MtvClusterizer1D

Macros

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
#ifndef _MtvClusterizer1D_H_
#define _MtvClusterizer1D_H_

#include "CommonTools/Clustering1D/interface/Clusterizer1D.h"
#include "CommonTools/Clustering1D/interface/Clusterizer1DCommons.h"
#include "CommonTools/Clustering1D/interface/TrivialWeightEstimator.h"
#include "CommonTools/Clustering1D/interface/Clustering1DException.h"

#include <vector>
#include <cmath>
#include <algorithm>

/** Hsm clusterizer in one dimension, originally designed for ApexPoint Finding
 */

template <class T>
class MtvClusterizer1D : public Clusterizer1D<T> {
public:
  MtvClusterizer1D(const WeightEstimator<T>& est = TrivialWeightEstimator<T>());
  MtvClusterizer1D(const MtvClusterizer1D&);
  ~MtvClusterizer1D();

  std::pair<std::vector<Cluster1D<T> >, std::vector<const T*> > operator()(const std::vector<Cluster1D<T> >&) const;

  virtual MtvClusterizer1D* clone() const;

private:
  WeightEstimator<T>* theEstimator;
  float theErrorStretchFactor;
};

/*
 *                              --- implementation ---
 *
 */

template <class T>
MtvClusterizer1D<T>::MtvClusterizer1D(const MtvClusterizer1D<T>& o) : theEstimator(o.theEstimator->clone()) {}

template <class T>
MtvClusterizer1D<T>::MtvClusterizer1D(const WeightEstimator<T>& est) : theEstimator(est.clone()) {}

template <class T>
MtvClusterizer1D<T>::~MtvClusterizer1D() {
  delete theEstimator;
}

template <class T>
MtvClusterizer1D<T>* MtvClusterizer1D<T>::clone() const {
  return new MtvClusterizer1D<T>(*this);
}

template <class T>
std::pair<std::vector<Cluster1D<T> >, std::vector<const T*> > MtvClusterizer1D<T>::operator()(
    const std::vector<Cluster1D<T> >& ov) const {
  typedef Cluster1D<T> Cluster1D;
  using namespace Clusterizer1DCommons;
  std::vector<const T*> unusedtracks;
  switch (ov.size()) {
    case 0:
      throw Clustering1DException("[MtvClusterizer1D] no values given");
    case 1:
      std::pair<std::vector<Cluster1D>, std::vector<const T*> > ret(ov, unusedtracks);
      return ret;
  };
  std::vector<Cluster1D> v = ov;
  sort(v.begin(), v.end(), ComparePairs<T>());
  std::vector<Cluster1D> sols;
  std::vector<const T*> trks;

  typename std::vector<Cluster1D>::iterator cur = v.begin();
  typename std::vector<Cluster1D>::iterator end = (v.end() - 1);
  double cur_min = cur->weight() + (cur + 1)->weight();

  for (typename std::vector<Cluster1D>::iterator i = v.begin(); i != end; ++i) {
    double cur_val = i->weight() + (i + 1)->weight();
    if (cur_val > cur_min) {
      cur_min = cur_val;
      cur = i;
    };
  };

  double weight = (cur->weight() + (cur + 1)->weight());
  double est = (cur->weight() * cur->position().value() + (cur + 1)->weight() * (cur + 1)->position().value()) / weight;
  double sigma = sqrt(square(cur->position().value() - est) + square((cur + 1)->position().value() - est));
  double err = 0.;
  int inliers = 0;

  for (typename std::vector<Cluster1D>::iterator i = v.begin(); i != v.end(); ++i) {
    if (fabs(i->position().value() - est) < 3 * sigma) {
      // all within 3 sigma are 'in'
      add(i->tracks(), trks);
      err += square(i->position().value() - est);
      inliers++;
    } else {
      add(i->tracks(), unusedtracks);
    };
  };
  err /= (inliers - 1);  // the algo definitely produces 2 or more inliers
  err = sqrt(err);

  sols.push_back(Cluster1D(Measurement1D(est, err), trks, weight));
  std::pair<std::vector<Cluster1D>, std::vector<const T*> > ret(sols, unusedtracks);
  return ret;
}

#endif