DivisiveClusterizer1D

Macros

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
#ifndef _DivisiveClusterizer1D_H_
#define _DivisiveClusterizer1D_H_

#include "CommonTools/Clustering1D/interface/Clusterizer1D.h"
#include "CommonTools/Clustering1D/interface/Cluster1DMerger.h"
#include "CommonTools/Clustering1D/interface/Cluster1DCleaner.h"
#include "CommonTools/Clustering1D/interface/TrivialWeightEstimator.h"
#include "CommonTools/Clustering1D/interface/Clusterizer1DCommons.h"

/**
 * Find the modes with a simple divisive method.
 */
template <class T>
class DivisiveClusterizer1D : public Clusterizer1D<T> {
public:
  /**
     *  \param zoffset maximum distance between track position and position of its cluster
     *         (depending on useError its either weighted or physical distance)
     *  \param ntkmin Minimum number of tracks required to form a cluster.
     *  \param useError physical distances or weighted distances.
     *  \param zsep Maximum distance between two adjacent tracks that belong
     *         to the same initial cluster.
     *  \param wei Compute the cluster "center" with an unweighted or a weighted
     *         average of the tracks. Weighted means weighted with the error
     *         of the data point.
     */
  DivisiveClusterizer1D(float zoffset = 5., int ntkmin = 5, bool useError = true, float zsep = 0.05, bool wei = true);

  ~DivisiveClusterizer1D();

  std::pair<std::vector<Cluster1D<T> >, std::vector<const T*> > operator()(const std::vector<Cluster1D<T> >&) const;
  virtual DivisiveClusterizer1D* clone() const;

private:
  //methods
  void findCandidates(const std::vector<Cluster1D<T> >&,
                      std::vector<Cluster1D<T> >&,
                      std::vector<Cluster1D<T> >&) const;
  std::vector<Cluster1D<T> > makeCluster1Ds(std::vector<Cluster1D<T> >&, std::vector<Cluster1D<T> >&) const;
  void insertTracks(std::vector<Cluster1D<T> >&, std::vector<Cluster1D<T> >&) const;
  std::vector<const T*> takeTracks(const std::vector<Cluster1D<T> >&) const;
  Cluster1D<T> mergeCluster1Ds(std::vector<Cluster1D<T> >&) const;
  //data members
  // std::vector<Cluster1D<T> > theCluster1Ds;
  // std::vector<Cluster1D<T> > theTotalDiscardedTracks;
  //  std::vector<Cluster1D<T> > theDiscardedTracks;
  Cluster1DMerger<T>* theMerger;
  Cluster1DCleaner<T>* theCleaner;
  float theZOffSet;
  float theZSeparation;
  unsigned theNTkMin;
  bool theWei;
  bool theUseError;
};

/*
 *        implementation 
 *
 */

template <class T>
DivisiveClusterizer1D<T>::DivisiveClusterizer1D(float zoffset, int ntkmin, bool useError, float zsep, bool wei)
    : theZOffSet(zoffset), theZSeparation(zsep), theNTkMin(ntkmin), theWei(wei), theUseError(useError) {
  //  theDiscardedTracks.clear();
  // theTotalDiscardedTracks.clear();
  //  theCluster1Ds.clear();
  TrivialWeightEstimator<T> weightEstimator;
  theMerger = new Cluster1DMerger<T>(weightEstimator);
  theCleaner = new Cluster1DCleaner<T>(theZOffSet, theUseError);
}

template <class T>
DivisiveClusterizer1D<T>::~DivisiveClusterizer1D() {
  delete theMerger;
  delete theCleaner;
}

template <class T>
std::pair<std::vector<Cluster1D<T> >, std::vector<const T*> > DivisiveClusterizer1D<T>::operator()(
    const std::vector<Cluster1D<T> >& input) const {
  std::vector<Cluster1D<T> > discardedCluster1Ds;
  std::vector<Cluster1D<T> > output;
  findCandidates(input, output, discardedCluster1Ds);
  return std::pair<std::vector<Cluster1D<T> >, std::vector<const T*> >(output, takeTracks(discardedCluster1Ds));
}

template <class T>
DivisiveClusterizer1D<T>* DivisiveClusterizer1D<T>::clone() const {
  return new DivisiveClusterizer1D<T>(*this);
}

template <class T>
void DivisiveClusterizer1D<T>::findCandidates(const std::vector<Cluster1D<T> >& inputo,
                                              std::vector<Cluster1D<T> >& finalCluster1Ds,
                                              std::vector<Cluster1D<T> >& totDiscardedTracks) const {
  using namespace Clusterizer1DCommons;

  std::vector<Cluster1D<T> > input = inputo;
  std::vector<Cluster1D<T> > discardedTracks;
  if (input.size() < theNTkMin) {
    insertTracks(input, totDiscardedTracks);
    return;
  }
  sort(input.begin(), input.end(), ComparePairs<T>());
  std::vector<Cluster1D<T> > partOfPTracks;
  partOfPTracks.push_back(input.front());
  for (typename std::vector<Cluster1D<T> >::const_iterator ic = (input.begin()) + 1; ic != input.end(); ic++) {
    if (fabs((*ic).position().value() - (*(ic - 1)).position().value()) < (double)theZSeparation) {
      partOfPTracks.push_back((*ic));
    } else {
      if (partOfPTracks.size() >= theNTkMin) {
        std::vector<Cluster1D<T> > clusters = makeCluster1Ds(partOfPTracks, discardedTracks);
        for (typename std::vector<Cluster1D<T> >::const_iterator iclus = clusters.begin(); iclus != clusters.end();
             iclus++) {
          finalCluster1Ds.push_back(*iclus);
        }
        insertTracks(discardedTracks, totDiscardedTracks);
      } else {
        insertTracks(partOfPTracks, totDiscardedTracks);
      }
      partOfPTracks.clear();
      partOfPTracks.push_back((*ic));
    }
  }
  if (partOfPTracks.size() >= theNTkMin) {
    std::vector<Cluster1D<T> > clusters = makeCluster1Ds(partOfPTracks, discardedTracks);
    for (typename std::vector<Cluster1D<T> >::const_iterator iclus = clusters.begin(); iclus != clusters.end();
         iclus++) {
      finalCluster1Ds.push_back(*iclus);
    }
    insertTracks(discardedTracks, totDiscardedTracks);
  } else {
    insertTracks(partOfPTracks, totDiscardedTracks);
  }

  sort(finalCluster1Ds.begin(), finalCluster1Ds.end(), ComparePairs<T>());
  // reverse(theCluster1Ds.begin(), theCluster1Ds.end());

  return;
}

template <class T>
std::vector<Cluster1D<T> > DivisiveClusterizer1D<T>::makeCluster1Ds(std::vector<Cluster1D<T> >& clusters,
                                                                    std::vector<Cluster1D<T> >& discardedTracks) const {
  std::vector<Cluster1D<T> > finalCluster1Ds;
  discardedTracks.clear();
  std::vector<Cluster1D<T> > pvClu0 = clusters;
  std::vector<Cluster1D<T> > pvCluNew = pvClu0;
  bool stop = false;
  while (!stop) {
    int nDiscardedAtIteration = 100;
    while (nDiscardedAtIteration != 0) {
      pvCluNew = theCleaner->clusters(pvClu0);
      std::vector<Cluster1D<T> > tracksAtIteration = theCleaner->discardedCluster1Ds();
      nDiscardedAtIteration = tracksAtIteration.size();
      if (nDiscardedAtIteration != 0) {
        insertTracks(tracksAtIteration, discardedTracks);
        pvClu0 = pvCluNew;
      }
    }  // while nDiscardedAtIteration
    unsigned ntkclus = pvCluNew.size();
    unsigned ndiscard = discardedTracks.size();

    if (ntkclus >= theNTkMin) {
      //save the cluster
      finalCluster1Ds.push_back(mergeCluster1Ds(pvCluNew));
      if (ndiscard >= theNTkMin) {  //make a new cluster and reset
        pvClu0 = discardedTracks;
        discardedTracks.clear();
      } else {  //out of loop
        stop = true;
      }
    } else {
      insertTracks(pvCluNew, discardedTracks);
      stop = true;
    }
  }  // while stop
  return finalCluster1Ds;
}

template <class T>
void DivisiveClusterizer1D<T>::insertTracks(std::vector<Cluster1D<T> >& clusou,
                                            std::vector<Cluster1D<T> >& cludest) const {
  if (clusou.empty())
    return;
  for (typename std::vector<Cluster1D<T> >::const_iterator iclu = clusou.begin(); iclu != clusou.end(); iclu++) {
    cludest.push_back(*iclu);
  }
  /*
    for ( typename std::vector< Cluster1D<T> >::const_iterator iclu = clu.begin(); 
    iclu != clu.end(); iclu++){
      if (total) {
        theTotalDiscardedTracks.push_back(*iclu);
      }else { 
        theDiscardedTracks.push_back(*iclu);
      }
    }
    */
  return;
}

template <class T>
std::vector<const T*> DivisiveClusterizer1D<T>::takeTracks(const std::vector<Cluster1D<T> >& clu) const {
  std::vector<const T*> tracks;
  for (typename std::vector<Cluster1D<T> >::const_iterator iclu = clu.begin(); iclu != clu.end(); iclu++) {
    std::vector<const T*> clutks = iclu->tracks();
    for (typename std::vector<const T*>::const_iterator i = clutks.begin(); i != clutks.end(); ++i) {
      tracks.push_back(*i);
    }
  }
  return tracks;
}

template <class T>
Cluster1D<T> DivisiveClusterizer1D<T>::mergeCluster1Ds(std::vector<Cluster1D<T> >& clusters) const {
  Cluster1D<T> result = clusters.front();
  for (typename std::vector<Cluster1D<T> >::iterator iclu = (clusters.begin()) + 1; iclu != clusters.end(); iclu++) {
    Cluster1D<T> old = result;
    result = (*theMerger)(old, *iclu);
  }
  return result;
}

#endif