1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
|
#ifndef _CombinationGenerator_H_
#define _CombinationGenerator_H_
#include "CommonTools/Statistics/interface/PartitionGenerator.h"
#include <vector>
#include <stack>
#include <algorithm>
#include <functional>
/** Class to compute all distinct Combinations
* of a collection 'data' of objects of type 'T'.
* A Combination is a set of collections, each collection
* containing one or more objects, with any object in 'data'
* assigned to exactly one collection.
*/
template <class T>
class CombinationGenerator {
public:
typedef std::vector<T> Collection;
typedef std::vector<Collection> Combination;
typedef std::vector<Combination> VectorOfCombinations;
/** Create combinations obtained by dividing 'data'
* according to all partitions with 'numberOfCollections' collections.
*/
std::vector<Combination> combinations(const Collection& data, int numberOfCollections) const {
std::vector<Combination> combinations;
Collection sorted = data;
// Sort if needed
if (prev_permutation(sorted.begin(), sorted.end())) {
sort(sorted.begin(), sorted.end());
}
// Create sorted partitions
PartitionGenerator aPartitionGenerator;
std::vector<std::vector<PartitionGenerator::Partition> > partitions =
aPartitionGenerator.sortedPartitions(data.size());
// Use partitions of size 'numberOfCollections' only
for (std::vector<PartitionGenerator::Partition>::const_iterator idiv = partitions[numberOfCollections - 1].begin();
idiv != partitions[numberOfCollections - 1].end();
idiv++) {
const PartitionGenerator::Partition& partition = *idiv;
std::vector<Combination> subCombinations = this->combinations(data, partition);
for (typename std::vector<Combination>::const_iterator iComb = subCombinations.begin();
iComb != subCombinations.end();
iComb++) {
combinations.push_back(*iComb);
}
}
return combinations;
}
/** Create all combinations obtained by dividing 'data'
* according to Partition 'partition'.
*/
std::vector<Combination> combinations(const Collection& data, const PartitionGenerator::Partition& partition) const {
std::vector<Combination> combinations;
// Check that sum of collection sizes in 'partition'
// amounts to number of elements in 'data'
int nElts = 0;
for (PartitionGenerator::Partition::const_iterator iSize = partition.begin(); iSize != partition.end(); iSize++) {
nElts += *iSize;
}
if (nElts != data.size())
return combinations;
Collection sortedData = data;
// Sort if needed
if (prev_permutation(sortedData.begin(), sortedData.end())) {
sort(sortedData.begin(), sortedData.end());
}
// Create initial combination and put it on the stack
Combination comb;
comb.push_back(sortedData);
if (partition.size() == 1) {
// Return only one combination with only one collection
combinations.push_back(comb);
return combinations;
}
std::stack<Combination> cStack;
cStack.push(comb);
// Sort partitions by size
// Let 'sortedPartition' = ( n0, n1,... nk, nk+1,... nm )
// Ordering is >= to speed up partitioning: n0 >= n1 >=... >= nm
PartitionGenerator::Partition sortedPartition = partition;
sort(sortedPartition.begin(), sortedPartition.end(), std::greater_equal<int>());
while (!cStack.empty()) {
// 'combination' popped out of the stack
Combination combination = cStack.top();
cStack.pop();
// At this stage 'combination' is made of collections
// of sizes ( n0+n1+...+nk, nk+1,... nm )
// Now generate all combinations obtained by splitting
// the first collection of 'combination' in two,
// according to Partition 'biPartition' = (n0+n1+...+nk-1, nk)
int k = sortedPartition.size() - combination.size();
int size = 0;
for (int iColl = 0; iColl != k; iColl++) {
size += sortedPartition[iColl];
}
PartitionGenerator::Partition biPartition(2);
biPartition[0] = size;
biPartition[1] = sortedPartition[k];
VectorOfCombinations subCombinations = splitInTwoCollections(combination[0], biPartition[0]);
for (typename std::vector<Combination>::const_iterator iComb = subCombinations.begin();
iComb != subCombinations.end();
iComb++) {
// Check ordering of successive bins of equal size
if (combination.size() > 1) {
if ((*iComb)[1].size() == combination[1].size()) {
Collection adjBins;
adjBins.push_back((*iComb)[1][0]);
adjBins.push_back(combination[1][0]);
// Drop 'combination' if successive bins of equal size not ordered
// i.e. if previous permutation exists
if (prev_permutation(adjBins.begin(), adjBins.end()))
continue;
}
}
// Append remaining collections of 'combination'
Combination merged = *iComb;
typename Combination::const_iterator it = combination.begin();
it++;
for (; it != combination.end(); it++) {
merged.push_back(*it);
}
// Store combination 'merged' if partitioning is complete,
// otherwise put it on the stack for further partitioning.
if (merged.size() == sortedPartition.size()) {
combinations.push_back(merged);
} else {
cStack.push(merged);
}
}
}
return combinations;
}
/** Create all combinations of elements from 'data'.
*/
std::vector<Combination> combinations(const Collection& data) const {
std::vector<Combination> combinations;
Collection sorted = data;
// Sort if needed
if (prev_permutation(sorted.begin(), sorted.end())) {
sort(sorted.begin(), sorted.end());
}
PartitionGenerator aPartitionGenerator;
std::vector<PartitionGenerator::Partition> partitions = aPartitionGenerator.partitions(data.size());
for (std::vector<PartitionGenerator::Partition>::const_iterator idiv = partitions.begin(); idiv != partitions.end();
idiv++) {
const PartitionGenerator::Partition& partition = *idiv;
std::vector<Combination> subCombinations = this->combinations(data, partition);
for (typename std::vector<Combination>::const_iterator iComb = subCombinations.begin();
iComb != subCombinations.end();
iComb++) {
combinations.push_back(*iComb);
}
}
return combinations;
}
private:
/** Create all combinations obtained by dividing 'data'
* in two collections, the first one being of size 'sizeFirst'
*/
VectorOfCombinations splitInTwoCollections(const Collection& data, int sizeFirst) const {
std::vector<Combination> combinations;
std::stack<Combination> cStack;
// Create first combination with 2 partitions
Combination comb;
comb.push_back(data);
comb.push_back(Collection());
cStack.push(comb);
while (!cStack.empty()) {
Combination combination = cStack.top();
cStack.pop();
Collection collection = combination[0];
std::vector<Combination> subCombinations = separateOneElement(collection);
for (typename std::vector<Combination>::const_iterator iComb = subCombinations.begin();
iComb != subCombinations.end();
iComb++) {
Collection second = combination[1];
second.push_back((*iComb)[1][0]);
// Abandon current combination if not ordered,
// i.e. if previous permutation exists
bool ordered = !prev_permutation(second.begin(), second.end());
if (!ordered)
continue;
next_permutation(second.begin(), second.end());
if ((*iComb)[0].size() == second.size()) {
Collection adjBins;
adjBins.push_back((*iComb)[0][0]);
adjBins.push_back(second[0]);
// Abandon current combination if successive bins of equal size
// not ordered, i.e. if previous permutation exists
if (prev_permutation(adjBins.begin(), adjBins.end()))
continue;
}
Combination stored;
stored.push_back((*iComb)[0]);
stored.push_back(second);
if (stored[0].size() == sizeFirst) {
combinations.push_back(stored);
} else {
cStack.push(stored);
}
}
}
return combinations;
}
/** Create all combinations obtained by dividing 'data' in two collections,
* the second one having only one element.
*/
std::vector<Combination> separateOneElement(const Collection& data) const {
std::vector<Combination> combinations;
for (typename Collection::const_iterator i = data.begin(); i != data.end(); i++) {
Combination comb;
Collection single;
single.push_back(*i);
Collection coll;
typename Collection::const_iterator j = data.begin();
for (; j != i; j++) {
coll.push_back(*j);
}
j++;
for (; j != data.end(); j++) {
coll.push_back(*j);
}
comb.push_back(coll);
comb.push_back(single);
combinations.push_back(comb);
}
return combinations;
}
};
#endif
|