1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
|
#ifndef CommonTools_BaseParticlePropagator_RawParticle_h
#define CommonTools_BaseParticlePropagator_RawParticle_h
#include "DataFormats/Math/interface/LorentzVector.h"
#include "DataFormats/Math/interface/Vector3D.h"
#include "Math/GenVector/RotationX.h"
#include "Math/GenVector/RotationY.h"
#include "Math/GenVector/RotationZ.h"
#include "Math/GenVector/Rotation3D.h"
#include "Math/GenVector/AxisAngle.h"
#include "Math/GenVector/Boost.h"
#include <string>
#include <iosfwd>
#include <memory>
/**
* A prototype for a particle class.
* This class describes a general particle beeing a fourvector
* and containing a vertex (fourvector). It is defined in RawParticle.h
* \author Stephan Wynhoff
*/
typedef math::XYZTLorentzVector XYZTLorentzVector;
typedef math::XYZVector XYZVector;
class RawParticle;
namespace rawparticle {
///Create a particle with momentum 'p' at space-time point xStart
/// The particle will be a muon if iParticle==true, else it will
/// be an anti-muon.
RawParticle makeMuon(bool isParticle, const XYZTLorentzVector& p, const XYZTLorentzVector& xStart);
} // namespace rawparticle
class RawParticle {
public:
friend RawParticle rawparticle::makeMuon(bool, const XYZTLorentzVector&, const XYZTLorentzVector&);
friend RawParticle unchecked_makeParticle(int id, const math::XYZTLorentzVector& p, double mass, double charge);
friend RawParticle unchecked_makeParticle(
int id, const math::XYZTLorentzVector& p, const math::XYZTLorentzVector& xStart, double mass, double charge);
typedef ROOT::Math::AxisAngle Rotation;
typedef ROOT::Math::Rotation3D Rotation3D;
typedef ROOT::Math::RotationX RotationX;
typedef ROOT::Math::RotationY RotationY;
typedef ROOT::Math::RotationZ RotationZ;
typedef ROOT::Math::Boost Boost;
RawParticle() = default;
/** Construct from a fourvector.
* The fourvector is taken for the particle, the vertex is set to 0.
*/
RawParticle(const XYZTLorentzVector& p);
/** Construct from 2 fourvectors.
* The first fourvector is taken for the particle, the second for its vertex.
*/
RawParticle(const XYZTLorentzVector& p, const XYZTLorentzVector& xStart, double charge = 0.);
/** Construct from fourmomentum components.
* Vertex is set to 0.
*/
RawParticle(double px, double py, double pz, double e, double charge = 0.);
/** Copy constructor */
RawParticle(const RawParticle& p) = default;
RawParticle(RawParticle&& p) = default;
/** Copy assignment operator */
RawParticle& operator=(const RawParticle& rhs) = default;
RawParticle& operator=(RawParticle&& rhs) = default;
public:
/** Set the status of this particle.
* The coding follows PYTHIAs convention:
* 1 = stable
*/
void setStatus(int istat);
/// set the RECONSTRUCTED mass
void setMass(float m);
/// set the MEASURED charge
void setCharge(float q);
/// set the time of creation
void setT(const double t);
/// set the vertex
void setVertex(const XYZTLorentzVector& vtx);
void setVertex(double xv, double yv, double zv, double tv);
/// set the momentum
void setMomentum(const XYZTLorentzVector& vtx);
void setMomentum(double xv, double yv, double zv, double tv);
void SetPx(double);
void SetPy(double);
void SetPz(double);
void SetE(double);
/*** methods to be overloaded to include vertex ***/
/** Boost the particle.
* The arguments are the \f$\beta\f$ values of the boost in x, y
* and z direction. \warning What happens to the vertex?
*/
void boost(double bx, double by, double bz);
void boost(const Boost& b);
// inline void boost(const Hep3Vector<double> &bv );
/** Rotate the particle around an axis in space.
* The arguments give the amount to rotate \a rphi in radian and a vector
* \a raxis in 3D space around which the rotation is done. The vertex is
* rotated using the same transformation.
*/
void rotate(double rphi, const XYZVector& raxis);
void rotate(const Rotation& r);
void rotate(const Rotation3D& r);
/** \warning not yet implemented */
// void rotateUz(Hep3Vector &nuz);
/** Rotate around x axis.
* Rotate \a rphi radian around the x axis. The Vertex is rotated as well.
*/
void rotateX(double rphi);
void rotate(const RotationX& r);
/** Rotate around z axis.
* Rotate \a rphi radian around the z axis. The Vertex is rotated as well.
*/
void rotateY(double rphi);
void rotate(const RotationY& r);
/** Rotate around z axis.
* Rotate \a rphi radian around the z axis. The Vertex is rotated as well.
*/
void rotateZ(double rphi);
void rotate(const RotationZ& r);
/** Translate the vertex by a given space amount */
void translate(const XYZVector& t);
// inline RawParticle & transform(const HepRotation &rot);
// inline RawParticle & transform(const HepLorentzRotation &rot);
/** Convert the particle to its charge conjugate state.
This operation resets the particle ID to that of the charge conjugated
particle (if one exists). Also the measured charge is multiplied by -1.
*/
void chargeConjugate();
int pid() const; //!< get the HEP particle ID number
int status() const; //!< get the particle status
double charge() const; //!< get the MEASURED charge
double mass() const; //!< get the MEASURED mass
/** Get the pseudo rapidity of the particle.
* \f$ \eta = -\log ( \tan ( \vartheta/2)) \f$
*/
double eta() const;
/// Cos**2(theta) is faster to determine than eta
double cos2Theta() const;
double cos2ThetaV() const;
double et() const; //!< get the transverse energy
double x() const; //!< x of vertex
double X() const; //!< x of vertex
double y() const; //!< y of vertex
double Y() const; //!< y of vertex
double z() const; //!< z of vertex
double Z() const; //!< z of vertex
double t() const; //!< vertex time
double T() const; //!< vertex time
double r() const; //!< vertex radius
double R() const; //!< vertex radius
double r2() const; //!< vertex radius**2
double R2() const; //!< vertex radius**2
const XYZTLorentzVector& vertex() const; //!< the vertex fourvector
double px() const; //!< x of the momentum
double Px() const; //!< x of the momentum
double py() const; //!< y of the momentum
double Py() const; //!< y of the momentum
double pz() const; //!< z of the momentum
double Pz() const; //!< z of the momentum
double e() const; //!< energy of the momentum
double E() const; //!< energy of the momentum
double Pt() const; //!< transverse momentum
double pt() const; //!< transverse momentum
double Perp2() const; //!< perpendicular momentum squared
double mag() const; //!< the magnitude of the momentum
double theta() const; //!< theta of momentum vector
double phi() const; //!< phi of momentum vector
double M2() const; //!< mass squared
const XYZTLorentzVector& momentum() const; //!< the momentum fourvector
XYZTLorentzVector& momentum(); //!< the momentum fourvector
XYZVector Vect() const; //!< the momentum threevector
/** Print the name of the particle.
* The name is deduced from the particle ID using a particle data table.
* It is printed with a length of 10 characters. If the id number cannot
* be found in the table "unknown" is printed as name.
*/
void printName() const;
/** Print the formated particle information.
* The format is:
* NAME______PX______PY______PZ______E_______Mtheo___Mrec____Qrec____X_______Y_______Z_______T_______
*/
void print() const;
/** Is the particle marked as used.
* The three methods isUsed(), use() and reUse() implement a simple
* locking mechanism.
*/
int isUsed() const { return myUsed; }
/** Lock the particle, see isUsed()
*/
void use() { myUsed = 1; }
/** Unlock the particle, see isUsed()
*/
void reUse() { myUsed = 0; }
private:
/** Construct from a fourvector and a PID.
* The fourvector and PID are taken for the particle, the vertex is set to 0.
*/
RawParticle(const int id, const XYZTLorentzVector& p, double mass, double charge);
/** Construct from 2 fourvectosr and a PID.
* The fourvector and PID are taken for the particle, the vertex is set to 0.
*/
RawParticle(const int id, const XYZTLorentzVector& p, const XYZTLorentzVector& xStart, double mass, double charge);
private:
XYZTLorentzVector myMomentum; //!< the four vector of the momentum
XYZTLorentzVector myVertex; //!< the four vector of the vertex
double myCharge = 0.; //!< the MEASURED charge
double myMass = 0.; //!< the RECONSTRUCTED mass
int myId = 0; //!< the particle id number HEP-PID
int myStatus = 99; //!< the status code according to PYTHIA
int myUsed = 0; //!< status of the locking
};
std::ostream& operator<<(std::ostream& o, const RawParticle& p);
inline int RawParticle::pid() const { return myId; }
inline int RawParticle::status() const { return myStatus; }
inline double RawParticle::eta() const { return -std::log(std::tan(this->theta() / 2.)); }
inline double RawParticle::cos2Theta() const { return Pz() * Pz() / myMomentum.Vect().Mag2(); }
inline double RawParticle::cos2ThetaV() const { return Z() * Z() / myVertex.Vect().Mag2(); }
inline double RawParticle::x() const { return myVertex.Px(); }
inline double RawParticle::y() const { return myVertex.Py(); }
inline double RawParticle::z() const { return myVertex.Pz(); }
inline double RawParticle::t() const { return myVertex.E(); }
inline double RawParticle::X() const { return myVertex.Px(); }
inline double RawParticle::Y() const { return myVertex.Py(); }
inline double RawParticle::Z() const { return myVertex.Pz(); }
inline double RawParticle::T() const { return myVertex.E(); }
inline double RawParticle::R() const { return std::sqrt(R2()); }
inline double RawParticle::R2() const { return myVertex.Perp2(); }
inline double RawParticle::r() const { return std::sqrt(r2()); }
inline double RawParticle::r2() const { return myVertex.Perp2(); }
inline double RawParticle::charge() const { return myCharge; }
inline double RawParticle::mass() const { return myMass; }
inline double RawParticle::px() const { return myMomentum.px(); }
inline double RawParticle::Px() const { return myMomentum.Px(); }
inline double RawParticle::py() const { return myMomentum.py(); }
inline double RawParticle::Py() const { return myMomentum.Py(); }
inline double RawParticle::pz() const { return myMomentum.pz(); }
inline double RawParticle::Pz() const { return myMomentum.Pz(); }
inline double RawParticle::e() const { return myMomentum.e(); }
inline double RawParticle::E() const { return myMomentum.E(); }
inline double RawParticle::Pt() const { return myMomentum.Pt(); }
inline double RawParticle::pt() const { return myMomentum.pt(); }
inline double RawParticle::Perp2() const { return myMomentum.Perp2(); }
inline double RawParticle::mag() const { return myMomentum.mag(); }
inline double RawParticle::theta() const { return myMomentum.theta(); }
inline double RawParticle::phi() const { return myMomentum.phi(); }
inline double RawParticle::M2() const { return myMomentum.M2(); }
inline const XYZTLorentzVector& RawParticle::vertex() const { return myVertex; }
inline const XYZTLorentzVector& RawParticle::momentum() const { return myMomentum; }
inline XYZTLorentzVector& RawParticle::momentum() { return myMomentum; }
inline XYZVector RawParticle::Vect() const { return myMomentum.Vect(); }
inline void RawParticle::setVertex(const XYZTLorentzVector& vtx) { myVertex = vtx; }
inline void RawParticle::setVertex(double a, double b, double c, double d) { myVertex.SetXYZT(a, b, c, d); }
inline void RawParticle::setMomentum(const XYZTLorentzVector& p4) { myMomentum = p4; }
inline void RawParticle::setMomentum(double a, double b, double c, double d) { myMomentum.SetXYZT(a, b, c, d); }
inline void RawParticle::SetPx(double px) { myMomentum.SetPx(px); }
inline void RawParticle::SetPy(double py) { myMomentum.SetPy(py); }
inline void RawParticle::SetPz(double pz) { myMomentum.SetPz(pz); }
inline void RawParticle::SetE(double e) { myMomentum.SetE(e); }
inline void RawParticle::rotate(const RawParticle::Rotation3D& r) {
XYZVector v(r(myMomentum.Vect()));
setMomentum(v.X(), v.Y(), v.Z(), E());
}
inline void RawParticle::rotate(const RawParticle::Rotation& r) {
XYZVector v(r(myMomentum.Vect()));
setMomentum(v.X(), v.Y(), v.Z(), E());
}
inline void RawParticle::rotate(const RawParticle::RotationX& r) {
XYZVector v(r(myMomentum.Vect()));
setMomentum(v.X(), v.Y(), v.Z(), E());
}
inline void RawParticle::rotate(const RawParticle::RotationY& r) {
XYZVector v(r(myMomentum.Vect()));
setMomentum(v.X(), v.Y(), v.Z(), E());
}
inline void RawParticle::rotate(const RawParticle::RotationZ& r) {
XYZVector v(r(myMomentum.Vect()));
setMomentum(v.X(), v.Y(), v.Z(), E());
}
inline void RawParticle::boost(const RawParticle::Boost& b) {
XYZTLorentzVector p(b(momentum()));
setMomentum(p.Px(), p.Py(), p.Pz(), p.E());
}
inline void RawParticle::translate(const XYZVector& tr) {
myVertex.SetXYZT(X() + tr.X(), Y() + tr.Y(), Z() + tr.Z(), T());
}
#endif
|