1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
|
#ifndef COMMONTOOLS_RECOALGOS_FKDTREE_H
#define COMMONTOOLS_RECOALGOS_FKDTREE_H
#include <vector>
#include <array>
#include <algorithm>
#include <cmath>
#include <utility>
#include "FKDPoint.h"
#include "FQueue.h"
// Author: Felice Pantaleo
// email: felice.pantaleo@cern.ch
// date: 08/05/2017
// Description: This class provides a k-d tree implementation targeting modern architectures.
// Building each level of the FKDTree can be done in parallel by different threads.
// It produces a compact array of nodes in memory thanks to the different space partitioning method used.
// Fast version of the integer logarithm
namespace {
const std::array<unsigned int, 32> MultiplyDeBruijnBitPosition{{0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16,
18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17,
24, 7, 19, 27, 23, 6, 26, 5, 4, 31}};
unsigned int ilog2(unsigned int v) {
v |= v >> 1; // first round down to one less than a power of 2
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
return MultiplyDeBruijnBitPosition[(unsigned int)(v * 0x07C4ACDDU) >> 27];
}
} // namespace
template <class TYPE, unsigned int numberOfDimensions>
class FKDTree {
public:
FKDTree() {
theNumberOfPoints = 0;
theDepth = 0;
}
bool empty() { return theNumberOfPoints == 0; }
// One can search for all the points which are contained in a k-dimensional box.
// Searching is done by providing the two k-dimensional points in the minimum and maximum corners.
// The vector that will contain the indices of the points that lay inside the box is also needed.
// Indices are pushed into foundPoints, which is not checked for emptiness at the beginning,
// nor memory is reserved for it.
// Searching is done using a Breadth-first search, level after level.
void search(const FKDPoint<TYPE, numberOfDimensions>& minPoint,
const FKDPoint<TYPE, numberOfDimensions>& maxPoint,
std::vector<unsigned int>& foundPoints) {
//going down the FKDTree, one needs track which indices have to be visited in the following level.
//a custom queue is created, since std::queue is based on lists which are sometimes not performing
// well on computing accelerators
// The initial size of the queue has to be a power of two for allowing fast modulo % operation.
FQueue<unsigned int> indicesToVisit(16);
//The root element is pushed first
indicesToVisit.push_back(0);
unsigned int index;
bool intersection;
unsigned int dimension;
unsigned int numberOfindicesToVisitThisDepth;
unsigned int numberOfSonsToVisitNext;
unsigned int firstSonToVisitNext;
//The loop over levels of the FKDTree starts here
for (unsigned int depth = 0; depth < theDepth + 1; ++depth) {
// At each level, comparisons are performed for a different dimension in round robin.
dimension = depth % numberOfDimensions;
numberOfindicesToVisitThisDepth = indicesToVisit.size();
// Loop over the nodes to be visit at this level
for (unsigned int visitedindicesThisDepth = 0; visitedindicesThisDepth < numberOfindicesToVisitThisDepth;
visitedindicesThisDepth++) {
index = indicesToVisit[visitedindicesThisDepth];
// check if the element's dimension lays between the two box borders
intersection = intersects(index, minPoint, maxPoint, dimension);
firstSonToVisitNext = leftSonIndex(index);
if (intersection) {
// Check if the element is contained in the box and push it to the result
if (is_in_the_box(index, minPoint, maxPoint)) {
foundPoints.emplace_back(theIds[index]);
}
//if the element is between the box borders, both the its sons have to be visited
numberOfSonsToVisitNext =
(firstSonToVisitNext < theNumberOfPoints) + ((firstSonToVisitNext + 1) < theNumberOfPoints);
} else {
// depending on the position of the element wrt the box, one son will be visited (if it exists)
firstSonToVisitNext += (theDimensions[dimension][index] < minPoint[dimension]);
numberOfSonsToVisitNext =
std::min((firstSonToVisitNext < theNumberOfPoints) + ((firstSonToVisitNext + 1) < theNumberOfPoints), 1);
}
// the indices of the sons to be visited in the next iteration are pushed in the queue
for (unsigned int whichSon = 0; whichSon < numberOfSonsToVisitNext; ++whichSon) {
indicesToVisit.push_back(firstSonToVisitNext + whichSon);
}
}
// a new element is popped from the queue
indicesToVisit.pop_front(numberOfindicesToVisitThisDepth);
}
}
// A vector of K-dimensional points needs to be passed in order to build the kdtree.
// The order of the elements in the vector will be modified.
void build(std::vector<FKDPoint<TYPE, numberOfDimensions> >& points) {
// initialization of the data members
theNumberOfPoints = points.size();
theDepth = ilog2(theNumberOfPoints);
theIntervalLength.resize(theNumberOfPoints, 0);
theIntervalMin.resize(theNumberOfPoints, 0);
for (unsigned int i = 0; i < numberOfDimensions; ++i)
theDimensions[i].resize(theNumberOfPoints);
theIds.resize(theNumberOfPoints);
// building is done by reordering elements in a partition starting at theIntervalMin
// for a number of elements theIntervalLength
unsigned int dimension;
theIntervalMin[0] = 0;
theIntervalLength[0] = theNumberOfPoints;
// building for each level starts here
for (unsigned int depth = 0; depth < theDepth; ++depth) {
// A heapified left-balanced tree can be represented in memory as an array.
// Each level contains a power of two number of elements and starts from element 2^depth -1
dimension = depth % numberOfDimensions;
unsigned int firstIndexInDepth = (1 << depth) - 1;
unsigned int maxDepth = (1 << depth);
for (unsigned int indexInDepth = 0; indexInDepth < maxDepth; ++indexInDepth) {
unsigned int indexInArray = firstIndexInDepth + indexInDepth;
unsigned int leftSonIndexInArray = 2 * indexInArray + 1;
unsigned int rightSonIndexInArray = leftSonIndexInArray + 1;
// partitioning is done by choosing the pivotal element that keeps the tree heapified
// and left-balanced
unsigned int whichElementInInterval = partition_complete_kdtree(theIntervalLength[indexInArray]);
// the elements have been partitioned in two unsorted subspaces (one containing the elements
// smaller than the pivot, the other containing those greater than the pivot)
std::nth_element(points.begin() + theIntervalMin[indexInArray],
points.begin() + theIntervalMin[indexInArray] + whichElementInInterval,
points.begin() + theIntervalMin[indexInArray] + theIntervalLength[indexInArray],
[dimension](const FKDPoint<TYPE, numberOfDimensions>& a,
const FKDPoint<TYPE, numberOfDimensions>& b) -> bool {
if (a[dimension] == b[dimension])
return a.getId() < b.getId();
else
return a[dimension] < b[dimension];
});
// the element is placed in its final position in the internal array representation
// of the tree
add_at_position(points[theIntervalMin[indexInArray] + whichElementInInterval], indexInArray);
if (leftSonIndexInArray < theNumberOfPoints) {
theIntervalMin[leftSonIndexInArray] = theIntervalMin[indexInArray];
theIntervalLength[leftSonIndexInArray] = whichElementInInterval;
}
if (rightSonIndexInArray < theNumberOfPoints) {
theIntervalMin[rightSonIndexInArray] = theIntervalMin[indexInArray] + whichElementInInterval + 1;
theIntervalLength[rightSonIndexInArray] = (theIntervalLength[indexInArray] - 1 - whichElementInInterval);
}
}
}
// the last level of the tree may not be complete and needs special treatment
dimension = theDepth % numberOfDimensions;
unsigned int firstIndexInDepth = (1 << theDepth) - 1;
for (unsigned int indexInArray = firstIndexInDepth; indexInArray < theNumberOfPoints; ++indexInArray) {
add_at_position(points[theIntervalMin[indexInArray]], indexInArray);
}
}
// returns the number of points in the FKDTree
std::size_t size() const { return theNumberOfPoints; }
private:
// returns the index of the element which makes the FKDtree a left-complete heap
// e.g.: if we have 6 elements, the tree will be shaped like
// O
// / '\'
// O O
// /'\' /
// O OO
//
// This will return for a length of 6 the 4th element, which will partition the tree so that
// 3 elements are on its left and 2 elements are on its right
unsigned int partition_complete_kdtree(unsigned int length) {
if (length == 1)
return 0;
unsigned int index = 1 << (ilog2(length));
if ((index / 2) - 1 <= length - index)
return index - 1;
else
return length - index / 2;
}
// returns the index of an element left son in the array representation
unsigned int leftSonIndex(unsigned int index) const { return 2 * index + 1; }
// returns the index of an element right son in the array representation
unsigned int rightSonIndex(unsigned int index) const { return 2 * index + 2; }
//check if one element's dimension is between minPoint's and maxPoint's dimension
bool intersects(unsigned int index,
const FKDPoint<TYPE, numberOfDimensions>& minPoint,
const FKDPoint<TYPE, numberOfDimensions>& maxPoint,
int dimension) const {
return (theDimensions[dimension][index] <= maxPoint[dimension] &&
theDimensions[dimension][index] >= minPoint[dimension]);
}
// check if an element is completely in the box
bool is_in_the_box(unsigned int index,
const FKDPoint<TYPE, numberOfDimensions>& minPoint,
const FKDPoint<TYPE, numberOfDimensions>& maxPoint) const {
for (unsigned int i = 0; i < numberOfDimensions; ++i) {
if ((theDimensions[i][index] <= maxPoint[i] && theDimensions[i][index] >= minPoint[i]) == false)
return false;
}
return true;
}
// places an element at the specified position in the internal data structure
void add_at_position(const FKDPoint<TYPE, numberOfDimensions>& point, const unsigned int position) {
for (unsigned int i = 0; i < numberOfDimensions; ++i)
theDimensions[i][position] = point[i];
theIds[position] = point.getId();
}
void add_at_position(FKDPoint<TYPE, numberOfDimensions>&& point, const unsigned int position) {
for (unsigned int i = 0; i < numberOfDimensions; ++i)
theDimensions[i][position] = point[i];
theIds[position] = point.getId();
}
unsigned int theNumberOfPoints;
unsigned int theDepth;
// a SoA containing all the dimensions for each point
std::array<std::vector<TYPE>, numberOfDimensions> theDimensions;
std::vector<unsigned int> theIntervalLength;
std::vector<unsigned int> theIntervalMin;
std::vector<unsigned int> theIds;
};
#endif
|