1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
|
#include "CondCore/Utilities/interface/PayloadInspectorModule.h"
#include "CondCore/Utilities/interface/PayloadInspector.h"
#include "CondCore/CondDB/interface/Time.h"
#include "DataFormats/EcalDetId/interface/EBDetId.h"
#include "DataFormats/EcalDetId/interface/EEDetId.h"
#include "CondCore/EcalPlugins/plugins/EcalDrawUtils.h"
// the data format of the condition to be inspected
#include "CondFormats/Alignment/interface/Alignments.h"
#include "TH2F.h" // a 2-D histogram with four bytes per cell (float)
#include "TCanvas.h"
#include "TLine.h"
#include "TStyle.h"
#include "TLatex.h" //write mathematical equations.
#include "TPave.h"
#include "TPaveStats.h"
#include <string>
#include <fstream>
namespace {
enum { kEBChannels = 61200, kEEChannels = 14648 };
enum {
MIN_IETA = 1,
MIN_IPHI = 1,
MAX_IETA = 85,
MAX_IPHI = 360
}; // barrel (EB) lower and upper bounds on eta and phi
enum { IX_MIN = 1, IY_MIN = 1, IX_MAX = 100, IY_MAX = 100 }; // endcaps (EE) lower and upper bounds on x and y
/*****************************************
2d plot of ECAL Alignment of 1 IOV
******************************************/
class EcalAlignmentPlot : public cond::payloadInspector::PlotImage<Alignments> {
public:
EcalAlignmentPlot() : cond::payloadInspector::PlotImage<Alignments>("ECAL Alignment - map ") { setSingleIov(true); }
bool fill(const std::vector<std::tuple<cond::Time_t, cond::Hash> >& iovs) override {
auto iov = iovs.front(); //get reference to 1st element in the vector iovs
std::shared_ptr<Alignments> payload =
fetchPayload(std::get<1>(iov)); //std::get<1>(iov) refers to the Hash in the tuple iov
unsigned int run = std::get<0>(iov); //referes to Time_t in iov.
TH2F* align; //pointer to align which is a 2D histogram
std::string subdet;
int NbRows;
if (payload.get()) { //payload is an iov retrieved from payload using hash.
NbRows = (*payload).m_align.size();
if (NbRows == 36)
subdet = "EB";
else if (NbRows == 4)
subdet = "EE";
else if (NbRows == 8)
subdet = "ES";
else
subdet = "unknown";
// align = new TH2F("Align",Form("Alignment %s", subdet.c_str()),6, 0, 6, NbRows, 0, NbRows);
align = new TH2F("Align",
"x y z Phi Theta Psi",
6,
0,
6,
NbRows,
0,
NbRows);
double row = NbRows - 0.5;
for (std::vector<AlignTransform>::const_iterator it = (*payload).m_align.begin();
it != (*payload).m_align.end();
it++) {
align->Fill(0.5, row, (*it).translation().x());
align->Fill(1.5, row, (*it).translation().y());
align->Fill(2.5, row, (*it).translation().z());
align->Fill(3.5, row, (*it).rotation().getPhi());
align->Fill(4.5, row, (*it).rotation().getTheta());
align->Fill(5.5, row, (*it).rotation().getPsi());
row = row - 1.;
}
} // if payload.get()
else
return false;
gStyle->SetPalette(1);
gStyle->SetOptStat(0);
TCanvas canvas("CC map", "CC map", 1000, 1000);
TLatex t1;
t1.SetNDC();
t1.SetTextAlign(26);
t1.SetTextSize(0.05);
t1.SetTextColor(2);
t1.DrawLatex(0.5, 0.96, Form("Ecal %s Alignment, IOV %i", subdet.c_str(), run));
// t1.SetTextSize(0.03);
// t1.DrawLatex(0.3, 0.94, "x y z Phi Theta Psi");
TPad* pad = new TPad("pad", "pad", 0.0, 0.0, 1.0, 0.94);
pad->Draw();
pad->cd();
align->Draw("TEXT");
TLine* l = new TLine;
l->SetLineWidth(1);
for (int i = 1; i < NbRows; i++) {
double y = (double)i;
l = new TLine(0., y, 6., y);
l->Draw();
}
for (int i = 1; i < 6; i++) {
double x = (double)i;
double y = (double)NbRows;
l = new TLine(x, 0., x, y);
l->Draw();
}
align->GetXaxis()->SetTickLength(0.);
align->GetXaxis()->SetLabelSize(0.);
align->GetYaxis()->SetTickLength(0.);
align->GetYaxis()->SetLabelSize(0.);
std::string ImageName(m_imageFileName);
canvas.SaveAs(ImageName.c_str());
return true;
} // fill method
};
/*********************************************************
2d plot of ECAL Alignment difference between 2 IOVs
**********************************************************/
template <cond::payloadInspector::IOVMultiplicity nIOVs, int ntags>
class EcalAlignmentDiffBase : public cond::payloadInspector::PlotImage<Alignments, nIOVs, ntags> {
public:
EcalAlignmentDiffBase()
: cond::payloadInspector::PlotImage<Alignments, nIOVs, ntags>("ECAL Alignment difference") {}
bool fill() override {
unsigned int run[2];
float val[6][36];
TH2F* align = new TH2F("", "", 1, 0., 1., 1, 0., 1.); // pseudo creation
std::string subdet;
int NbRows = 0;
std::string l_tagname[2];
auto iovs = cond::payloadInspector::PlotBase::getTag<0>().iovs;
l_tagname[0] = cond::payloadInspector::PlotBase::getTag<0>().name;
auto firstiov = iovs.front();
run[0] = std::get<0>(firstiov);
std::tuple<cond::Time_t, cond::Hash> lastiov;
if (ntags == 2) {
auto tag2iovs = cond::payloadInspector::PlotBase::getTag<1>().iovs;
l_tagname[1] = cond::payloadInspector::PlotBase::getTag<1>().name;
lastiov = tag2iovs.front();
} else {
lastiov = iovs.back();
l_tagname[1] = l_tagname[0];
}
run[1] = std::get<0>(lastiov);
for (int irun = 0; irun < nIOVs; irun++) {
std::shared_ptr<Alignments> payload;
if (irun == 0) {
payload = this->fetchPayload(std::get<1>(firstiov));
} else {
payload = this->fetchPayload(std::get<1>(lastiov));
}
if (payload.get()) {
NbRows = (*payload).m_align.size();
if (irun == 1) {
if (NbRows == 36)
subdet = "EB";
else if (NbRows == 4)
subdet = "EE";
else if (NbRows == 8)
subdet = "ES";
else
subdet = "unknown";
delete align;
align = new TH2F("Align",
"x y z Phi Theta Psi",
6,
0,
6,
NbRows,
0,
NbRows);
}
double row = NbRows - 0.5;
int irow = 0;
for (std::vector<AlignTransform>::const_iterator it = (*payload).m_align.begin();
it != (*payload).m_align.end();
it++) {
if (irun == 0) {
val[0][irow] = (*it).translation().x();
val[1][irow] = (*it).translation().y();
val[2][irow] = (*it).translation().z();
val[3][irow] = (*it).rotation().getPhi();
val[4][irow] = (*it).rotation().getTheta();
val[5][irow] = (*it).rotation().getPsi();
} else {
align->Fill(0.5, row, (*it).translation().x() - val[0][irow]);
align->Fill(1.5, row, (*it).translation().y() - val[1][irow]);
align->Fill(2.5, row, (*it).translation().z() - val[2][irow]);
align->Fill(3.5, row, (*it).rotation().getPhi() - val[3][irow]);
align->Fill(4.5, row, (*it).rotation().getTheta() - val[3][irow]);
align->Fill(5.5, row, (*it).rotation().getPsi() - val[5][irow]);
row = row - 1.;
}
irow++;
} // loop over alignment rows
} // if payload.get()
else
return false;
} // loop over IOVs
gStyle->SetPalette(1);
gStyle->SetOptStat(0);
TCanvas canvas("CC map", "CC map", 1000, 1000);
TLatex t1;
t1.SetNDC();
t1.SetTextAlign(26);
t1.SetTextColor(2);
int len = l_tagname[0].length() + l_tagname[1].length();
if (ntags == 2 && len < 58) {
t1.SetTextSize(0.025);
t1.DrawLatex(
0.5, 0.96, Form("%s IOV %i - %s IOV %i", l_tagname[1].c_str(), run[1], l_tagname[0].c_str(), run[0]));
} else {
t1.SetTextSize(0.05);
t1.DrawLatex(0.5, 0.96, Form("Ecal %s Alignment, IOV %i - %i", subdet.c_str(), run[1], run[0]));
}
TPad* pad = new TPad("pad", "pad", 0.0, 0.0, 1.0, 0.94);
pad->Draw();
pad->cd();
align->Draw("TEXT");
TLine* l = new TLine;
l->SetLineWidth(1);
for (int i = 1; i < NbRows; i++) {
double y = (double)i;
l = new TLine(0., y, 6., y);
l->Draw();
}
for (int i = 1; i < 6; i++) {
double x = (double)i;
double y = (double)NbRows;
l = new TLine(x, 0., x, y);
l->Draw();
}
align->GetXaxis()->SetTickLength(0.);
align->GetXaxis()->SetLabelSize(0.);
align->GetYaxis()->SetTickLength(0.);
align->GetYaxis()->SetLabelSize(0.);
std::string ImageName(this->m_imageFileName);
canvas.SaveAs(ImageName.c_str());
return true;
} // fill method
}; // class EcalAlignmentDiffBase
using EcalAlignmentDiffOneTag = EcalAlignmentDiffBase<cond::payloadInspector::SINGLE_IOV, 1>;
using EcalAlignmentDiffTwoTags = EcalAlignmentDiffBase<cond::payloadInspector::SINGLE_IOV, 2>;
} // namespace
// Register the classes as boost python plugin
PAYLOAD_INSPECTOR_MODULE(EcalAlignment) {
PAYLOAD_INSPECTOR_CLASS(EcalAlignmentPlot);
PAYLOAD_INSPECTOR_CLASS(EcalAlignmentDiffOneTag);
PAYLOAD_INSPECTOR_CLASS(EcalAlignmentDiffTwoTags);
}
|