Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580
/** \file HouseholderDecomposition.cc
 *
 *
 * \author Lorenzo Agostino, R.Ofierzynski, CERN
 */

#include "Calibration/Tools/interface/HouseholderDecomposition.h"
#include <cfloat>
#include <cmath>
#include <cstdlib>

HouseholderDecomposition::HouseholderDecomposition(int squareMode_, int mineta_, int maxeta_, int minphi_, int maxphi_)
    : squareMode(squareMode_), countEvents(0), mineta(mineta_), maxeta(maxeta_), minphi(minphi_), maxphi(maxphi_) {
  Neta = maxeta - mineta + 1;
  if (mineta * maxeta < 0)
    Neta--;  // there's no eta index = 0
  Nphi = maxphi - minphi + 1;
  if (Nphi < 0)
    Nphi += 360;

  Nchannels = Neta * Nphi;  // no. of channels, get it from edges of the region

  Nxtals = squareMode * squareMode;  // no. of xtals in one event

  sigmaReplacement = 0.00001;  // the sum of columns is replaced by this value in case it is zero (e.g. dead crystal)
}

HouseholderDecomposition::~HouseholderDecomposition() {}

std::vector<float> HouseholderDecomposition::runRegional(const std::vector<std::vector<float> >& eventMatrix,
                                                         const std::vector<int>& VmaxCeta,
                                                         const std::vector<int>& VmaxCphi,
                                                         const std::vector<float>& energyVector,
                                                         const int& nIter,
                                                         const int& regLength) {
  // make regions
  makeRegions(regLength);

  Nevents = eventMatrix.size();  // Number of events to calibrate with

  std::vector<float> totalSolution(Nchannels, 1.);
  std::vector<float> iterSolution(Nchannels, 1.);
  std::vector<std::vector<float> > myEventMatrix(eventMatrix);

  // loop over nIter
  for (int iter = 1; iter <= nIter; iter++) {
    // loop over regions
    for (unsigned int ireg = 0; ireg < regMinEta.size(); ireg++) {
      std::vector<float> regIterSolution, regEnergyVector;
      std::vector<int> regVmaxCeta, regVmaxCphi;
      std::vector<std::vector<float> > regEventMatrix;

      // initialize new instance with regional min,max indices
      HouseholderDecomposition regionalHH(
          squareMode, regMinEta[ireg], regMaxEta[ireg], regMinPhi[ireg], regMaxPhi[ireg]);

      // copy all events in region into new eventmatrix, energyvector, VmaxCeta, VmaxCphi
      for (unsigned int ia = 0; ia < VmaxCeta.size(); ia++) {
        if ((VmaxCeta[ia] >= regMinEta[ireg]) && (VmaxCeta[ia] <= regMaxEta[ireg]) &&
            (VmaxCphi[ia] >= regMinPhi[ireg]) && (VmaxCphi[ia] <= regMaxPhi[ireg])) {
          // save event, calculate new eventmatrix(truncated) and energy
          regVmaxCeta.push_back(VmaxCeta[ia]);
          regVmaxCphi.push_back(VmaxCphi[ia]);

          std::vector<float> regEvent = myEventMatrix[ia];
          float regEnergy = energyVector[ia];
          for (int i2 = 0; i2 < Nxtals; i2++) {
            int iFullReg = regionalHH.indexSqr2Reg(i2, VmaxCeta[ia], VmaxCphi[ia]);
            if (iFullReg < 0)  // crystal outside
            {
              regEnergy -= regEvent[i2];
              regEvent[i2] = 0.;
            }
          }
          regEventMatrix.push_back(regEvent);
          regEnergyVector.push_back(regEnergy);
        }
      }

      // calibrate
      //	  std::cout << "HouseholderDecomposition::runRegional - Starting calibration of region " << ireg << ": eta "
      //	       << regMinEta[ireg] << " to " << regMaxEta[ireg] << ", phi " << regMinPhi[ireg] << " to " << regMaxPhi[ireg] << std::endl;
      regIterSolution = regionalHH.iterate(regEventMatrix, regVmaxCeta, regVmaxCphi, regEnergyVector);
      //	  std::cout << "HouseholderDecomposition::runRegional - calibration of region finished. " << std::endl;

      // save solution into global iterSolution
      // don't forget to delete the ones that are on the border !
      for (unsigned int i1 = 0; i1 < regIterSolution.size(); i1++) {
        int regFrame = regLength / 2;
        int currRegPhiRange = regMaxPhi[ireg] - regMinPhi[ireg] + 1;
        int currRegEta = i1 / currRegPhiRange + regMinEta[ireg];
        int currRegPhi = i1 % currRegPhiRange + regMinPhi[ireg];
        int newindex = -100;
        // if crystal well inside:
        if ((currRegEta >= (regMinEta[ireg] + regFrame * (!(regMinEta[ireg] == mineta)))) &&
            (currRegEta <= (regMaxEta[ireg] - regFrame * (!(regMaxEta[ireg] == maxeta)))) &&
            (currRegPhi >= (regMinPhi[ireg] + regFrame * (!(regMinPhi[ireg] == minphi)))) &&
            (currRegPhi <= (regMaxPhi[ireg] - regFrame * (!(regMaxPhi[ireg] == maxphi))))) {
          newindex = (currRegEta - mineta) * Nphi + currRegPhi - minphi;
          iterSolution[newindex] = regIterSolution[i1];
        }
      }
    }  // end loop over regions

    if (iterSolution.empty())
      return iterSolution;

    // re-calibrate eventMatrix with solution
    for (int ievent = 0; ievent < Nevents; ievent++) {
      myEventMatrix[ievent] = recalibrateEvent(myEventMatrix[ievent], VmaxCeta[ievent], VmaxCphi[ievent], iterSolution);
    }

    // save solution into theCalibVector
    for (int i = 0; i < Nchannels; i++) {
      totalSolution[i] *= iterSolution[i];
    }

  }  // end loop over nIter

  return totalSolution;
}

std::vector<float> HouseholderDecomposition::iterate(const std::vector<std::vector<float> >& eventMatrix,
                                                     const std::vector<int>& VmaxCeta,
                                                     const std::vector<int>& VmaxCphi,
                                                     const std::vector<float>& energyVector,
                                                     const int& nIter,
                                                     const bool& normalizeFlag) {
  Nevents = eventMatrix.size();  // Number of events to calibrate with

  std::vector<float> totalSolution(Nchannels, 1.);
  std::vector<float> iterSolution;
  std::vector<std::vector<float> > myEventMatrix(eventMatrix);
  std::vector<float> myEnergyVector(energyVector);

  int i, j;

  // Iterate the correction
  for (int iter = 1; iter <= nIter; iter++) {
    // if normalization flag is set, normalize energies
    float sumOverEnergy;
    if (normalizeFlag) {
      float scale = 0.;

      for (i = 0; i < Nevents; i++) {
        sumOverEnergy = 0.;
        for (j = 0; j < Nxtals; j++) {
          sumOverEnergy += myEventMatrix[i][j];
        }
        sumOverEnergy /= myEnergyVector[i];
        scale += sumOverEnergy;
      }
      scale /= Nevents;

      for (i = 0; i < Nevents; i++) {
        myEnergyVector[i] *= scale;
      }
    }  // end normalize energies

    // now the real work starts:
    iterSolution = iterate(myEventMatrix, VmaxCeta, VmaxCphi, myEnergyVector);

    if (iterSolution.empty())
      return iterSolution;

    // re-calibrate eventMatrix with solution
    for (int ievent = 0; ievent < Nevents; ievent++) {
      myEventMatrix[ievent] = recalibrateEvent(myEventMatrix[ievent], VmaxCeta[ievent], VmaxCphi[ievent], iterSolution);
    }

    for (int i = 0; i < Nchannels; i++) {
      // save solution into theCalibVector
      totalSolution[i] *= iterSolution[i];
    }

  }  // end iterate correction

  return totalSolution;
}

std::vector<float> HouseholderDecomposition::iterate(const std::vector<std::vector<float> >& eventMatrix,
                                                     const std::vector<int>& VmaxCeta,
                                                     const std::vector<int>& VmaxCphi,
                                                     const std::vector<float>& energyVectorOrig) {
  std::vector<float> solution;

  Nevents = eventMatrix.size();  // Number of events to calibrate with

  if (Nchannels > Nevents) {
    std::cout << "Householder::runIter(): more channels to calibrate than events available. " << std::endl;
    std::cout << "  Nchannels=" << Nchannels << std::endl;
    std::cout << "  Nevents=" << Nevents << std::endl;
    std::cout << " ******************    ERROR   *********************" << std::endl;
    return solution;  // empty vector
  }

  // input: eventMatrixOrig - the unzipped matrix
  eventMatrixOrig = unzipMatrix(eventMatrix, VmaxCeta, VmaxCphi);

  if (eventMatrixOrig.size() != energyVectorOrig.size()) {
    std::cout << "Householder::runIter(): matrix dimensions non-conformant. " << std::endl;
    std::cout << "  energyVectorOrig.size()=" << energyVectorOrig.size() << std::endl;
    std::cout << "  eventMatrixOrig.size()=" << eventMatrixOrig.size() << std::endl;
    std::cout << " ******************    ERROR   *********************" << std::endl;
    return solution;  // empty vector
  }

  int i, j;
  eventMatrixProc = eventMatrixOrig;
  energyVectorProc = energyVectorOrig;  // copy energyVectorOrig vector
  std::vector<float> e(Nchannels);
  alpha.assign(Nchannels, 0.);
  pivot.assign(Nchannels, 0);

  //--------------------
  bool decomposeSuccess = decompose();

  if (!decomposeSuccess) {
    std::cout << "Householder::runIter(): Failed: Singular condition in decomposition." << std::endl;
    std::cout << "***************** PROBLEM in DECOMPOSITION *************************" << std::endl;
    return solution;  // empty vector
  }

  /* DBL_EPSILON: Difference between 1.0 and the minimum float greater than 1.0 */
  float mydbleps = 2.22045e-16;  //DBL_EPSILON;
  float etasqr = mydbleps * mydbleps;
  //  std::cout << "LOOK at DBL_EPSILON :" << mydbleps <<std::endl;

  //--------------------
  // apply transformations to rhs - find solution vector
  solution.assign(Nchannels, 0.);
  solve(solution);

  // compute residual vector energyVectorProc
  for (i = 0; i < Nevents; i++) {
    energyVectorProc[i] = energyVectorOrig[i];
    for (j = 0; j < Nchannels; j++) {
      energyVectorProc[i] -= eventMatrixOrig[i][j] * solution[j];
    }
  }

  //--------------------
  // compute first correction vector e
  solve(e);

  float normy0 = 0.;
  float norme1 = 0.;
  float norme0;

  for (i = 0; i < Nchannels; i++) {
    normy0 += solution[i] * solution[i];
    norme1 += e[i] * e[i];
  }

  //  std::cout << "Householder::runIter(): applying first correction";
  //  std::cout << " normy0 = " << normy0;
  //  std::cout << " norme1 = " << norme1 << std::endl;

  // not attempt at obtaining the solution is made unless the norm of the first
  // correction  is significantly smaller than the norm of the initial solution
  if (norme1 > (0.0625 * normy0)) {
    //      std::cout << "Householder::runIter(): first correction is too large. Failed." << std::endl;
  }

  // improve the solution
  for (i = 0; i < Nchannels; i++) {
    solution[i] += e[i];
  }

  //  std::cout << "Householder::runIter(): improving solution...." << std::endl;

  //--------------------
  // only continue iteration if the correction was significant
  while (norme1 > (etasqr * normy0)) {
    //      std::cout << "Householder::runIter(): norme1 = " << norme1 << std::endl;

    for (i = 0; i < Nevents; i++) {
      energyVectorProc[i] = energyVectorOrig[i];
      for (j = 0; j < Nchannels; j++) {
        energyVectorProc[i] -= eventMatrixOrig[i][j] * solution[j];
      }
    }

    // compute next correction vector
    solve(e);

    norme0 = norme1;
    norme1 = 0.;

    for (i = 0; i < Nchannels; i++) {
      norme1 += e[i] * e[i];
    }

    // terminate iteration if the norm of the new correction failed to decrease
    // significantly compared to the norm of the previous correction
    if (norme1 > (0.0625 * norme0))
      break;

    // apply correction vector
    for (i = 0; i < Nchannels; i++) {
      solution[i] += e[i];
    }
  }

  //clean up
  eventMatrixOrig.clear();
  eventMatrixProc.clear();
  energyVectorProc.clear();
  alpha.clear();
  pivot.clear();

  return solution;
}

bool HouseholderDecomposition::decompose() {
  int i, j, jbar, k;
  float beta, sigma, alphak, eventMatrixkk;
  std::vector<float> y(Nchannels);
  std::vector<float> sum(Nchannels);

  //  std::cout << "Householder::decompose() started" << std::endl;

  for (j = 0; j < Nchannels; j++) {
    // jth column sum: squared sum for each crystal
    sum[j] = 0.;
    for (i = 0; i < Nevents; i++)
      sum[j] += eventMatrixProc[i][j] * eventMatrixProc[i][j];

    // bookkeeping vector
    pivot[j] = j;
  }

  for (k = 0; k < Nchannels; k++) {
    // kth Householder transformation
    sigma = sum[k];
    jbar = k;

    // go through all following columns
    // find the largest sumSquared in the following columns
    for (j = k + 1; j < Nchannels; j++) {
      if (sum[j] > sigma) {
        sigma = sum[j];
        jbar = j;
      }
    }

    if (jbar != k) {
      // column interchange:
      //     interchange within: bookkeeping vector, squaredSum, eventMatrixProc

      i = pivot[k];
      pivot[k] = pivot[jbar];
      pivot[jbar] = i;

      sum[jbar] = sum[k];
      sum[k] = sigma;

      for (i = 0; i < Nevents; i++) {
        sigma = eventMatrixProc[i][k];
        eventMatrixProc[i][k] = eventMatrixProc[i][jbar];
        eventMatrixProc[i][jbar] = sigma;
      }
    }  // end column interchange

    // now store in sigma the squared sum of the readoutEnergies for this column(crystal)
    sigma = 0.;
    for (i = k; i < Nevents; i++) {
      sigma += eventMatrixProc[i][k] * eventMatrixProc[i][k];
    }

    // found a zero-column, bail out
    if (sigma == 0.) {
      //	  std::cout << "Householder::decompose() failed" << std::endl;
      //	  return false;
      // rof 14.12.2006: workaround to avoid failure of algorithm because of dead crystals:
      sigma = sigmaReplacement;
      //	  std::cout << "Householder::decompose - found zero column " << jbar << ", replacing sum of column elements by " << sigma << std::endl;
    }

    // the following paragraph acts only on the diagonal element:
    // if element=0, then calculate alpha & beta

    // take the diagonal element
    eventMatrixkk = eventMatrixProc[k][k];

    if (eventMatrixkk < 0.)
      alpha[k] = sqrt(sigma);
    else
      alpha[k] = sqrt(sigma) * (-1.);

    alphak = alpha[k];

    beta = 1 / (sigma - eventMatrixkk * alphak);
    // replace it
    eventMatrixProc[k][k] = eventMatrixkk - alphak;

    for (j = k + 1; j < Nchannels; j++) {
      y[j] = 0.;

      for (i = k; i < Nevents; i++) {
        y[j] += eventMatrixProc[i][k] * eventMatrixProc[i][j];
      }

      y[j] *= beta;
    }

    for (j = k + 1; j < Nchannels; j++) {
      for (i = k; i < Nevents; i++) {
        eventMatrixProc[i][j] -= eventMatrixProc[i][k] * y[j];
        sum[j] -= eventMatrixProc[k][j] * eventMatrixProc[k][j];
      }
    }
  }  // end of kth householder transformation

  //  std::cout << "Householder::decompose() finished" << std::endl;

  return true;
}

void HouseholderDecomposition::solve(std::vector<float>& y) {
  std::vector<float> z(Nchannels, 0.);

  float gamma;
  int i, j;

  //  std::cout << "Householder::solve() begin" << std::endl;

  for (j = 0; j < Nchannels; j++) {
    // apply jth transformation to the right hand side
    gamma = 0.;
    for (i = j; i < Nevents; i++) {
      gamma += eventMatrixProc[i][j] * energyVectorProc[i];
    }
    gamma /= (alpha[j] * eventMatrixProc[j][j]);

    for (i = j; i < Nevents; i++) {
      energyVectorProc[i] += gamma * eventMatrixProc[i][j];
    }
  }

  z[Nchannels - 1] = energyVectorProc[Nchannels - 1] / alpha[Nchannels - 1];

  for (i = Nchannels - 2; i >= 0; i--) {
    z[i] = energyVectorProc[i];
    for (j = i + 1; j < Nchannels; j++) {
      z[i] -= eventMatrixProc[i][j] * z[j];
    }
    z[i] /= alpha[i];
  }

  for (i = 0; i < Nchannels; i++) {
    y[pivot[i]] = z[i];
  }

  //  std::cout << "Householder::solve() finished." << std::endl;
}

std::vector<float> HouseholderDecomposition::recalibrateEvent(const std::vector<float>& eventSquare,
                                                              const int& maxCeta,
                                                              const int& maxCphi,
                                                              const std::vector<float>& recalibrateVector) {
  std::vector<float> newEventSquare(eventSquare);
  int iFull;

  for (int i = 0; i < Nxtals; i++) {
    iFull = indexSqr2Reg(i, maxCeta, maxCphi);
    if (iFull >= 0)
      newEventSquare[i] *= recalibrateVector[iFull];
  }
  return newEventSquare;
}

int HouseholderDecomposition::indexSqr2Reg(const int& sqrIndex, const int& maxCeta, const int& maxCphi) {
  int regionIndex;

  // get the current eta, phi indices
  int curr_eta = maxCeta - squareMode / 2 + sqrIndex % squareMode;
  if (curr_eta * maxCeta <= 0) {
    if (maxCeta > 0)
      curr_eta--;
    else
      curr_eta++;
  }  // JUMP over 0

  int curr_phi = maxCphi - squareMode / 2 + sqrIndex / squareMode;
  if (curr_phi < 1)
    curr_phi += 360;
  if (curr_phi > 360)
    curr_phi -= 360;

  bool negPhiDirection = (maxphi < minphi);
  int iFullphi;

  regionIndex = -1;

  if (curr_eta >= mineta && curr_eta <= maxeta)
    if ((!negPhiDirection && (curr_phi >= minphi && curr_phi <= maxphi)) ||
        (negPhiDirection && !(curr_phi >= minphi && curr_phi <= maxphi))) {
      iFullphi = curr_phi - minphi;
      if (iFullphi < 0)
        iFullphi += 360;
      regionIndex = (curr_eta - mineta) * (maxphi - minphi + 1 + 360 * negPhiDirection) + iFullphi;
    }

  return regionIndex;
}

std::vector<std::vector<float> > HouseholderDecomposition::unzipMatrix(
    const std::vector<std::vector<float> >& eventMatrix,
    const std::vector<int>& VmaxCeta,
    const std::vector<int>& VmaxCphi) {
  std::vector<std::vector<float> > fullMatrix;

  int iFull;

  for (int i = 0; i < Nevents; i++) {
    std::vector<float> foo(Nchannels, 0.);
    for (int k = 0; k < Nxtals; k++) {
      iFull = indexSqr2Reg(k, VmaxCeta[i], VmaxCphi[i]);
      if (iFull >= 0)
        foo[iFull] = eventMatrix[i][k];
    }
    fullMatrix.push_back(foo);
  }

  return fullMatrix;
}

void HouseholderDecomposition::makeRegions(const int& regLength) {
  //  int regFrame = regLength/2;
  int regFrame = squareMode / 2;
  // first eta:
  int remEta = Neta % regLength;
  if (remEta > regLength / 2)
    remEta -= regLength;
  int numSubRegEta = Neta / regLength + (remEta < 0) * 1;

  int addtoEta = remEta / numSubRegEta;
  int addtomoreEta =
      remEta % numSubRegEta;  // add "addtomore" number of times (addto+1), remaining times add just (addto)

  // then phi:
  int remPhi = Nphi % regLength;
  if (remPhi > regLength / 2)
    remPhi -= regLength;
  int numSubRegPhi = Nphi / regLength + (remPhi < 0) * 1;

  int addtoPhi = remPhi / numSubRegPhi;
  int addtomorePhi =
      remPhi % numSubRegPhi;  // add "addtomore" number of times (addto+-1), remaining times add just (addto)

  // now put it all together
  int startIndexEta = mineta;
  int startIndexPhi;
  int endIndexEta;
  int endIndexPhi;
  for (int i = 0; i < numSubRegEta; i++) {
    int addedLengthEta = regLength + addtoEta + addtomoreEta / abs(addtomoreEta) * (i < abs(addtomoreEta));
    endIndexEta = startIndexEta + addedLengthEta - 1;

    startIndexPhi = minphi;
    for (int j = 0; j < numSubRegPhi; j++) {
      int addedLengthPhi = regLength + addtoPhi + addtomorePhi / abs(addtomorePhi) * (j < abs(addtomorePhi));
      endIndexPhi = startIndexPhi + addedLengthPhi - 1;

      regMinPhi.push_back(startIndexPhi - regFrame * (j != 0));
      regMaxPhi.push_back(endIndexPhi + regFrame * (j != (numSubRegPhi - 1)));
      regMinEta.push_back(startIndexEta - regFrame * (i != 0));
      regMaxEta.push_back(endIndexEta + regFrame * (i != (numSubRegEta - 1)));

      startIndexPhi = endIndexPhi + 1;
    }
    startIndexEta = endIndexEta + 1;
  }

  //  // print it all
  //  std::cout << "Householder::makeRegions created the following regions for calibration:" << std::endl;
  //  for (int i=0; i<regMinEta.size(); i++)
  //    std::cout << "Region " << i << ": eta = " << regMinEta[i] << " to " << regMaxEta[i] << ", phi = " << regMinPhi[i] << " to " << regMaxPhi[i] << std::endl;
}