1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
|
//FAMOS headers
#include "CommonTools/BaseParticlePropagator/interface/BaseParticlePropagator.h"
#include <array>
BaseParticlePropagator::BaseParticlePropagator() : rCyl(0.), rCyl2(0.), zCyl(0.), bField(0), properDecayTime(1E99) { ; }
BaseParticlePropagator::BaseParticlePropagator(const RawParticle& myPart, double R, double Z, double B, double t)
: particle_(myPart), rCyl(R), rCyl2(R * R), zCyl(Z), bField(B), properDecayTime(t) {
init();
}
BaseParticlePropagator::BaseParticlePropagator(const RawParticle& myPart, double R, double Z, double B)
: particle_(myPart), rCyl(R), rCyl2(R * R), zCyl(Z), bField(B), properDecayTime(1E99) {
init();
}
void BaseParticlePropagator::init() {
// The status of the propagation
success = 0;
// Propagate only for the first half-loop
firstLoop = true;
//
fiducial = true;
// The particle has not yet decayed
decayed = false;
// The proper time is set to zero
properTime = 0.;
// The propagation direction is along the momentum
propDir = 1;
//
debug = false;
}
bool BaseParticlePropagator::propagate() {
//
// Check that the particle is not already on the cylinder surface
//
double rPos2 = particle_.R2();
if (onBarrel(rPos2)) {
success = 1;
return true;
}
//
if (onEndcap(rPos2)) {
success = 2;
return true;
}
//
// Treat neutral particles (or no magnetic field) first
//
if (fabs(particle_.charge()) < 1E-12 || bField < 1E-12) {
//
// First check that the particle crosses the cylinder
//
double pT2 = particle_.Perp2();
// double pT2 = pT*pT;
// double b2 = rCyl * pT;
double b2 = rCyl2 * pT2;
double ac = fabs(particle_.X() * particle_.Py() - particle_.Y() * particle_.Px());
double ac2 = ac * ac;
//
// The particle never crosses (or never crossed) the cylinder
//
// if ( ac > b2 ) return false;
if (ac2 > b2)
return false;
// double delta = std::sqrt(b2*b2 - ac*ac);
double delta = std::sqrt(b2 - ac2);
double tplus = -(particle_.X() * particle_.Px() + particle_.Y() * particle_.Py()) + delta;
double tminus = -(particle_.X() * particle_.Px() + particle_.Y() * particle_.Py()) - delta;
//
// Find the first (time-wise) intersection point with the cylinder
//
double solution = tminus < 0 ? tplus / pT2 : tminus / pT2;
if (solution < 0.)
return false;
//
// Check that the particle does (did) not exit from the endcaps first.
//
double zProp = particle_.Z() + particle_.Pz() * solution;
if (fabs(zProp) > zCyl) {
tplus = (zCyl - particle_.Z()) / particle_.Pz();
tminus = (-zCyl - particle_.Z()) / particle_.Pz();
solution = tminus < 0 ? tplus : tminus;
if (solution < 0.)
return false;
success = 2;
} else {
success = 1;
}
//
// Check the decay time
//
double delTime = propDir * particle_.mass() * solution;
double factor = 1.;
properTime += delTime;
if (properTime > properDecayTime) {
factor = 1. - (properTime - properDecayTime) / delTime;
properTime = properDecayTime;
decayed = true;
}
//
// Compute the coordinates of the RawParticle after propagation
//
double xProp = particle_.X() + particle_.Px() * solution * factor;
double yProp = particle_.Y() + particle_.Py() * solution * factor;
zProp = particle_.Z() + particle_.Pz() * solution * factor;
double tProp = particle_.T() + particle_.E() * solution * factor;
//
// Last check : Although propagated to the endcaps, R could still be
// larger than rCyl because the cylinder was too short...
//
if (success == 2 && xProp * xProp + yProp * yProp > rCyl2) {
success = -1;
return true;
}
//
// ... and update the particle with its propagated coordinates
//
particle_.setVertex(XYZTLorentzVector(xProp, yProp, zProp, tProp));
return true;
}
//
// Treat charged particles with magnetic field next.
//
else {
//
// First check that the particle can cross the cylinder
//
double pT = particle_.Pt();
double radius = helixRadius(pT);
double phi0 = helixStartPhi();
double xC = helixCentreX(radius, phi0);
double yC = helixCentreY(radius, phi0);
double dist = helixCentreDistToAxis(xC, yC);
//
// The helix either is outside or includes the cylinder -> no intersection
//
if (fabs(fabs(radius) - dist) > rCyl)
return false;
//
// The particle is already away from the endcaps, and will never come back
// Could be back-propagated, so warn the user that it is so.
//
if (particle_.Z() * particle_.Pz() > zCyl * fabs(particle_.Pz())) {
success = -2;
return true;
}
double pZ = particle_.Pz();
double phiProp, zProp;
//
// Does the helix cross the cylinder barrel ? If not, do the first half-loop
//
double rProp = std::min(fabs(radius) + dist - 0.000001, rCyl);
// Check for rounding errors in the ArcSin.
double sinPhiProp = (rProp * rProp - radius * radius - dist * dist) / (2. * dist * radius);
//
double deltaPhi = 1E99;
// Taylor development up to third order for large momenta
if (1. - fabs(sinPhiProp) < 1E-9) {
double cphi0 = std::cos(phi0);
double sphi0 = std::sin(phi0);
double r0 = (particle_.X() * cphi0 + particle_.Y() * sphi0) / radius;
double q0 = (particle_.X() * sphi0 - particle_.Y() * cphi0) / radius;
double rcyl2 = (rCyl2 - particle_.X() * particle_.X() - particle_.Y() * particle_.Y()) / (radius * radius);
double delta = r0 * r0 + rcyl2 * (1. - q0);
// This is a solution of a second order equation, assuming phi = phi0 + epsilon
// and epsilon is small.
deltaPhi = radius > 0 ? (-r0 + std::sqrt(delta)) / (1. - q0) : (-r0 - std::sqrt(delta)) / (1. - q0);
}
// Use complete calculation otherwise, or if the delta phi is large anyway.
if (fabs(deltaPhi) > 1E-3) {
// phiProp = fabs(sinPhiProp) < 0.99999999 ?
// std::asin(sinPhiProp) : M_PI/2. * sinPhiProp;
phiProp = std::asin(sinPhiProp);
//
// Compute phi after propagation (two solutions, but the asin definition
// (between -pi/2 and +pi/2) takes care of the wrong one.
//
phiProp = helixCentrePhi(xC, yC) + (inside(rPos2) || onSurface(rPos2) ? phiProp : M_PI - phiProp);
//
// Solve the obvious two-pi ambiguities: more than one turn!
//
if (fabs(phiProp - phi0) > 2. * M_PI)
phiProp += (phiProp > phi0 ? -2. * M_PI : +2. * M_PI);
//
// Check that the phi difference has the right sign, according to Q*B
// (Another two pi ambuiguity, slightly more subtle)
//
if ((phiProp - phi0) * radius < 0.0)
radius > 0.0 ? phiProp += 2 * M_PI : phiProp -= 2 * M_PI;
} else {
// Use Taylor
phiProp = phi0 + deltaPhi;
}
//
// Check that the particle does not exit from the endcaps first.
//
zProp = particle_.Z() + (phiProp - phi0) * pZ * radius / pT;
if (fabs(zProp) > zCyl) {
zProp = zCyl * fabs(pZ) / pZ;
phiProp = phi0 + (zProp - particle_.Z()) / radius * pT / pZ;
success = 2;
} else {
//
// If the particle does not cross the barrel, either process the
// first-half loop only or propagate all the way down to the endcaps
//
if (rProp < rCyl) {
if (firstLoop || fabs(pZ) / pT < 1E-10) {
success = 0;
} else {
zProp = zCyl * fabs(pZ) / pZ;
phiProp = phi0 + (zProp - particle_.Z()) / radius * pT / pZ;
success = 2;
}
//
// The particle crossed the barrel
//
} else {
success = 1;
}
}
//
// Compute the coordinates of the RawParticle after propagation
//
//
// Check the decay time
//
double delTime = propDir * (phiProp - phi0) * radius * particle_.mass() / pT;
double factor = 1.;
properTime += delTime;
if (properTime > properDecayTime) {
factor = 1. - (properTime - properDecayTime) / delTime;
properTime = properDecayTime;
decayed = true;
}
zProp = particle_.Z() + (zProp - particle_.Z()) * factor;
phiProp = phi0 + (phiProp - phi0) * factor;
double sProp = std::sin(phiProp);
double cProp = std::cos(phiProp);
double xProp = xC + radius * sProp;
double yProp = yC - radius * cProp;
double tProp = particle_.T() + (phiProp - phi0) * radius * particle_.E() / pT;
double pxProp = pT * cProp;
double pyProp = pT * sProp;
//
// Last check : Although propagated to the endcaps, R could still be
// larger than rCyl because the cylinder was too short...
//
if (success == 2 && xProp * xProp + yProp * yProp > rCyl2) {
success = -1;
return true;
}
//
// ... and update the particle vertex and momentum
//
particle_.setVertex(XYZTLorentzVector(xProp, yProp, zProp, tProp));
particle_.setMomentum(pxProp, pyProp, pZ, particle_.E());
// particle_.SetPx(pxProp);
// particle_.SetPy(pyProp);
return true;
}
}
bool BaseParticlePropagator::backPropagate() {
// Backpropagate
particle_.setMomentum(-particle_.Px(), -particle_.Py(), -particle_.Pz(), particle_.E());
particle_.setCharge(-particle_.charge());
propDir = -1;
bool done = propagate();
particle_.setMomentum(-particle_.Px(), -particle_.Py(), -particle_.Pz(), particle_.E());
particle_.setCharge(-particle_.charge());
propDir = +1;
return done;
}
BaseParticlePropagator BaseParticlePropagator::propagated() const {
// Copy the input particle in a new instance
BaseParticlePropagator myPropPart(*this);
// Allow for many loops
myPropPart.firstLoop = false;
// Propagate the particle !
myPropPart.propagate();
// Back propagate if the forward propagation was not a success
if (myPropPart.success < 0)
myPropPart.backPropagate();
// Return the new instance
return myPropPart;
}
void BaseParticlePropagator::setPropagationConditions(double R, double Z, bool f) {
rCyl = R;
rCyl2 = R * R;
zCyl = Z;
firstLoop = f;
}
bool BaseParticlePropagator::propagateToClosestApproach(double x0, double y0, bool first) {
// Pre-computed quantities
double pT = particle_.Pt();
double radius = helixRadius(pT);
double phi0 = helixStartPhi();
// The Helix centre coordinates are computed wrt to the z axis
// Actually the z axis might be centred on 0,0: it's the beam spot position (x0,y0)!
double xC = helixCentreX(radius, phi0);
double yC = helixCentreY(radius, phi0);
double distz = helixCentreDistToAxis(xC - x0, yC - y0);
double dist0 = helixCentreDistToAxis(xC, yC);
//
// Propagation to point of clostest approach to z axis
//
double rz, r0, z;
if (particle_.charge() != 0.0 && bField != 0.0) {
rz = fabs(fabs(radius) - distz) + std::sqrt(x0 * x0 + y0 * y0) + 0.0000001;
r0 = fabs(fabs(radius) - dist0) + 0.0000001;
} else {
rz = fabs(particle_.Px() * (particle_.Y() - y0) - particle_.Py() * (particle_.X() - x0)) / particle_.Pt();
r0 = fabs(particle_.Px() * particle_.Y() - particle_.Py() * particle_.X()) / particle_.Pt();
}
z = 999999.;
// Propagate to the first interesection point
// with cylinder of radius sqrt(x0**2+y0**2)
setPropagationConditions(rz, z, first);
bool done = backPropagate();
// Unsuccessful propagation - should not happen!
if (!done)
return done;
// The z axis is (0,0) - no need to go further
if (fabs(rz - r0) < 1E-10)
return done;
double dist1 = (particle_.X() - x0) * (particle_.X() - x0) + (particle_.Y() - y0) * (particle_.Y() - y0);
// We are already at closest approach - no need to go further
if (dist1 < 1E-10)
return done;
// Keep for later if it happens to be the right solution
XYZTLorentzVector vertex1 = particle_.vertex();
XYZTLorentzVector momentum1 = particle_.momentum();
// Propagate to the distance of closest approach to (0,0)
setPropagationConditions(r0, z, first);
done = backPropagate();
if (!done)
return done;
// Propagate to the first interesection point
// with cylinder of radius sqrt(x0**2+y0**2)
setPropagationConditions(rz, z, first);
done = backPropagate();
if (!done)
return done;
double dist2 = (particle_.X() - x0) * (particle_.X() - x0) + (particle_.Y() - y0) * (particle_.Y() - y0);
// Keep the good solution.
if (dist2 > dist1) {
particle_.setVertex(vertex1);
particle_.setMomentum(momentum1.X(), momentum1.Y(), momentum1.Z(), momentum1.E());
}
// Done
return done;
}
bool BaseParticlePropagator::propagateToEcal(bool first) {
//
// Propagation to Ecal (including preshower) after the
// last Tracker layer
// TODO: include proper geometry
// Geometry taken from CMS ECAL TDR
//
// First propagate to global barrel / endcap cylinder
// setPropagationConditions(1290. , 3045 , first);
// New position of the preshower as of CMSSW_1_7_X
setPropagationConditions(129.0, 303.353, first);
return propagate();
}
bool BaseParticlePropagator::propagateToPreshowerLayer1(bool first) {
//
// Propagation to Preshower Layer 1
// TODO: include proper geometry
// Geometry taken from CMS ECAL TDR
//
// First propagate to global barrel / endcap cylinder
// setPropagationConditions(1290., 3045 , first);
// New position of the preshower as of CMSSW_1_7_X
setPropagationConditions(129.0, 303.353, first);
bool done = propagate();
// Check that were are on the Layer 1
if (done && (particle_.R2() > 125.0 * 125.0 || particle_.R2() < 45.0 * 45.0))
success = 0;
return done;
}
bool BaseParticlePropagator::propagateToPreshowerLayer2(bool first) {
//
// Propagation to Preshower Layer 2
// TODO: include proper geometry
// Geometry taken from CMS ECAL TDR
//
// First propagate to global barrel / endcap cylinder
// setPropagationConditions(1290. , 3090 , first);
// New position of the preshower as of CMSSW_1_7_X
setPropagationConditions(129.0, 307.838, first);
bool done = propagate();
// Check that we are on Layer 2
if (done && (particle_.R2() > 125.0 * 125.0 || particle_.R2() < 45.0 * 45.0))
success = 0;
return done;
}
bool BaseParticlePropagator::propagateToEcalEntrance(bool first) {
//
// Propagation to ECAL entrance
// TODO: include proper geometry
// Geometry taken from CMS ECAL TDR
//
// First propagate to global barrel / endcap cylinder
setPropagationConditions(129.0, 320.9, first);
bool done = propagate();
// Go to endcap cylinder in the "barrel cut corner"
// eta = 1.479 -> cos^2(theta) = 0.81230
// if ( done && eta > 1.479 && success == 1 ) {
if (done && particle_.cos2ThetaV() > 0.81230 && success == 1) {
setPropagationConditions(152.6, 320.9, first);
done = propagate();
}
// We are not in the ECAL acceptance
// eta = 3.0 -> cos^2(theta) = 0.99013
if (particle_.cos2ThetaV() > 0.99014)
success = 0;
return done;
}
bool BaseParticlePropagator::propagateToHcalEntrance(bool first) {
//
// Propagation to HCAL entrance
// TODO: include proper geometry
// Geometry taken from CMSSW_3_1_X xml (Sunanda)
//
// First propagate to global barrel / endcap cylinder
setPropagationConditions(177.5, 335.0, first);
propDir = 0;
bool done = propagate();
propDir = 1;
// If went through the bottom of HB cylinder -> re-propagate to HE surface
if (done && success == 2) {
setPropagationConditions(300.0, 400.458, first);
propDir = 0;
done = propagate();
propDir = 1;
}
// out of the HB/HE acceptance
// eta = 3.0 -> cos^2(theta) = 0.99014
if (done && particle_.cos2ThetaV() > 0.99014)
success = 0;
return done;
}
bool BaseParticlePropagator::propagateToVFcalEntrance(bool first) {
//
// Propagation to VFCAL (HF) entrance
// Geometry taken from xml: Geometry/CMSCommonData/data/cms.xml
setPropagationConditions(400.0, 1114.95, first);
propDir = 0;
bool done = propagate();
propDir = 1;
if (!done)
success = 0;
// We are not in the VFCAL acceptance
// eta = 3.0 -> cos^2(theta) = 0.99014
// eta = 5.2 -> cos^2(theta) = 0.9998755
double c2teta = particle_.cos2ThetaV();
if (done && (c2teta < 0.99014 || c2teta > 0.9998755))
success = 0;
return done;
}
bool BaseParticlePropagator::propagateToHcalExit(bool first) {
//
// Propagation to HCAL exit
// TODO: include proper geometry
// Geometry taken from CMSSW_3_1_X xml (Sunanda)
//
// Approximate it to a single cylinder as it is not that crucial.
setPropagationConditions(263.9, 554.1, first);
// this->rawPart().particle_.setCharge(0.0); ?? Shower Propagation ??
propDir = 0;
bool done = propagate();
propDir = 1;
return done;
}
bool BaseParticlePropagator::propagateToHOLayer(bool first) {
//
// Propagation to Layer0 of HO (Ring-0)
// TODO: include proper geometry
// Geometry taken from CMSSW_3_1_X xml (Sunanda)
//
// Approximate it to a single cylinder as it is not that crucial.
setPropagationConditions(387.6, 1000.0, first); //Dia is the middle of HO \sqrt{384.8**2+46.2**2}
// setPropagationConditions(410.2, 1000.0, first); //sqrt{406.6**2+54.2**2} //for outer layer
// this->rawPart().setCharge(0.0); ?? Shower Propagation ??
propDir = 0;
bool done = propagate();
propDir = 1;
if (done && std::abs(particle_.Z()) > 700.25)
success = 0;
return done;
}
bool BaseParticlePropagator::propagateToNominalVertex(const XYZTLorentzVector& v) {
// Not implemented for neutrals (used for electrons only)
if (particle_.charge() == 0. || bField == 0.)
return false;
// Define the proper pT direction to meet the point (vx,vy) in (x,y)
double dx = particle_.X() - v.X();
double dy = particle_.Y() - v.Y();
double phi = std::atan2(dy, dx) + std::asin(std::sqrt(dx * dx + dy * dy) / (2. * helixRadius()));
// The absolute pT (kept to the original value)
double pT = particle_.pt();
// Set the new pT
particle_.SetPx(pT * std::cos(phi));
particle_.SetPy(pT * std::sin(phi));
return propagateToClosestApproach(v.X(), v.Y());
}
bool BaseParticlePropagator::propagateToBeamCylinder(const XYZTLorentzVector& v, double radius) {
// For neutral (or BField = 0, simply check that the track passes through the cylinder
if (particle_.charge() == 0. || bField == 0.)
return fabs(particle_.Px() * particle_.Y() - particle_.Py() * particle_.X()) / particle_.Pt() < radius;
// Now go to the charged particles
// A few needed intermediate variables (to make the code understandable)
// The inner cylinder
double r = radius;
double r2 = r * r;
double r4 = r2 * r2;
// The two hits
double dx = particle_.X() - v.X();
double dy = particle_.Y() - v.Y();
double dz = particle_.Z() - v.Z();
double Sxy = particle_.X() * v.X() + particle_.Y() * v.Y();
double Dxy = particle_.Y() * v.X() - particle_.X() * v.Y();
double Dxy2 = Dxy * Dxy;
double Sxy2 = Sxy * Sxy;
double SDxy = dx * dx + dy * dy;
double SSDxy = std::sqrt(SDxy);
double ATxy = std::atan2(dy, dx);
// The coefficients of the second order equation for the trajectory radius
double a = r2 - Dxy2 / SDxy;
double b = r * (r2 - Sxy);
double c = r4 - 2. * Sxy * r2 + Sxy2 + Dxy2;
// Here are the four possible solutions for
// 1) The trajectory radius
std::array<double, 4> helixRs = {{0.}};
helixRs[0] = (b - std::sqrt(b * b - a * c)) / (2. * a);
helixRs[1] = (b + std::sqrt(b * b - a * c)) / (2. * a);
helixRs[2] = -helixRs[0];
helixRs[3] = -helixRs[1];
// 2) The azimuthal direction at the second point
std::array<double, 4> helixPhis = {{0.}};
helixPhis[0] = std::asin(SSDxy / (2. * helixRs[0]));
helixPhis[1] = std::asin(SSDxy / (2. * helixRs[1]));
helixPhis[2] = -helixPhis[0];
helixPhis[3] = -helixPhis[1];
// Only two solutions are valid though
double solution1 = 0.;
double solution2 = 0.;
double phi1 = 0.;
double phi2 = 0.;
// Loop over the four possibilities
for (unsigned int i = 0; i < 4; ++i) {
helixPhis[i] = ATxy + helixPhis[i];
// The centre of the helix
double xC = helixCentreX(helixRs[i], helixPhis[i]);
double yC = helixCentreY(helixRs[i], helixPhis[i]);
// The distance of that centre to the origin
double dist = helixCentreDistToAxis(xC, yC);
/*
std::cout << "Solution "<< i << " = " << helixRs[i] << " accepted ? "
<< fabs(fabs(helixRs[i]) - dist ) << " - " << radius << " = "
<< fabs(fabs(helixRs[i]) - dist ) - fabs(radius) << " "
<< ( fabs( fabs(fabs(helixRs[i]) - dist) -fabs(radius) ) < 1e-6) << std::endl;
*/
// Check that the propagation will lead to a trajectroy tangent to the inner cylinder
if (fabs(fabs(fabs(helixRs[i]) - dist) - fabs(radius)) < 1e-6) {
// Fill first solution
if (solution1 == 0.) {
solution1 = helixRs[i];
phi1 = helixPhis[i];
// Fill second solution (ordered)
} else if (solution2 == 0.) {
if (helixRs[i] < solution1) {
solution2 = solution1;
solution1 = helixRs[i];
phi2 = phi1;
phi1 = helixPhis[i];
} else {
solution2 = helixRs[i];
phi2 = helixPhis[i];
}
// Must not happen!
} else {
std::cout << "warning !!! More than two solutions for this track !!! " << std::endl;
}
}
}
// Find the largest possible pT compatible with coming from within the inne cylinder
double pT = 0.;
double helixPhi = 0.;
double helixR = 0.;
// This should not happen
if (solution1 * solution2 == 0.) {
std::cout << "warning !!! Less than two solution for this track! " << solution1 << " " << solution2 << std::endl;
return false;
// If the two solutions have opposite sign, it means that pT = infinity is a possibility.
} else if (solution1 * solution2 < 0.) {
pT = 1000.;
double norm = pT / SSDxy;
particle_.setCharge(+1.);
particle_.setMomentum(dx * norm, dy * norm, dz * norm, 0.);
particle_.SetE(std::sqrt(particle_.momentum().Vect().Mag2()));
// Otherwise take the solution that gives the largest transverse momentum
} else {
if (solution1 < 0.) {
helixR = solution1;
helixPhi = phi1;
particle_.setCharge(+1.);
} else {
helixR = solution2;
helixPhi = phi2;
particle_.setCharge(-1.);
}
pT = fabs(helixR) * 1e-5 * c_light() * bField;
double norm = pT / SSDxy;
particle_.setMomentum(pT * std::cos(helixPhi), pT * std::sin(helixPhi), dz * norm, 0.);
particle_.SetE(std::sqrt(particle_.momentum().Vect().Mag2()));
}
// Propagate to closest approach to get the Z value (a bit of an overkill)
return propagateToClosestApproach();
}
double BaseParticlePropagator::xyImpactParameter(double x0, double y0) const {
double ip = 0.;
double pT = particle_.Pt();
if (particle_.charge() != 0.0 && bField != 0.0) {
double radius = helixRadius(pT);
double phi0 = helixStartPhi();
// The Helix centre coordinates are computed wrt to the z axis
double xC = helixCentreX(radius, phi0);
double yC = helixCentreY(radius, phi0);
double distz = helixCentreDistToAxis(xC - x0, yC - y0);
ip = distz - fabs(radius);
} else {
ip = fabs(particle_.Px() * (particle_.Y() - y0) - particle_.Py() * (particle_.X() - x0)) / pT;
}
return ip;
}
|