1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
|
######################################################################################
# Evaluates regressor from loaded model
# Usage:
# source /cvmfs/sft.cern.ch/lcg/views/LCG_97apython3/x86_64-centos7-gcc8-opt/setup.csh
# python3 isotrackApplyRegressor.py -PU root://eoscms.cern.ch//eos/cms/store/group/dpg_hcal/comm_hcal/ISOTRACK/SinglePion_E-50_Eta-0to3_Run3Winter21_112X_PU.root -M ./models/model1.h5 -B endcap -O corrfac1.txt
# python3 isotrackApplyRegressor.py -PU root://eoscms.cern.ch//eos/cms/store/group/dpg_hcal/comm_hcal/ISOTRACK/SinglePion_E-50_Eta-0to3_Run3Winter21_112X_PU.root -M ./models/model2.h5 -B barrel -O corrfac2.txt
######################################################################################
# coding: utf-8
# In[1]:
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import argparse
import tensorflow.keras
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense
from tensorflow.keras.layers import Dropout
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.utils import plot_model
from tensorflow.keras import regularizers
from sklearn.metrics import roc_curve, auc
from tensorflow.keras.layers import Activation
from tensorflow.keras import backend as K
from tensorflow.keras.models import load_model
import uproot
# In[2]:
parser = argparse.ArgumentParser()
parser.add_argument("-PU", "--filePU",help="input PU file",default="root://eoscms.cern.ch//eos/cms/store/group/dpg_hcal/comm_hcal/ISOTRACK/SinglePion_E-50_Eta-0to3_Run3Winter21_112X_PU.root")
parser.add_argument("-B", "--ifbarrel",help="barrel / endcap",default='barrel')
parser.add_argument("-M", "--modelname",help="model file name",default="./models/model.h5")
parser.add_argument("-O", "--opfilename",help="output text file name",default="corrfac_regression.txt")
fName1 = parser.parse_args().filePU
modeln = parser.parse_args().modelname
foutput = parser.parse_args().opfilename
barrelflag = parser.parse_args().ifbarrel
#fName1='/eos/uscms/store/user/sghosh/ISOTRACK/DIPI_2021_PUpart.root'
tree1 = uproot.open(fName1,xrootdsource=dict(chunkbytes=1024**3, limitbytes=1024**3))['HcalIsoTrkAnalyzer/CalibTree']
print ("loaded files")
branchespu = ['t_Run','t_Event','t_nVtx','t_ieta','t_iphi','t_p','t_pt','t_gentrackP','t_eMipDR','t_eHcal','t_eHcal10','t_eHcal30','t_hmaxNearP','t_emaxNearP','t_hAnnular','t_eAnnular','t_rhoh']
dictpu = tree1.arrays(branches=branchespu)
#dictpu = tree1.arrays(branches=branchespu,entrystart=0, entrystop=100000)
dfspu = pd.DataFrame.from_dict(dictpu)
dfspu.columns=branchespu
print ("sample size:",dfspu.shape[0])
# In[3]:
dfspu['t_delta']=dfspu['t_eHcal30']-dfspu['t_eHcal10']
keepvars =['t_nVtx', 't_ieta', 't_eHcal10', 't_eHcal30', 't_delta', 't_hmaxNearP','t_emaxNearP', 't_hAnnular', 't_eAnnular', 't_rhoh', 't_pt','t_eHcal', 't_p', 't_eMipDR']
df = dfspu[keepvars].copy()
df['t_eHcal_xun'] = df['t_eHcal']
df['t_delta_un'] = df['t_delta']
df['t_ieta_un'] = df['t_ieta']
#cols_to_stand = ['t_nVtx','t_ieta','t_eHcal10', 't_eHcal30','t_rhoh','t_eHcal_x']
#cols_to_minmax = ['t_delta', 't_hmaxNearP','t_emaxNearP', 't_hAnnular', 't_eAnnular','t_pt']
#### if using global norm
#cols_to_minmax = ['t_delta', 't_hmaxNearP','t_emaxNearP', 't_hAnnular', 't_eAnnular','t_pt','t_nVtx','t_ieta','t_eHcal10', 't_eHcal30','t_rhoh','t_eHcal']
#df[cols_to_minmax] = df[cols_to_minmax].apply(lambda x: (x - x.min()) / (x.max() - x.min()) if (x.max() - x.min() > 0) else 1.0/200.0)
#### if using training norm
if barrelflag=='barrel':
var = ['t_nVtx', 't_ieta', 't_eHcal10', 't_eHcal30', 't_delta', 't_hmaxNearP', 't_emaxNearP', 't_hAnnular', 't_eAnnular', 't_rhoh', 't_pt', 't_eHcal_x', 't_eHcal_y', 't_p', 't_eMipDR', 't_eHcal_xun', 't_delta_un', 't_ieta_un']
mina = [20, -15, 17.33086721925065, 17.655660001095384, 0.0, -1.0, -1.0, 0.0, -5.33359869197011, 4.093925265397289, 20.783629520782718, 16.998163268435746, 20.000221125315875, 40.074083721419896, 0.0, 16.998163268435746, 0.0, -15]
maxa = [138, 15, 138.26640254695667, 155.83508832909865, 50.9643486259738, 17.140547914961605, 2870.424876287056, 35.727171580074355, 17.763740802183747, 26.38359781195008, 59.169594172331905, 133.07561272289604, 122.8542027361691, 59.977312414583295, 0.9999987781047821, 133.07561272289604, 50.9643486259738, 15]
else:
var = ['t_nVtx', 't_ieta', 't_eHcal10', 't_eHcal30', 't_delta', 't_hmaxNearP', 't_emaxNearP', 't_hAnnular', 't_eAnnular', 't_rhoh', 't_pt', 't_eHcal_x', 't_eHcal_y', 't_p', 't_eMipDR', 't_eHcal_xun', 't_delta_un', 't_ieta_un']
mina = [20, -27, 20.934556022286415, 27.213239994598553, 0.7803188574616797, -1.0, -1.0, 0.0, -57.422806948423386, 4.435386319143829, 6.013227444563335, 18.5278014652431, 20.00695458613336, 40.00339106433163, 0.0, 18.5278014652431, 0.7803188574616797, -27]
maxa = [117, 28, 584.1150933708996, 822.056631873711, 424.1259534251876, 19.999632518345965, 13218.009997109137, 185.96148682758212, 128.60208600759506, 25.911101538538524, 28.928444814127907, 428.99590471945703, 111.25579111767001, 59.98427126709689, 0.9999948740005493, 428.99590471945703, 424.1259534251876, 28]
print(mina)
print(maxa)
normkey = ['t_nVtx', 't_ieta', 't_eHcal10', 't_eHcal30', 't_delta', 't_hmaxNearP', 't_emaxNearP', 't_hAnnular', 't_eAnnular', 't_rhoh', 't_pt', 't_eHcal']
k = 0
for i in df.keys():
if i not in normkey:
break
#print(normkey[k],mina[k],maxa[k])
df[i]=abs(df[i]-mina[k])/(maxa[k] - mina[k])
k+=1
df['t_eHcal_xun'] = df['t_eHcal_xun'].apply(lambda x: 1.0 if (x==0) else x)
uncorrected_values = df['t_eHcal_xun'].values
print (uncorrected_values.shape)
print ('data vars:',df.keys())
data = df.values
X_train = data[:,0:12]
# In[4]:
model = load_model(modeln)
preds = model.predict(X_train,verbose=1)
preds = preds.reshape(preds.shape[0])
print (preds.shape)
# In[5]:
if barrelflag=='barrel':
tag = 'barrel'
else:
tag = 'endcap'
print(tag)
plt.hist(preds, bins =100, range=(0,100),label='predicted enerhy',alpha=0.6)
plt.savefig('predicted_Edist_'+tag+'.png')
plt.close()
parray = dfspu['t_p'].values
mipdr = dfspu['t_eMipDR'].values
plt.hist(preds/(parray - mipdr), bins =100, range=(0,10),label='predicted e/p-ecal',alpha=0.6)
plt.savefig('predicted_eopdist_'+tag+'.png')
plt.close()
# In[6]:
eventnumarray = np.arange(0,X_train.shape[0],1,dtype=int)
eventnumarray = eventnumarray.reshape(eventnumarray.shape[0],1)
#runnumarray = dfspu['t_Run'].values
#runnumarray = runnumarray.reshape(runnumarray.shape[0],1)
#eventnumarray = dfspu['t_Event'].values
#eventnumarray = eventnumarray.reshape(eventnumarray.shape[0],1)
ietaarray = dfspu['t_ieta'].values
ietaarray = ietaarray.reshape(ietaarray.shape[0],1)
#iphiarray = dfspu['t_iphi'].values
#iphiarray = iphiarray.reshape(iphiarray.shape[0],1)
corrfac = preds/uncorrected_values
corrfac = corrfac.reshape(corrfac.shape[0],1)
fileo = np.hstack((eventnumarray,ietaarray,corrfac))
#fileo = np.hstack((runnumarray,eventnumarray,ietaarray,iphiarray,corrfac))
np.savetxt(foutput, fileo,fmt=['%d','%d','%.10f'])
# In[ ]:
|