflineSimAnalyzer::LooseMuon() {
  if (pt_of_muon > 20.) {
    if (fabs(eta_of_muon) <= 5.0) {
      return true;
    }
  }

  return false;
}

bool HBHEMuonOfflineSimAnalyzer::SoftMuon() {
  if (pt_of_muon > 20.) {
    if (fabs(eta_of_muon) <= 5.0) {
      return true;
    }
  }

  return false;
}

bool HBHEMuonOfflineSimAnalyzer::tightMuon() {
  if (pt_of_muon > 20.) {
    if (fabs(eta_of_muon) <= 5.0) {
      return true;
    }
  }

  return false;
}

void HBHEMuonOfflineSimAnalyzer::etaPhiHcal(unsigned int detId, int &eta, int &phi, int &depth) {
  int zside, etaAbs;
  if ((detId & 0x1000000) == 0) {
    zside = (detId & 0x2000) ? (1) : (-1);
    etaAbs = (detId >> 7) & 0x3F;
    phi = detId & 0x7F;
    depth = (detId >> 14) & 0x1F;
  } else {
    zside = (detId & 0x80000) ? (1) : (-1);
    etaAbs = (detId >> 10) & 0x1FF;
    phi = detId & 0x3FF;
    depth = (detId >> 20) & 0xF;
  }
  eta = etaAbs * zside;
}

void HBHEMuonOfflineSimAnalyzer::etaPhiEcal(
    unsigned int detId, int &type, int &zside, int &etaX, int &phiY, int &plane, int &strip) {
  type = ((detId >> 25) & 0x7);
  plane = strip = 0;
  if (type == 1) {
    //Ecal Barrel
    zside = (detId & 0x10000) ? (1) : (-1);
    etaX = (detId >> 9) & 0x7F;
    phiY = detId & 0x1FF;
  } else if (type == 2) {
    zside = (detId & 0x4000) ? (1) : (-1);
    etaX = (detId >> 7) & 0x7F;
    phiY = (detId & 0x7F);
  } else if (type == 3) {
    zside = (detId & 0x80000) ? (1) : (-1);
    etaX = (detId >> 6) & 0x3F;
    /** get the sensor iy */
    phiY = (detId >> 12) & 0x3F;
    /** get the strip */
    plane = ((detId >> 18) & 0x1) + 1;
    strip = detId & 0x3F;
  } else {
    zside = etaX = phiY = 0;
  }
}

void HBHEMuonOfflineSimAnalyzer::calculateP(double pt, double eta, double &pM) {
  pM = (pt * cos(2 * (1 / atan(exp(eta)))));
}

void HBHEMuonOfflineSimAnalyzer::close() {
  output_file->cd();
  std::cout << "file yet to be Written" << std::endl;
  WriteHistograms();
  //	output_file->Write();
  std::cout << "file Written" << std::endl;
  output_file->Close();
  std::cout << "now doing return" << std::endl;
}

void HBHEMuonOfflineSimAnalyzer::WriteHistograms() {
  std::string type[] = {"tight", "soft", "loose"};
  char name[128];

  std::cout << "WriteHistograms" << std::endl;
  nHist = 0;
  for (int eta = 0; eta < 29; ++eta) {
    int nDepth = NDepthBins(eta + 1, -1);
    int nPhi = NPhiBins(eta + 1);
    if (debug_)
      std::cout << "Eta:" << eta << " nDepths " << nDepth << " nPhis " << nPhi << std::endl;
    for (int depth = 0; depth < nDepth; ++depth) {
      if (debug_)
        std::cout << "Eta:" << eta << "Depth:" << depth << std::endl;
      for (int PHI = 0; PHI < nPhi; ++PHI) {
        indxEta[eta][depth][PHI] = nHist;
        nHist += 2;
      }
    }
  }

  TDirectory *d_output_file[3][29];
  for (int i = 0; i < 3; ++i) {
    h_Pt_Muon[i]->Write();
    h_Eta_Muon[i]->Write();
    h_Phi_Muon[i]->Write();
    h_P_Muon[i]->Write();
    h_PF_Muon[i]->Write();

    h_GlobTrack_Chi[i]->Write();
    h_Global_Muon_Hits[i]->Write();
    h_MatchedStations[i]->Write();

    h_Tight_TransImpactparameter[i]->Write();
    h_Tight_LongitudinalImpactparameter[i]->Write();

    h_InnerTrackPixelHits[i]->Write();
    h_TrackerLayer[i]->Write();
    h_IsolationR04[i]->Write();

    h_Global_Muon[i]->Write();
    h_TransImpactParameter[i]->Write();
    ;
    h_TransImpactParameterBin1[i]->Write();
    h_TransImpactParameterBin2[i]->Write();
    //
    h_LongImpactParameter[i]->Write();
    h_LongImpactParameterBin1[i]->Write();
    h_LongImpactParameterBin2[i]->Write();

    h_ecal_energy[i]->Write();
    h_hcal_energy[i]->Write();
    ;
    h_3x3_ecal[i]->Write();
    h_1x1_hcal[i]->Write();
    ;

    h_EtaX_hcal[i]->Write();
    h_PhiY_hcal[i]->Write();
    ;

    h_EtaX_ecal[i]->Write();
    ;
    h_PhiY_ecal[i]->Write();
    ;
    h_Eta_ecal[i]->Write();
    ;
    h_Phi_ecal[i]->Write();
    ;
    h_MuonHittingEcal[i]->Write();
    ;
    h_HotCell[i]->Write();
    ;

    output_file->cd();
    for (int eta = 0; eta < 29; ++eta) {
      int nDepth = NDepthBins(eta + 1, -1);
      int nPhi = NPhiBins(eta + 1);
      sprintf(name, "Dir_muon_type_%s_ieta%d", type[i].c_str(), eta + 1);
      d_output_file[i][eta] = output_file->mkdir(name);
      d_output_file[i][eta]->cd();
      for (int depth = 0; depth < nDepth; ++depth) {
        for (int PHI = 0; PHI < nPhi; ++PHI) {
          int ih = indxEta[eta][depth][PHI];
          h_Hot_MuonEnergy_hcal_HotCell_VsActiveLength[i][ih]->Write();
          ih++;
          h_Hot_MuonEnergy_hcal_HotCell_VsActiveLength[i][ih]->Write();
        }
      }
      output_file->cd();
    }
  }
  output_file->cd();
}

int HBHEMuonOfflineSimAnalyzer::NDepthBins(int eta, int phi) {
  // Run 1 scenario
  int nDepthR1[29] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2};
  // Run 2 scenario from 2018
  int nDepthR2[29] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 3, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 3};
  // Run 3 scenario
  int nDepthR3[29] = {4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 3};
  // Run 4 scenario
  int nDepthR4[29] = {4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7};
  // for a test scenario with multi depth segmentation considered during Run 1
  //    int  nDepth[29]={3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,5,5,5,5,5,5,5,5,5,5,5,5,5};
  // modeLHC_ = 0 --> nbin defined maxDepthHB/HE
  //          = 1 -->      corresponds to Run 1 (valid till 2016)
  //          = 2 -->      corresponds to Run 2 (2018 geometry)
  //          = 3 -->      corresponds to Run 3 (post LS2)
  //          = 4 -->      corresponds to 2017 (Plan 1)
  //          = 5 -->      corresponds to Run 4 (post LS3)
  int nbin(0);
  if (modeLHC_ == 0) {
    if (eta <= 15) {
      nbin = maxDepthHB_;
    } else if (eta == 16) {
      nbin = 4;
    } else {
      nbin = maxDepthHE_;
    }
  } else if (modeLHC_ == 1) {
    nbin = nDepthR1[eta - 1];
  } else if (modeLHC_ == 2) {
    nbin = nDepthR2[eta - 1];
  } else if (modeLHC_ == 3) {
    nbin = nDepthR3[eta - 1];
  } else if (modeLHC_ == 4) {
    if (phi > 0) {
      if (eta >= 16 && phi >= 63 && phi <= 66) {
        nbin = nDepthR2[eta - 1];
      } else {
        nbin = nDepthR1[eta - 1];
      }
    } else {
      if (eta >= 16) {
        nbin = (nDepthR2[eta - 1] > nDepthR1[eta - 1]) ? nDepthR2[eta - 1] : nDepthR1[eta - 1];
      } else {
        nbin = nDepthR1[eta - 1];
      }
    }
  } else {
    if (eta > 0 && eta < 30) {
      nbin = nDepthR4[eta - 1];
    } else {
      nbin = nDepthR4[28];
    }
  }
  return nbin;
}

int HBHEMuonOfflineSimAnalyzer::NPhiBins(int eta) {
  int nphi = (eta <= 20) ? 72 : 36;
  return nphi;
}