Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
#include "CommonTools/MVAUtils/interface/GBRForestTools.h"
#include "CommonTools/MVAUtils/interface/TMVAZipReader.h"
#include "FWCore/ParameterSet/interface/FileInPath.h"
#include "FWCore/Utilities/interface/Exception.h"

#include "TFile.h"

#include <cstdio>
#include <cstdlib>
#include <RVersion.h>
#include <cmath>
#include <tinyxml2.h>
#include <filesystem>

namespace {

  size_t readVariables(tinyxml2::XMLElement* root, const char* key, std::vector<std::string>& names) {
    size_t n = 0;
    names.clear();

    if (root != nullptr) {
      for (tinyxml2::XMLElement* e = root->FirstChildElement(key); e != nullptr; e = e->NextSiblingElement(key)) {
        names.push_back(e->Attribute("Expression"));
        ++n;
      }
    }

    return n;
  }

  bool isTerminal(tinyxml2::XMLElement* node) {
    bool is = true;
    for (tinyxml2::XMLElement* e = node->FirstChildElement("Node"); e != nullptr; e = e->NextSiblingElement("Node")) {
      is = false;
    }
    return is;
  }

  unsigned int countIntermediateNodes(tinyxml2::XMLElement* node) {
    unsigned int count = 0;
    for (tinyxml2::XMLElement* e = node->FirstChildElement("Node"); e != nullptr; e = e->NextSiblingElement("Node")) {
      count += countIntermediateNodes(e);
    }
    return count > 0 ? count + 1 : 0;
  }

  unsigned int countTerminalNodes(tinyxml2::XMLElement* node) {
    unsigned int count = 0;
    for (tinyxml2::XMLElement* e = node->FirstChildElement("Node"); e != nullptr; e = e->NextSiblingElement("Node")) {
      count += countTerminalNodes(e);
    }
    return count > 0 ? count : 1;
  }

  void addNode(GBRTree& tree,
               tinyxml2::XMLElement* node,
               double scale,
               bool isRegression,
               bool useYesNoLeaf,
               bool adjustboundary,
               bool isAdaClassifier) {
    bool nodeIsTerminal = isTerminal(node);
    if (nodeIsTerminal) {
      double response = 0.;
      if (isRegression) {
        node->QueryDoubleAttribute("res", &response);
      } else {
        if (useYesNoLeaf) {
          node->QueryDoubleAttribute("nType", &response);
        } else {
          if (isAdaClassifier) {
            node->QueryDoubleAttribute("purity", &response);
          } else {
            node->QueryDoubleAttribute("res", &response);
          }
        }
      }
      response *= scale;
      tree.Responses().push_back(response);
    } else {
      int thisidx = tree.CutIndices().size();

      int selector = 0;
      float cutval = 0.;
      bool ctype = false;

      node->QueryIntAttribute("IVar", &selector);
      node->QueryFloatAttribute("Cut", &cutval);
      node->QueryBoolAttribute("cType", &ctype);

      tree.CutIndices().push_back(static_cast<unsigned char>(selector));

      //newer tmva versions use >= instead of > in decision tree splits, so adjust cut value
      //to reproduce the correct behaviour
      if (adjustboundary) {
        cutval = std::nextafter(cutval, std::numeric_limits<float>::lowest());
      }
      tree.CutVals().push_back(cutval);
      tree.LeftIndices().push_back(0);
      tree.RightIndices().push_back(0);

      tinyxml2::XMLElement* left = nullptr;
      tinyxml2::XMLElement* right = nullptr;
      for (tinyxml2::XMLElement* e = node->FirstChildElement("Node"); e != nullptr; e = e->NextSiblingElement("Node")) {
        if (*(e->Attribute("pos")) == 'l')
          left = e;
        else if (*(e->Attribute("pos")) == 'r')
          right = e;
      }
      if (!ctype) {
        std::swap(left, right);
      }

      tree.LeftIndices()[thisidx] = isTerminal(left) ? -tree.Responses().size() : tree.CutIndices().size();
      addNode(tree, left, scale, isRegression, useYesNoLeaf, adjustboundary, isAdaClassifier);

      tree.RightIndices()[thisidx] = isTerminal(right) ? -tree.Responses().size() : tree.CutIndices().size();
      addNode(tree, right, scale, isRegression, useYesNoLeaf, adjustboundary, isAdaClassifier);
    }
  }

  std::unique_ptr<GBRForest> init(const std::string& weightsFileFullPath, std::vector<std::string>& varNames) {
    //
    // Load weights file, for ROOT file
    //
    if (reco::details::hasEnding(weightsFileFullPath, ".root")) {
      TFile gbrForestFile(weightsFileFullPath.c_str());
      std::unique_ptr<GBRForest> up(gbrForestFile.Get<GBRForest>("gbrForest"));
      std::unique_ptr<std::vector<std::string>> vars(gbrForestFile.Get<std::vector<std::string>>("variableNames"));
      gbrForestFile.Close("nodelete");
      if (vars) {
        varNames = std::move(*vars);
      }
      return up;
    }

    //
    // Load weights file, for gzipped or raw xml file
    //
    tinyxml2::XMLDocument xmlDoc;

    using namespace reco::details;

    if (hasEnding(weightsFileFullPath, ".xml")) {
      xmlDoc.LoadFile(weightsFileFullPath.c_str());
    } else if (hasEnding(weightsFileFullPath, ".gz") || hasEnding(weightsFileFullPath, ".gzip")) {
      char* buffer = readGzipFile(weightsFileFullPath);
      xmlDoc.Parse(buffer);
      free(buffer);
    }

    tinyxml2::XMLElement* root = xmlDoc.FirstChildElement("MethodSetup");
    readVariables(root->FirstChildElement("Variables"), "Variable", varNames);

    // Read in the TMVA general info
    std::map<std::string, std::string> info;
    tinyxml2::XMLElement* infoElem = xmlDoc.FirstChildElement("MethodSetup")->FirstChildElement("GeneralInfo");
    if (infoElem == nullptr) {
      throw cms::Exception("XMLError") << "No GeneralInfo found in " << weightsFileFullPath << " !!\n";
    }
    for (tinyxml2::XMLElement* e = infoElem->FirstChildElement("Info"); e != nullptr;
         e = e->NextSiblingElement("Info")) {
      const char* name;
      const char* value;
      if (tinyxml2::XML_SUCCESS != e->QueryStringAttribute("name", &name)) {
        throw cms::Exception("XMLERROR") << "no 'name' attribute found in 'Info' element in " << weightsFileFullPath;
      }
      if (tinyxml2::XML_SUCCESS != e->QueryStringAttribute("value", &value)) {
        throw cms::Exception("XMLERROR") << "no 'value' attribute found in 'Info' element in " << weightsFileFullPath;
      }
      info[name] = value;
    }

    // Read in the TMVA options
    std::map<std::string, std::string> options;
    tinyxml2::XMLElement* optionsElem = xmlDoc.FirstChildElement("MethodSetup")->FirstChildElement("Options");
    if (optionsElem == nullptr) {
      throw cms::Exception("XMLError") << "No Options found in " << weightsFileFullPath << " !!\n";
    }
    for (tinyxml2::XMLElement* e = optionsElem->FirstChildElement("Option"); e != nullptr;
         e = e->NextSiblingElement("Option")) {
      const char* name;
      if (tinyxml2::XML_SUCCESS != e->QueryStringAttribute("name", &name)) {
        throw cms::Exception("XMLERROR") << "no 'name' attribute found in 'Option' element in " << weightsFileFullPath;
      }
      options[name] = e->GetText();
    }

    // Get root version number if available
    int rootTrainingVersion(0);
    if (info.find("ROOT Release") != info.end()) {
      std::string s = info["ROOT Release"];
      rootTrainingVersion = std::stoi(s.substr(s.find('[') + 1, s.find(']') - s.find('[') - 1));
    }

    // Get the boosting weights
    std::vector<double> boostWeights;
    tinyxml2::XMLElement* weightsElem = xmlDoc.FirstChildElement("MethodSetup")->FirstChildElement("Weights");
    if (weightsElem == nullptr) {
      throw cms::Exception("XMLError") << "No Weights found in " << weightsFileFullPath << " !!\n";
    }
    bool hasTrees = false;
    for (tinyxml2::XMLElement* e = weightsElem->FirstChildElement("BinaryTree"); e != nullptr;
         e = e->NextSiblingElement("BinaryTree")) {
      hasTrees = true;
      double w;
      if (tinyxml2::XML_SUCCESS != e->QueryDoubleAttribute("boostWeight", &w)) {
        throw cms::Exception("XMLERROR") << "problem with 'boostWeight' attribute found in 'BinaryTree' element in "
                                         << weightsFileFullPath;
      }
      boostWeights.push_back(w);
    }
    if (!hasTrees) {
      throw cms::Exception("XMLError") << "No BinaryTrees found in " << weightsFileFullPath << " !!\n";
    }

    bool isRegression = info["AnalysisType"] == "Regression";

    //special handling for non-gradient-boosted (ie ADABoost) classifiers, where tree responses
    //need to be renormalized after the training for evaluation purposes
    bool isAdaClassifier = !isRegression && options["BoostType"] != "Grad";
    bool useYesNoLeaf = isAdaClassifier && options["UseYesNoLeaf"] == "True";

    //newer tmva versions use >= instead of > in decision tree splits, so adjust cut value
    //to reproduce the correct behaviour
    bool adjustBoundaries =
        (rootTrainingVersion >= ROOT_VERSION(5, 34, 20) && rootTrainingVersion < ROOT_VERSION(6, 0, 0)) ||
        rootTrainingVersion >= ROOT_VERSION(6, 2, 0);

    auto forest = std::make_unique<GBRForest>();
    forest->SetInitialResponse(isRegression ? boostWeights[0] : 0.);

    double norm = 0;
    if (isAdaClassifier) {
      for (double w : boostWeights) {
        norm += w;
      }
    }

    forest->Trees().reserve(boostWeights.size());
    size_t itree = 0;
    // Loop over tree estimators
    for (tinyxml2::XMLElement* e = weightsElem->FirstChildElement("BinaryTree"); e != nullptr;
         e = e->NextSiblingElement("BinaryTree")) {
      double scale = isAdaClassifier ? boostWeights[itree] / norm : 1.0;

      tinyxml2::XMLElement* root = e->FirstChildElement("Node");
      forest->Trees().push_back(GBRTree(countIntermediateNodes(root), countTerminalNodes(root)));
      auto& tree = forest->Trees().back();

      addNode(tree, root, scale, isRegression, useYesNoLeaf, adjustBoundaries, isAdaClassifier);

      //special case, root node is terminal, create fake intermediate node at root
      if (tree.CutIndices().empty()) {
        tree.CutIndices().push_back(0);
        tree.CutVals().push_back(0);
        tree.LeftIndices().push_back(0);
        tree.RightIndices().push_back(0);
      }

      ++itree;
    }

    return forest;
  }

}  // namespace

// Create a GBRForest from an XML weight file
std::unique_ptr<const GBRForest> createGBRForest(const std::string& weightsFile) {
  std::vector<std::string> varNames;
  return createGBRForest(weightsFile, varNames);
}

std::unique_ptr<const GBRForest> createGBRForest(const edm::FileInPath& weightsFile) {
  std::vector<std::string> varNames;
  return createGBRForest(weightsFile.fullPath(), varNames);
}

// Overloaded versions which are taking string vectors by reference to store the variable names in
std::unique_ptr<const GBRForest> createGBRForest(const std::string& weightsFile, std::vector<std::string>& varNames) {
  std::unique_ptr<GBRForest> gbrForest;

  if (weightsFile[0] == '/') {
    gbrForest = init(weightsFile, varNames);
  } else {
    edm::FileInPath weightsFileEdm(weightsFile);
    gbrForest = init(weightsFileEdm.fullPath(), varNames);
  }
  return gbrForest;
}

std::unique_ptr<const GBRForest> createGBRForest(const edm::FileInPath& weightsFile,
                                                 std::vector<std::string>& varNames) {
  return createGBRForest(weightsFile.fullPath(), varNames);
}