EcalAlignmentDiffBase

EcalAlignmentPlot

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
#include "CondCore/Utilities/interface/PayloadInspectorModule.h"
#include "CondCore/Utilities/interface/PayloadInspector.h"
#include "CondCore/CondDB/interface/Time.h"
#include "DataFormats/EcalDetId/interface/EBDetId.h"
#include "DataFormats/EcalDetId/interface/EEDetId.h"
#include "CondCore/EcalPlugins/plugins/EcalDrawUtils.h"

// the data format of the condition to be inspected
#include "CondFormats/Alignment/interface/Alignments.h"

#include "TH2F.h"  // a 2-D histogram with four bytes per cell (float)
#include "TCanvas.h"
#include "TLine.h"
#include "TStyle.h"
#include "TLatex.h"  //write mathematical equations.
#include "TPave.h"
#include "TPaveStats.h"
#include <string>
#include <fstream>

namespace {
  enum { kEBChannels = 61200, kEEChannels = 14648 };
  enum {
    MIN_IETA = 1,
    MIN_IPHI = 1,
    MAX_IETA = 85,
    MAX_IPHI = 360
  };  // barrel (EB) lower and upper bounds on eta and phi
  enum { IX_MIN = 1, IY_MIN = 1, IX_MAX = 100, IY_MAX = 100 };  // endcaps (EE) lower and upper bounds on x and y

  /*****************************************
 2d plot of ECAL Alignment of 1 IOV
 ******************************************/
  class EcalAlignmentPlot : public cond::payloadInspector::PlotImage<Alignments> {
  public:
    EcalAlignmentPlot() : cond::payloadInspector::PlotImage<Alignments>("ECAL Alignment - map ") { setSingleIov(true); }

    bool fill(const std::vector<std::tuple<cond::Time_t, cond::Hash> >& iovs) override {
      auto iov = iovs.front();  //get reference to 1st element in the vector iovs
      std::shared_ptr<Alignments> payload =
          fetchPayload(std::get<1>(iov));   //std::get<1>(iov) refers to the Hash in the tuple iov
      unsigned int run = std::get<0>(iov);  //referes to Time_t in iov.
      TH2F* align;                          //pointer to align which is a 2D histogram
      std::string subdet;
      int NbRows;
      if (payload.get()) {  //payload is an iov retrieved from payload using hash.
        NbRows = (*payload).m_align.size();
        if (NbRows == 36)
          subdet = "EB";
        else if (NbRows == 4)
          subdet = "EE";
        else if (NbRows == 8)
          subdet = "ES";
        else
          subdet = "unknown";
        //  align = new TH2F("Align",Form("Alignment %s", subdet.c_str()),6, 0, 6, NbRows, 0, NbRows);
        align = new TH2F("Align",
                         "x           y            z               Phi         Theta         Psi",
                         6,
                         0,
                         6,
                         NbRows,
                         0,
                         NbRows);

        double row = NbRows - 0.5;
        for (std::vector<AlignTransform>::const_iterator it = (*payload).m_align.begin();
             it != (*payload).m_align.end();
             it++) {
          align->Fill(0.5, row, (*it).translation().x());
          align->Fill(1.5, row, (*it).translation().y());
          align->Fill(2.5, row, (*it).translation().z());
          align->Fill(3.5, row, (*it).rotation().getPhi());
          align->Fill(4.5, row, (*it).rotation().getTheta());
          align->Fill(5.5, row, (*it).rotation().getPsi());
          row = row - 1.;
        }
      }  // if payload.get()
      else
        return false;

      gStyle->SetPalette(1);
      gStyle->SetOptStat(0);
      TCanvas canvas("CC map", "CC map", 1000, 1000);
      TLatex t1;
      t1.SetNDC();
      t1.SetTextAlign(26);
      t1.SetTextSize(0.05);
      t1.SetTextColor(2);
      t1.DrawLatex(0.5, 0.96, Form("Ecal %s Alignment, IOV %i", subdet.c_str(), run));
      //      t1.SetTextSize(0.03);
      //      t1.DrawLatex(0.3, 0.94, "x          y           z           Phi          Theta          Psi");

      TPad* pad = new TPad("pad", "pad", 0.0, 0.0, 1.0, 0.94);
      pad->Draw();
      pad->cd();
      align->Draw("TEXT");
      TLine* l = new TLine;
      l->SetLineWidth(1);
      for (int i = 1; i < NbRows; i++) {
        double y = (double)i;
        l = new TLine(0., y, 6., y);
        l->Draw();
      }

      for (int i = 1; i < 6; i++) {
        double x = (double)i;
        double y = (double)NbRows;
        l = new TLine(x, 0., x, y);
        l->Draw();
      }

      align->GetXaxis()->SetTickLength(0.);
      align->GetXaxis()->SetLabelSize(0.);
      align->GetYaxis()->SetTickLength(0.);
      align->GetYaxis()->SetLabelSize(0.);

      std::string ImageName(m_imageFileName);
      canvas.SaveAs(ImageName.c_str());
      return true;
    }  // fill method
  };

  /*********************************************************
      2d plot of ECAL Alignment difference between 2 IOVs
  **********************************************************/
  template <cond::payloadInspector::IOVMultiplicity nIOVs, int ntags>
  class EcalAlignmentDiffBase : public cond::payloadInspector::PlotImage<Alignments, nIOVs, ntags> {
  public:
    EcalAlignmentDiffBase()
        : cond::payloadInspector::PlotImage<Alignments, nIOVs, ntags>("ECAL Alignment difference") {}

    bool fill() override {
      unsigned int run[2];
      float val[6][36];
      TH2F* align = new TH2F("", "", 1, 0., 1., 1, 0., 1.);  // pseudo creation
      std::string subdet;
      int NbRows = 0;
      std::string l_tagname[2];

      auto iovs = cond::payloadInspector::PlotBase::getTag<0>().iovs;
      l_tagname[0] = cond::payloadInspector::PlotBase::getTag<0>().name;
      auto firstiov = iovs.front();
      run[0] = std::get<0>(firstiov);
      std::tuple<cond::Time_t, cond::Hash> lastiov;
      if (ntags == 2) {
        auto tag2iovs = cond::payloadInspector::PlotBase::getTag<1>().iovs;
        l_tagname[1] = cond::payloadInspector::PlotBase::getTag<1>().name;
        lastiov = tag2iovs.front();
      } else {
        lastiov = iovs.back();
        l_tagname[1] = l_tagname[0];
      }
      run[1] = std::get<0>(lastiov);

      for (int irun = 0; irun < nIOVs; irun++) {
        std::shared_ptr<Alignments> payload;
        if (irun == 0) {
          payload = this->fetchPayload(std::get<1>(firstiov));
        } else {
          payload = this->fetchPayload(std::get<1>(lastiov));
        }

        if (payload.get()) {
          NbRows = (*payload).m_align.size();
          if (irun == 1) {
            if (NbRows == 36)
              subdet = "EB";
            else if (NbRows == 4)
              subdet = "EE";
            else if (NbRows == 8)
              subdet = "ES";
            else
              subdet = "unknown";
            delete align;
            align = new TH2F("Align",
                             "x           y            z               Phi         Theta         Psi",
                             6,
                             0,
                             6,
                             NbRows,
                             0,
                             NbRows);
          }

          double row = NbRows - 0.5;
          int irow = 0;
          for (std::vector<AlignTransform>::const_iterator it = (*payload).m_align.begin();
               it != (*payload).m_align.end();
               it++) {
            if (irun == 0) {
              val[0][irow] = (*it).translation().x();
              val[1][irow] = (*it).translation().y();
              val[2][irow] = (*it).translation().z();
              val[3][irow] = (*it).rotation().getPhi();
              val[4][irow] = (*it).rotation().getTheta();
              val[5][irow] = (*it).rotation().getPsi();
            } else {
              align->Fill(0.5, row, (*it).translation().x() - val[0][irow]);
              align->Fill(1.5, row, (*it).translation().y() - val[1][irow]);
              align->Fill(2.5, row, (*it).translation().z() - val[2][irow]);
              align->Fill(3.5, row, (*it).rotation().getPhi() - val[3][irow]);
              align->Fill(4.5, row, (*it).rotation().getTheta() - val[3][irow]);
              align->Fill(5.5, row, (*it).rotation().getPsi() - val[5][irow]);
              row = row - 1.;
            }
            irow++;
          }  // loop over alignment rows

        }  //  if payload.get()
        else
          return false;
      }  // loop over IOVs

      gStyle->SetPalette(1);
      gStyle->SetOptStat(0);
      TCanvas canvas("CC map", "CC map", 1000, 1000);
      TLatex t1;
      t1.SetNDC();
      t1.SetTextAlign(26);
      t1.SetTextColor(2);
      int len = l_tagname[0].length() + l_tagname[1].length();
      if (ntags == 2 && len < 58) {
        t1.SetTextSize(0.025);
        t1.DrawLatex(
            0.5, 0.96, Form("%s IOV %i - %s  IOV %i", l_tagname[1].c_str(), run[1], l_tagname[0].c_str(), run[0]));
      } else {
        t1.SetTextSize(0.05);
        t1.DrawLatex(0.5, 0.96, Form("Ecal %s Alignment, IOV %i - %i", subdet.c_str(), run[1], run[0]));
      }
      TPad* pad = new TPad("pad", "pad", 0.0, 0.0, 1.0, 0.94);
      pad->Draw();
      pad->cd();
      align->Draw("TEXT");
      TLine* l = new TLine;
      l->SetLineWidth(1);

      for (int i = 1; i < NbRows; i++) {
        double y = (double)i;
        l = new TLine(0., y, 6., y);
        l->Draw();
      }

      for (int i = 1; i < 6; i++) {
        double x = (double)i;
        double y = (double)NbRows;
        l = new TLine(x, 0., x, y);
        l->Draw();
      }

      align->GetXaxis()->SetTickLength(0.);
      align->GetXaxis()->SetLabelSize(0.);
      align->GetYaxis()->SetTickLength(0.);
      align->GetYaxis()->SetLabelSize(0.);

      std::string ImageName(this->m_imageFileName);
      canvas.SaveAs(ImageName.c_str());
      return true;
    }  // fill method
  };  // class EcalAlignmentDiffBase
  using EcalAlignmentDiffOneTag = EcalAlignmentDiffBase<cond::payloadInspector::SINGLE_IOV, 1>;
  using EcalAlignmentDiffTwoTags = EcalAlignmentDiffBase<cond::payloadInspector::SINGLE_IOV, 2>;

}  // namespace

// Register the classes as boost python plugin
PAYLOAD_INSPECTOR_MODULE(EcalAlignment) {
  PAYLOAD_INSPECTOR_CLASS(EcalAlignmentPlot);
  PAYLOAD_INSPECTOR_CLASS(EcalAlignmentDiffOneTag);
  PAYLOAD_INSPECTOR_CLASS(EcalAlignmentDiffTwoTags);
}