FKDTree

Macros

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
#ifndef COMMONTOOLS_RECOALGOS_FKDTREE_H
#define COMMONTOOLS_RECOALGOS_FKDTREE_H

#include <vector>
#include <array>
#include <algorithm>
#include <cmath>
#include <utility>
#include "FKDPoint.h"
#include "FQueue.h"

// Author: Felice Pantaleo
// email: felice.pantaleo@cern.ch
// date: 08/05/2017
// Description: This class provides a k-d tree implementation targeting modern architectures.
// Building each level of the FKDTree can be done in parallel by different threads.
// It produces a compact array of nodes in memory thanks to the different space partitioning method used.

// Fast version of the integer logarithm
namespace {
  const std::array<unsigned int, 32> MultiplyDeBruijnBitPosition{{0,  9,  1,  10, 13, 21, 2,  29, 11, 14, 16,
                                                                  18, 22, 25, 3,  30, 8,  12, 20, 28, 15, 17,
                                                                  24, 7,  19, 27, 23, 6,  26, 5,  4,  31}};
  unsigned int ilog2(unsigned int v) {
    v |= v >> 1;  // first round down to one less than a power of 2
    v |= v >> 2;
    v |= v >> 4;
    v |= v >> 8;
    v |= v >> 16;
    return MultiplyDeBruijnBitPosition[(unsigned int)(v * 0x07C4ACDDU) >> 27];
  }
}  // namespace

template <class TYPE, unsigned int numberOfDimensions>
class FKDTree {
public:
  FKDTree() {
    theNumberOfPoints = 0;
    theDepth = 0;
  }

  bool empty() { return theNumberOfPoints == 0; }

  // One can search for all the points which are contained in a k-dimensional box.
  // Searching is done by providing the two k-dimensional points in the minimum and maximum corners.
  // The vector that will contain the indices of the points that lay inside the box is also needed.
  // Indices are pushed into foundPoints, which is not checked for emptiness at the beginning,
  // nor memory is reserved for it.
  // Searching is done using a Breadth-first search, level after level.
  void search(const FKDPoint<TYPE, numberOfDimensions>& minPoint,
              const FKDPoint<TYPE, numberOfDimensions>& maxPoint,
              std::vector<unsigned int>& foundPoints) {
    //going down the FKDTree, one needs track which indices have to be visited in the following level.
    //a custom queue is created, since std::queue is based on lists which are sometimes not performing
    // well on computing accelerators
    // The initial size of the queue has to be a power of two for allowing fast modulo  % operation.
    FQueue<unsigned int> indicesToVisit(16);

    //The root element is pushed first
    indicesToVisit.push_back(0);
    unsigned int index;
    bool intersection;
    unsigned int dimension;
    unsigned int numberOfindicesToVisitThisDepth;
    unsigned int numberOfSonsToVisitNext;
    unsigned int firstSonToVisitNext;

    //The loop over levels of the FKDTree starts here
    for (unsigned int depth = 0; depth < theDepth + 1; ++depth) {
      // At each level, comparisons are performed for a different dimension in round robin.
      dimension = depth % numberOfDimensions;
      numberOfindicesToVisitThisDepth = indicesToVisit.size();
      // Loop over the nodes to be visit at this level
      for (unsigned int visitedindicesThisDepth = 0; visitedindicesThisDepth < numberOfindicesToVisitThisDepth;
           visitedindicesThisDepth++) {
        index = indicesToVisit[visitedindicesThisDepth];
        // check if the element's dimension lays between the two box borders
        intersection = intersects(index, minPoint, maxPoint, dimension);
        firstSonToVisitNext = leftSonIndex(index);

        if (intersection) {
          // Check if the element is contained in the box and push it to the result
          if (is_in_the_box(index, minPoint, maxPoint)) {
            foundPoints.emplace_back(theIds[index]);
          }
          //if the element is between the box borders, both the its sons have to be visited
          numberOfSonsToVisitNext =
              (firstSonToVisitNext < theNumberOfPoints) + ((firstSonToVisitNext + 1) < theNumberOfPoints);
        } else {
          // depending on the position of the element wrt the box, one son will be visited (if it exists)
          firstSonToVisitNext += (theDimensions[dimension][index] < minPoint[dimension]);

          numberOfSonsToVisitNext =
              std::min((firstSonToVisitNext < theNumberOfPoints) + ((firstSonToVisitNext + 1) < theNumberOfPoints), 1);
        }

        // the indices of the sons to be visited in the next iteration are pushed in the queue
        for (unsigned int whichSon = 0; whichSon < numberOfSonsToVisitNext; ++whichSon) {
          indicesToVisit.push_back(firstSonToVisitNext + whichSon);
        }
      }
      // a new element is popped from the queue
      indicesToVisit.pop_front(numberOfindicesToVisitThisDepth);
    }
  }

  // A vector of K-dimensional points needs to be passed in order to build the kdtree.
  // The order of the elements in the vector will be modified.
  void build(std::vector<FKDPoint<TYPE, numberOfDimensions> >& points) {
    // initialization of the data members
    theNumberOfPoints = points.size();
    theDepth = ilog2(theNumberOfPoints);
    theIntervalLength.resize(theNumberOfPoints, 0);
    theIntervalMin.resize(theNumberOfPoints, 0);
    for (unsigned int i = 0; i < numberOfDimensions; ++i)
      theDimensions[i].resize(theNumberOfPoints);
    theIds.resize(theNumberOfPoints);

    // building is done by reordering elements in a partition starting at theIntervalMin
    // for a number of elements theIntervalLength
    unsigned int dimension;
    theIntervalMin[0] = 0;
    theIntervalLength[0] = theNumberOfPoints;

    // building for each level starts here
    for (unsigned int depth = 0; depth < theDepth; ++depth) {
      // A heapified left-balanced tree can be represented in memory as an array.
      // Each level contains a power of two number of elements and starts from element 2^depth -1
      dimension = depth % numberOfDimensions;
      unsigned int firstIndexInDepth = (1 << depth) - 1;
      unsigned int maxDepth = (1 << depth);
      for (unsigned int indexInDepth = 0; indexInDepth < maxDepth; ++indexInDepth) {
        unsigned int indexInArray = firstIndexInDepth + indexInDepth;
        unsigned int leftSonIndexInArray = 2 * indexInArray + 1;
        unsigned int rightSonIndexInArray = leftSonIndexInArray + 1;

        // partitioning is done by choosing the pivotal element that keeps the tree heapified
        // and left-balanced
        unsigned int whichElementInInterval = partition_complete_kdtree(theIntervalLength[indexInArray]);
        // the elements have been partitioned in two unsorted subspaces (one containing the elements
        // smaller than the pivot, the other containing those greater than the pivot)
        std::nth_element(points.begin() + theIntervalMin[indexInArray],
                         points.begin() + theIntervalMin[indexInArray] + whichElementInInterval,
                         points.begin() + theIntervalMin[indexInArray] + theIntervalLength[indexInArray],
                         [dimension](const FKDPoint<TYPE, numberOfDimensions>& a,
                                     const FKDPoint<TYPE, numberOfDimensions>& b) -> bool {
                           if (a[dimension] == b[dimension])
                             return a.getId() < b.getId();
                           else
                             return a[dimension] < b[dimension];
                         });
        // the element is placed in its final position in the internal array representation
        // of the tree
        add_at_position(points[theIntervalMin[indexInArray] + whichElementInInterval], indexInArray);
        if (leftSonIndexInArray < theNumberOfPoints) {
          theIntervalMin[leftSonIndexInArray] = theIntervalMin[indexInArray];
          theIntervalLength[leftSonIndexInArray] = whichElementInInterval;
        }

        if (rightSonIndexInArray < theNumberOfPoints) {
          theIntervalMin[rightSonIndexInArray] = theIntervalMin[indexInArray] + whichElementInInterval + 1;
          theIntervalLength[rightSonIndexInArray] = (theIntervalLength[indexInArray] - 1 - whichElementInInterval);
        }
      }
    }
    // the last level of the tree may not be complete and needs special treatment
    dimension = theDepth % numberOfDimensions;
    unsigned int firstIndexInDepth = (1 << theDepth) - 1;
    for (unsigned int indexInArray = firstIndexInDepth; indexInArray < theNumberOfPoints; ++indexInArray) {
      add_at_position(points[theIntervalMin[indexInArray]], indexInArray);
    }
  }
  // returns the number of points in the FKDTree
  std::size_t size() const { return theNumberOfPoints; }

private:
  // returns the index of the element which makes the FKDtree a left-complete heap
  // e.g.: if we have 6 elements, the tree will be shaped like
  //                 O
  //                / '\'
  //               O    O
  //              /'\' /
  //             O   OO
  //
  // This will return for a length of 6 the 4th element, which will partition the tree so that
  // 3 elements are on its left and 2 elements are on its right
  unsigned int partition_complete_kdtree(unsigned int length) {
    if (length == 1)
      return 0;
    unsigned int index = 1 << (ilog2(length));

    if ((index / 2) - 1 <= length - index)
      return index - 1;
    else
      return length - index / 2;
  }

  // returns the index of an element left son in the array representation
  unsigned int leftSonIndex(unsigned int index) const { return 2 * index + 1; }
  // returns the index of an element right son in the array representation
  unsigned int rightSonIndex(unsigned int index) const { return 2 * index + 2; }

  //check if one element's dimension is between minPoint's and maxPoint's dimension
  bool intersects(unsigned int index,
                  const FKDPoint<TYPE, numberOfDimensions>& minPoint,
                  const FKDPoint<TYPE, numberOfDimensions>& maxPoint,
                  int dimension) const {
    return (theDimensions[dimension][index] <= maxPoint[dimension] &&
            theDimensions[dimension][index] >= minPoint[dimension]);
  }

  // check if an element is completely in the box
  bool is_in_the_box(unsigned int index,
                     const FKDPoint<TYPE, numberOfDimensions>& minPoint,
                     const FKDPoint<TYPE, numberOfDimensions>& maxPoint) const {
    for (unsigned int i = 0; i < numberOfDimensions; ++i) {
      if ((theDimensions[i][index] <= maxPoint[i] && theDimensions[i][index] >= minPoint[i]) == false)
        return false;
    }
    return true;
  }

  // places an element at the specified position in the internal data structure
  void add_at_position(const FKDPoint<TYPE, numberOfDimensions>& point, const unsigned int position) {
    for (unsigned int i = 0; i < numberOfDimensions; ++i)
      theDimensions[i][position] = point[i];
    theIds[position] = point.getId();
  }

  void add_at_position(FKDPoint<TYPE, numberOfDimensions>&& point, const unsigned int position) {
    for (unsigned int i = 0; i < numberOfDimensions; ++i)
      theDimensions[i][position] = point[i];
    theIds[position] = point.getId();
  }

  unsigned int theNumberOfPoints;
  unsigned int theDepth;

  // a SoA containing all the dimensions for each point
  std::array<std::vector<TYPE>, numberOfDimensions> theDimensions;
  std::vector<unsigned int> theIntervalLength;
  std::vector<unsigned int> theIntervalMin;
  std::vector<unsigned int> theIds;
};

#endif