Binning

Definition

JetParameters

JetResolutionObject

Range

Record

Variation

bimap

hash

Macros

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242
#ifndef JetResolutionObject_h
#define JetResolutionObject_h

// If you want to use the JER code in standalone mode, you'll need to create a new define named 'STANDALONE'. If you use gcc for compiling, you'll need to add
// -DSTANDALONE to the command line
// In standalone mode, no reference to CMSSW exists, so the only way to retrieve resolutions and scale factors are from text files.

#ifndef STANDALONE
#include "CondFormats/Serialization/interface/Serializable.h"
#else
// Create no-op definitions of CMSSW macro
#define COND_SERIALIZABLE
#define COND_TRANSIENT
#endif

#include <unordered_map>
#include <vector>
#include <string>
#include <tuple>
#include <memory>
#include <initializer_list>

#ifndef STANDALONE
#include "CommonTools/Utils/interface/FormulaEvaluator.h"
#else
#include <TFormula.h>
#endif

enum class Variation { NOMINAL = 0, DOWN = 1, UP = 2 };

template <typename T>
T clip(const T& n, const T& lower, const T& upper) {
  return std::max(lower, std::min(n, upper));
}

namespace JME {
  template <typename T, typename U>
  struct bimap {
    typedef std::unordered_map<T, U> left_type;
    typedef std::unordered_map<U, T> right_type;

    left_type left;
    right_type right;

    bimap(std::initializer_list<typename left_type::value_type> l) {
      for (auto& v : l) {
        left.insert(v);
        right.insert(typename right_type::value_type(v.second, v.first));
      }
    }

    bimap() {
      // Empty
    }

    bimap(bimap&& rhs) {
      left = std::move(rhs.left);
      right = std::move(rhs.right);
    }
  };

  enum class Binning {
    JetPt = 0,
    JetEta,
    JetAbsEta,
    JetE,
    JetArea,
    Mu,
    Rho,
    NPV,
  };

};  // namespace JME

// Hash function for Binning enum class
namespace std {
  template <>
  struct hash<JME::Binning> {
    typedef JME::Binning argument_type;
    typedef std::size_t result_type;

    hash<uint8_t> int_hash;

    result_type operator()(argument_type const& s) const { return int_hash(static_cast<uint8_t>(s)); }
  };
};  // namespace std

namespace JME {

  class JetParameters {
  public:
    typedef std::unordered_map<Binning, float> value_type;

    JetParameters() = default;
    JetParameters(JetParameters&& rhs);
    JetParameters(std::initializer_list<typename value_type::value_type> init);

    JetParameters& setJetPt(float pt);
    JetParameters& setJetEta(float eta);
    JetParameters& setJetE(float e);
    JetParameters& setJetArea(float area);
    JetParameters& setMu(float mu);
    JetParameters& setRho(float rho);
    JetParameters& setNPV(float npv);
    JetParameters& set(const Binning& bin, float value);
    JetParameters& set(const typename value_type::value_type& value);

    static const bimap<Binning, std::string> binning_to_string;

    std::vector<float> createVector(const std::vector<Binning>& binning) const;
    std::vector<float> createVector(const std::vector<std::string>& binname) const;

  private:
    value_type m_values;
  };

  class JetResolutionObject {
  public:
    struct Range {
      float min;
      float max;

      Range() {
        // Empty
      }

      Range(float min, float max) {
        this->min = min;
        this->max = max;
      }

      bool is_inside(float value) const { return (value >= min) && (value < max); }

      COND_SERIALIZABLE;
    };

    class Definition {
    public:
      Definition() {
        // Empty
      }

      Definition(const std::string& definition);

      const std::vector<std::string>& getBinsName() const { return m_bins_name; }

      const std::vector<Binning>& getBins() const { return m_bins; }

      std::string getBinName(size_t bin) const { return m_bins_name[bin]; }

      size_t nBins() const { return m_bins_name.size(); }

      const std::vector<std::string>& getVariablesName() const { return m_variables_name; }

      const std::vector<Binning>& getVariables() const { return m_variables; }

      std::string getVariableName(size_t variable) const { return m_variables_name[variable]; }

      size_t nVariables() const { return m_variables_name.size(); }

      const std::vector<std::string>& getParametersName() const { return m_parameters_name; }

      size_t nParameters() const { return m_parameters_name.size(); }

      std::string getFormulaString() const { return m_formula_str; }

#ifndef STANDALONE
      const reco::FormulaEvaluator* getFormula() const { return m_formula.get(); }
#else
      TFormula const* getFormula() const { return m_formula.get(); }
#endif
      void init();

    private:
      std::vector<std::string> m_bins_name;
      std::vector<std::string> m_variables_name;
      std::string m_formula_str;

#ifndef STANDALONE
      std::shared_ptr<reco::FormulaEvaluator> m_formula COND_TRANSIENT;
#else
      std::shared_ptr<TFormula> m_formula COND_TRANSIENT;
#endif
      std::vector<Binning> m_bins COND_TRANSIENT;
      std::vector<Binning> m_variables COND_TRANSIENT;
      std::vector<std::string> m_parameters_name COND_TRANSIENT;

      COND_SERIALIZABLE;
    };

    class Record {
    public:
      Record() {
        // Empty
      }

      Record(const std::string& record, const Definition& def);

      const std::vector<Range>& getBinsRange() const { return m_bins_range; }

      const std::vector<Range>& getVariablesRange() const { return m_variables_range; }

      const std::vector<float>& getParametersValues() const { return m_parameters_values; }

      size_t nVariables() const { return m_variables_range.size(); }

      size_t nParameters() const { return m_parameters_values.size(); }

    private:
      std::vector<Range> m_bins_range;
      std::vector<Range> m_variables_range;
      std::vector<float> m_parameters_values;

      COND_SERIALIZABLE;
    };

  public:
    JetResolutionObject(const std::string& filename);
    JetResolutionObject(const JetResolutionObject& filename);
    JetResolutionObject();

    void dump() const;
    void saveToFile(const std::string& file) const;

    const Record* getRecord(const JetParameters& bins) const;
    float evaluateFormula(const Record& record, const JetParameters& variables) const;

    const std::vector<Record>& getRecords() const { return m_records; }

    const Definition& getDefinition() const { return m_definition; }

  private:
    Definition m_definition;
    std::vector<Record> m_records;

    bool m_valid = false;

    COND_SERIALIZABLE;
  };
};  // namespace JME

#endif