1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
|
/** \file MinL3Algorithm.cc
*
* \author R.Ofierzynski, CERN
*/
#include "Calibration/Tools/interface/MinL3Algorithm.h"
#include <cmath>
MinL3Algorithm::MinL3Algorithm(float kweight_, int squareMode_, int mineta_, int maxeta_, int minphi_, int maxphi_)
: kweight(kweight_),
squareMode(squareMode_),
mineta(mineta_),
maxeta(maxeta_),
minphi(minphi_),
maxphi(maxphi_),
countEvents(0) {
int Neta = maxeta - mineta + 1;
if (mineta * maxeta < 0)
Neta--; // there's no eta index = 0
int Nphi = maxphi - minphi + 1;
if (Nphi < 0)
Nphi += 360;
Nchannels = Neta * Nphi; // no. of channels, get it from edges of the region
Nxtals = squareMode * squareMode; // no. of xtals in one event
wsum.assign(Nchannels, 0.);
Ewsum.assign(Nchannels, 0.);
}
MinL3Algorithm::~MinL3Algorithm() {}
std::vector<float> MinL3Algorithm::iterate(const std::vector<std::vector<float> >& eventMatrix,
const std::vector<int>& VmaxCeta,
const std::vector<int>& VmaxCphi,
const std::vector<float>& energyVector,
const int& nIter,
const bool& normalizeFlag) {
int Nevents = eventMatrix.size(); // Number of events to calibrate with
std::vector<float> totalSolution(Nchannels, 1.);
std::vector<float> iterSolution;
std::vector<std::vector<float> > myEventMatrix(eventMatrix);
std::vector<float> myEnergyVector(energyVector);
int i, j;
// Iterate the correction
for (int iter = 1; iter <= nIter; iter++) {
// if normalization flag is set, normalize energies
float sumOverEnergy;
if (normalizeFlag) {
float scale = 0.;
for (i = 0; i < Nevents; i++) {
sumOverEnergy = 0.;
for (j = 0; j < Nxtals; j++) {
sumOverEnergy += myEventMatrix[i][j];
}
sumOverEnergy /= myEnergyVector[i];
scale += sumOverEnergy;
}
scale /= Nevents;
for (i = 0; i < Nevents; i++) {
myEnergyVector[i] *= scale;
}
} // end normalize energies
// now the real work starts:
for (int iEvt = 0; iEvt < Nevents; iEvt++) {
addEvent(myEventMatrix[iEvt], VmaxCeta[iEvt], VmaxCphi[iEvt], myEnergyVector[iEvt]);
}
iterSolution = getSolution();
if (iterSolution.empty())
return iterSolution;
// re-calibrate eventMatrix with solution
for (int ievent = 0; ievent < Nevents; ievent++) {
myEventMatrix[ievent] = recalibrateEvent(myEventMatrix[ievent], VmaxCeta[ievent], VmaxCphi[ievent], iterSolution);
}
for (int i = 0; i < Nchannels; i++) {
// save solution into theCalibVector
totalSolution[i] *= iterSolution[i];
}
// resetSolution(); // reset for new iteration, now: getSolution does it automatically if not vetoed
} // end iterate correction
return totalSolution;
}
void MinL3Algorithm::addEvent(const std::vector<float>& eventSquare,
const int& maxCeta,
const int& maxCphi,
const float& energy) {
countEvents++;
float w, invsumXmatrix;
float eventw;
int iFull, i;
// Loop over the crystal matrix to find the sum
float sumXmatrix = 0.;
for (i = 0; i < Nxtals; i++) {
sumXmatrix += eventSquare[i];
}
// event weighting
eventw = 1 - fabs(1 - sumXmatrix / energy);
eventw = pow(eventw, kweight);
if (sumXmatrix != 0.) {
invsumXmatrix = 1 / sumXmatrix;
// Loop over the crystal matrix (3x3,5x5,7x7) again and calculate the weights for each xtal
for (i = 0; i < Nxtals; i++) {
w = eventSquare[i] * invsumXmatrix;
iFull = indexSqr2Reg(i, maxCeta, maxCphi);
if (iFull >= 0) {
// with event weighting:
wsum[iFull] += w * eventw;
Ewsum[iFull] += (w * eventw * energy * invsumXmatrix);
// wsum[iFull] += w;
// Ewsum[iFull] += (w * energy * invsumXmatrix);
}
}
}
// else {std::cout << " Debug: dropping null event: " << countEvents << std::endl;}
}
std::vector<float> MinL3Algorithm::getSolution(bool resetsolution) {
std::vector<float> solution(Nchannels, 1.);
for (int i = 0; i < Nchannels; i++) {
if (wsum[i] != 0.) {
solution[i] *= Ewsum[i] / wsum[i];
}
// else
// { std::cout << "warning - no event data for crystal index (reduced region) " << i << std::endl; }
}
if (resetsolution)
resetSolution();
return solution;
}
void MinL3Algorithm::resetSolution() {
wsum.assign(Nchannels, 0.);
Ewsum.assign(Nchannels, 0.);
}
std::vector<float> MinL3Algorithm::recalibrateEvent(const std::vector<float>& eventSquare,
const int& maxCeta,
const int& maxCphi,
const std::vector<float>& recalibrateVector) {
std::vector<float> newEventSquare(eventSquare);
int iFull;
for (int i = 0; i < Nxtals; i++) {
iFull = indexSqr2Reg(i, maxCeta, maxCphi);
if (iFull >= 0)
newEventSquare[i] *= recalibrateVector[iFull];
}
return newEventSquare;
}
int MinL3Algorithm::indexSqr2Reg(const int& sqrIndex, const int& maxCeta, const int& maxCphi) {
int regionIndex;
// get the current eta, phi indices
int curr_eta = maxCeta - squareMode / 2 + sqrIndex % squareMode;
if (curr_eta * maxCeta <= 0) {
if (maxCeta > 0)
curr_eta--;
else
curr_eta++;
} // JUMP over 0
int curr_phi = maxCphi - squareMode / 2 + sqrIndex / squareMode;
if (curr_phi < 1)
curr_phi += 360;
if (curr_phi > 360)
curr_phi -= 360;
bool negPhiDirection = (maxphi < minphi);
int iFullphi;
regionIndex = -1;
if (curr_eta >= mineta && curr_eta <= maxeta)
if ((!negPhiDirection && (curr_phi >= minphi && curr_phi <= maxphi)) ||
(negPhiDirection && !(curr_phi >= minphi && curr_phi <= maxphi))) {
iFullphi = curr_phi - minphi;
if (iFullphi < 0)
iFullphi += 360;
regionIndex = (curr_eta - mineta) * (maxphi - minphi + 1 + 360 * negPhiDirection) + iFullphi;
}
return regionIndex;
}
|