1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
|
#ifndef KDTreeLinkerAlgoTemplated_h
#define KDTreeLinkerAlgoTemplated_h
#include "DataFormats/Math/interface/logic.h"
#include <cassert>
#include <vector>
#include <array>
#include <algorithm>
// Box structure used to define 2D field.
// It's used in KDTree building step to divide the detector
// space (ECAL, HCAL...) and in searching step to create a bounding
// box around the demanded point (Track collision point, PS projection...).
template <unsigned DIM = 2>
struct KDTreeBox {
std::array<float, DIM> dimmin, dimmax;
template <typename... Ts>
KDTreeBox(Ts... dimargs) {
static_assert(sizeof...(dimargs) == 2 * DIM, "Constructor requires 2*DIM args");
std::vector<float> dims = {dimargs...};
for (unsigned i = 0; i < DIM; ++i) {
dimmin[i] = dims[2 * i];
dimmax[i] = dims[2 * i + 1];
}
}
KDTreeBox() {}
};
// Data stored in each KDTree node.
// The dim1/dim2 fields are usually the duplication of some PFRecHit values
// (eta/phi or x/y). But in some situations, phi field is shifted by +-2.Pi
template <typename DATA, unsigned DIM = 2>
struct KDTreeNodeInfo {
DATA data;
std::array<float, DIM> dims;
public:
KDTreeNodeInfo() {}
template <typename... Ts>
KDTreeNodeInfo(const DATA &d, Ts... dimargs) : data(d), dims{{dimargs...}} {}
template <typename... Ts>
bool operator>(const KDTreeNodeInfo &rhs) const {
return (data > rhs.data);
}
};
template <typename DATA, unsigned DIM = 2>
struct KDTreeNodes {
std::array<std::vector<float>, DIM> dims;
std::vector<int> right;
std::vector<DATA> data;
int poolSize;
int poolPos;
constexpr KDTreeNodes() : poolSize(-1), poolPos(-1) {}
bool empty() const { return poolPos == -1; }
int size() const { return poolPos + 1; }
void clear() {
for (auto &dim : dims) {
dim.clear();
dim.shrink_to_fit();
}
right.clear();
right.shrink_to_fit();
data.clear();
data.shrink_to_fit();
poolSize = -1;
poolPos = -1;
}
int getNextNode() {
++poolPos;
return poolPos;
}
void build(int sizeData) {
poolSize = sizeData * 2 - 1;
for (auto &dim : dims) {
dim.resize(poolSize);
}
right.resize(poolSize);
data.resize(poolSize);
};
constexpr bool isLeaf(int right) const {
// Valid values of right are always >= 2
// index 0 is the root, and 1 is the first left node
// Exploit index values 0 and 1 to mark which of dim1/dim2 is the
// current one in recSearch() at the depth of the leaf.
return right < 2;
}
bool isLeafIndex(int index) const { return isLeaf(right[index]); }
};
// Class that implements the KDTree partition of 2D space and
// a closest point search algorithme.
template <typename DATA, unsigned int DIM = 2>
class KDTreeLinkerAlgo {
public:
// Dtor calls clear()
~KDTreeLinkerAlgo() { clear(); }
// Here we build the KD tree from the "eltList" in the space define by "region".
void build(std::vector<KDTreeNodeInfo<DATA, DIM> > &eltList, const KDTreeBox<DIM> ®ion);
// Here we search in the KDTree for all points that would be
// contained in the given searchbox. The founded points are stored in resRecHitList.
void search(const KDTreeBox<DIM> &searchBox, std::vector<DATA> &resRecHitList);
// This reurns true if the tree is empty
bool empty() { return nodePool_.empty(); }
// This returns the number of nodes + leaves in the tree
// (nElements should be (size() +1)/2)
int size() { return nodePool_.size(); }
// This method clears all allocated structures.
void clear() { clearTree(); }
private:
// The node pool allow us to do just 1 call to new for each tree building.
KDTreeNodes<DATA, DIM> nodePool_;
std::vector<DATA> *closestNeighbour;
std::vector<KDTreeNodeInfo<DATA, DIM> > *initialEltList;
//Fast median search with Wirth algorithm in eltList between low and high indexes.
int medianSearch(int low, int high, int treeDepth) const;
// Recursif kdtree builder. Is called by build()
int recBuild(int low, int hight, int depth);
// Recursif kdtree search. Is called by search()
void recSearch(int current, const KDTreeBox<DIM> &trackBox, int depth = 0) const;
// This method frees the KDTree.
void clearTree() { nodePool_.clear(); }
};
//Implementation
template <typename DATA, unsigned int DIM>
void KDTreeLinkerAlgo<DATA, DIM>::build(std::vector<KDTreeNodeInfo<DATA, DIM> > &eltList,
const KDTreeBox<DIM> ®ion) {
if (!eltList.empty()) {
initialEltList = &eltList;
size_t size = initialEltList->size();
nodePool_.build(size);
// Here we build the KDTree
int root = recBuild(0, size, 0);
assert(root == 0);
initialEltList = nullptr;
}
}
//Fast median search with Wirth algorithm in eltList between low and high indexes.
template <typename DATA, unsigned int DIM>
int KDTreeLinkerAlgo<DATA, DIM>::medianSearch(int low, int high, int treeDepth) const {
int nbrElts = high - low;
int median = (nbrElts & 1) ? nbrElts / 2 : nbrElts / 2 - 1;
median += low;
int l = low;
int m = high - 1;
while (l < m) {
KDTreeNodeInfo<DATA, DIM> elt = (*initialEltList)[median];
int i = l;
int j = m;
do {
// The even depth is associated to dim1 dimension
// The odd one to dim2 dimension
const unsigned thedim = treeDepth % DIM;
while ((*initialEltList)[i].dims[thedim] < elt.dims[thedim])
++i;
while ((*initialEltList)[j].dims[thedim] > elt.dims[thedim])
--j;
if (i <= j) {
std::swap((*initialEltList)[i], (*initialEltList)[j]);
i++;
j--;
}
} while (i <= j);
if (j < median)
l = i;
if (i > median)
m = j;
}
return median;
}
template <typename DATA, unsigned int DIM>
void KDTreeLinkerAlgo<DATA, DIM>::search(const KDTreeBox<DIM> &trackBox, std::vector<DATA> &recHits) {
if (!empty()) {
closestNeighbour = &recHits;
recSearch(0, trackBox, 0);
closestNeighbour = nullptr;
}
}
template <typename DATA, unsigned int DIM>
void KDTreeLinkerAlgo<DATA, DIM>::recSearch(int current, const KDTreeBox<DIM> &trackBox, int depth) const {
// Iterate until leaf is found, or there are no children in the
// search window. If search has to proceed on both children, proceed
// the search to left child via recursion. Swap search window
// dimension on alternate levels.
while (true) {
const int dimIndex = depth % DIM;
int right = nodePool_.right[current];
if (nodePool_.isLeaf(right)) {
// If point inside the rectangle/area
// Use intentionally bit-wise & instead of logical && for better
// performance. It is faster to always do all comparisons than to
// allow use of branches to not do some if any of the first ones
// is false.
bool isInside = true;
for (unsigned i = 0; i < DIM; ++i) {
float dimCurr = nodePool_.dims[i][current];
isInside &= reco::branchless_and(dimCurr >= trackBox.dimmin[i], dimCurr <= trackBox.dimmax[i]);
}
if (isInside) {
closestNeighbour->push_back(nodePool_.data[current]);
}
break;
} else {
float median = nodePool_.dims[dimIndex][current];
bool goLeft = (trackBox.dimmin[dimIndex] <= median);
bool goRight = (trackBox.dimmax[dimIndex] >= median);
++depth;
if (goLeft & goRight) {
int left = current + 1;
recSearch(left, trackBox, depth);
// continue with right
current = right;
} else if (goLeft) {
++current;
} else if (goRight) {
current = right;
} else {
break;
}
}
}
}
template <typename DATA, unsigned int DIM>
int KDTreeLinkerAlgo<DATA, DIM>::recBuild(int low, int high, int depth) {
int portionSize = high - low;
if (portionSize == 1) { // Leaf case
int leaf = nodePool_.getNextNode();
const KDTreeNodeInfo<DATA, DIM> &info = (*initialEltList)[low];
nodePool_.right[leaf] = 0;
for (unsigned i = 0; i < DIM; ++i) {
nodePool_.dims[i][leaf] = info.dims[i];
}
nodePool_.data[leaf] = info.data;
return leaf;
} else { // Node case
// The even depth is associated to dim1 dimension
// The odd one to dim2 dimension
int medianId = medianSearch(low, high, depth);
int dimIndex = depth % DIM;
float medianVal = (*initialEltList)[medianId].dims[dimIndex];
// We create the node
int nodeInd = nodePool_.getNextNode();
++depth;
++medianId;
// We recursively build the son nodes
int left = recBuild(low, medianId, depth);
assert(nodeInd + 1 == left);
int right = recBuild(medianId, high, depth);
nodePool_.right[nodeInd] = right;
nodePool_.dims[dimIndex][nodeInd] = medianVal;
return nodeInd;
}
}
#endif
|