concat

ct_integers_list

ct_iota_1

ct_iota_1

gen_seq

gen_seq

gen_seq

generate_tuple_type

generate_tuple_type

generate_tuple_type

hash

hash

hash_specialization

hash_specialization

join_tuples

join_tuples

push_back

seq

tuple_printer

tuple_printer

Macros

Line Code
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
#ifndef CondFormats_JetMETObjects_Utilities_h
#define CondFormats_JetMETObjects_Utilities_h

#ifdef STANDALONE
#include <stdexcept>
#else
#include "FWCore/MessageLogger/interface/MessageLogger.h"
#endif

#include <cstdlib>
#include <sstream>
#include <string>
#include <vector>
#include <tuple>
#include <cmath>
#include <utility>

namespace std {
  //These functions print a tuple using a provided std::ostream
  template <typename Type, unsigned N, unsigned Last>
  struct tuple_printer {
    static void print(std::ostream& out, const Type& value) {
      out << std::get<N>(value) << ", ";
      tuple_printer<Type, N + 1, Last>::print(out, value);
    }
  };
  template <typename Type, unsigned N>
  struct tuple_printer<Type, N, N> {
    static void print(std::ostream& out, const Type& value) { out << std::get<N>(value); }
  };
  template <typename... Types>
  std::ostream& operator<<(std::ostream& out, const std::tuple<Types...>& value) {
    out << "(";
    tuple_printer<std::tuple<Types...>, 0, sizeof...(Types) - 1>::print(out, value);
    out << ")";
    return out;
  }
  //----------------------------------------------------------------------
  //Returns a list of type indices
  template <size_t... n>
  struct ct_integers_list {
    template <size_t m>
    struct push_back {
      typedef ct_integers_list<n..., m> type;
    };
  };
  template <size_t max>
  struct ct_iota_1 {
    typedef typename ct_iota_1<max - 1>::type::template push_back<max>::type type;
  };
  template <>
  struct ct_iota_1<0> {
    typedef ct_integers_list<> type;
  };
  //----------------------------------------------------------------------
  //Return a tuple which is a subset of the original tuple
  //This function pops an entry off the font of the tuple
  template <size_t... indices, typename Tuple>
  auto tuple_subset(const Tuple& tpl,
                    ct_integers_list<indices...>) -> decltype(std::make_tuple(std::get<indices>(tpl)...)) {
    return std::make_tuple(std::get<indices>(tpl)...);
    // this means:
    //   make_tuple(get<indices[0]>(tpl), get<indices[1]>(tpl), ...)
  }
  template <typename Head, typename... Tail>
  std::tuple<Tail...> tuple_tail(const std::tuple<Head, Tail...>& tpl) {
    return tuple_subset(tpl, typename ct_iota_1<sizeof...(Tail)>::type());
    // this means:
    //   tuple_subset<1, 2, 3, ..., sizeof...(Tail)-1>(tpl, ..)
  }
  //----------------------------------------------------------------------
  //Recursive hashing function for tuples
  template <typename Head, typename... ndims>
  struct hash_specialization {
    typedef std::tuple<Head, ndims...> argument_type;
    typedef std::size_t result_type;
    result_type operator()(const argument_type& t) const {
      const uint32_t& b = reinterpret_cast<const uint32_t&>(std::get<0>(t));
      //const uint32_t& more = (*this)(tuple_tail(t));
      const uint32_t& more = hash_specialization<ndims...>()(tuple_tail(t));
      return b ^ more;
    }
  };
  //Base case
  template <>
  struct hash_specialization<float> {
    typedef std::tuple<float> argument_type;
    typedef std::size_t result_type;
    result_type operator()(const argument_type& t) const {
      const uint32_t& b = reinterpret_cast<const uint32_t&>(std::get<0>(t));
      return static_cast<result_type>(b);
    }
  };
  //Overloaded verions of std::hash for tuples
  template <typename Head, typename... ndims>
  struct hash<std::tuple<Head, ndims...>> {
    typedef std::tuple<Head, ndims...> argument_type;
    typedef std::size_t result_type;
    result_type operator()(const argument_type& t) const { return hash_specialization<Head, ndims...>()(t); }
  };
  template <>
  struct hash<std::tuple<>> {
    typedef std::tuple<> argument_type;
    typedef std::size_t result_type;
    result_type operator()(const argument_type& t) const { return -1; }
  };
}  // namespace std

namespace {
  inline void handleError(const std::string& fClass, const std::string& fMessage) {
#ifdef STANDALONE
    std::stringstream sserr;
    sserr << fClass << " ERROR: " << fMessage;
    throw std::runtime_error(sserr.str());
#else
    edm::LogError(fClass) << fMessage;
#endif
  }
  //----------------------------------------------------------------------
  inline float getFloat(const std::string& token) {
    char* endptr;
    float result = strtod(token.c_str(), &endptr);
    if (endptr == token.c_str()) {
      std::stringstream sserr;
      sserr << "can't convert token " << token << " to float value";
      handleError("getFloat", sserr.str());
    }
    return result;
  }
  //----------------------------------------------------------------------
  inline unsigned getUnsigned(const std::string& token) {
    char* endptr;
    unsigned result = strtoul(token.c_str(), &endptr, 0);
    if (endptr == token.c_str()) {
      std::stringstream sserr;
      sserr << "can't convert token " << token << " to unsigned value";
      handleError("getUnsigned", sserr.str());
    }
    return result;
  }
  inline long int getSigned(const std::string& token) {
    char* endptr;
    unsigned result = strtol(token.c_str(), &endptr, 0);
    if (endptr == token.c_str()) {
      std::stringstream sserr;
      sserr << "can't convert token " << token << " to signed value";
      handleError("getSigned", sserr.str());
    }
    return result;
  }
  //----------------------------------------------------------------------
  inline std::string getSection(const std::string& token) {
    size_t iFirst = token.find('[');
    size_t iLast = token.find(']');
    if (iFirst != std::string::npos && iLast != std::string::npos && iFirst < iLast)
      return std::string(token, iFirst + 1, iLast - iFirst - 1);
    return "";
  }
  //----------------------------------------------------------------------
  inline std::vector<std::string> getTokens(const std::string& fLine) {
    std::vector<std::string> tokens;
    std::string currentToken;
    for (unsigned ipos = 0; ipos < fLine.length(); ++ipos) {
      char c = fLine[ipos];
      if (c == '#')
        break;              // ignore comments
      else if (c == ' ') {  // flush current token if any
        if (!currentToken.empty()) {
          tokens.push_back(currentToken);
          currentToken.clear();
        }
      } else
        currentToken += c;
    }
    if (!currentToken.empty())
      tokens.push_back(currentToken);  // flush end
    return tokens;
  }
  //----------------------------------------------------------------------
  inline std::string getDefinitions(const std::string& token) {
    size_t iFirst = token.find('{');
    size_t iLast = token.find('}');
    if (iFirst != std::string::npos && iLast != std::string::npos && iFirst < iLast)
      return std::string(token, iFirst + 1, iLast - iFirst - 1);
    return "";
  }
  //------------------------------------------------------------------------
  inline float quadraticInterpolation(float fZ, const float fX[3], const float fY[3]) {
    // Quadratic interpolation through the points (x[i],y[i]). First find the parabola that
    // is defined by the points and then calculate the y(z).
    float D[4], a[3];
    D[0] = fX[0] * fX[1] * (fX[0] - fX[1]) + fX[1] * fX[2] * (fX[1] - fX[2]) + fX[2] * fX[0] * (fX[2] - fX[0]);
    D[3] = fY[0] * (fX[1] - fX[2]) + fY[1] * (fX[2] - fX[0]) + fY[2] * (fX[0] - fX[1]);
    D[2] = fY[0] * (pow(fX[2], 2) - pow(fX[1], 2)) + fY[1] * (pow(fX[0], 2) - pow(fX[2], 2)) +
           fY[2] * (pow(fX[1], 2) - pow(fX[0], 2));
    D[1] = fY[0] * fX[1] * fX[2] * (fX[1] - fX[2]) + fY[1] * fX[0] * fX[2] * (fX[2] - fX[0]) +
           fY[2] * fX[0] * fX[1] * (fX[0] - fX[1]);
    if (D[0] != 0) {
      a[0] = D[1] / D[0];
      a[1] = D[2] / D[0];
      a[2] = D[3] / D[0];
    } else {
      a[0] = 0.0;
      a[1] = 0.0;
      a[2] = 0.0;
    }
    float r = a[0] + fZ * (a[1] + fZ * a[2]);
    return r;
  }
  //------------------------------------------------------------------------
  //Generates a std::tuple type based on a stored type and the number of
  // objects in the tuple.
  //Note: All of the objects will be of the same type
  template <typename /*LEFT_TUPLE*/, typename /*RIGHT_TUPLE*/>
  struct join_tuples {};
  template <typename... LEFT, typename... RIGHT>
  struct join_tuples<std::tuple<LEFT...>, std::tuple<RIGHT...>> {
    typedef std::tuple<LEFT..., RIGHT...> type;
  };
  template <typename T, unsigned N>
  struct generate_tuple_type {
    typedef typename generate_tuple_type<T, N / 2>::type left;
    typedef typename generate_tuple_type<T, N / 2 + N % 2>::type right;
    typedef typename join_tuples<left, right>::type type;
  };
  template <typename T>
  struct generate_tuple_type<T, 1> {
    typedef std::tuple<T> type;
  };
  template <typename T>
  struct generate_tuple_type<T, 0> {
    typedef std::tuple<> type;
  };
  //------------------------------------------------------------------------
  //C++11 implementation of make_index_sequence, which is a C++14 function
  // using aliases for cleaner syntax
  template <class T>
  using Invoke = typename T::type;

  template <unsigned...>
  struct seq {
    using type = seq;
  };

  template <class S1, class S2>
  struct concat;

  template <unsigned... I1, unsigned... I2>
  struct concat<seq<I1...>, seq<I2...>> : seq<I1..., (sizeof...(I1) + I2)...> {};

  template <class S1, class S2>
  using Concat = Invoke<concat<S1, S2>>;

  template <unsigned N>
  struct gen_seq;
  template <unsigned N>
  using GenSeq = Invoke<gen_seq<N>>;

  template <unsigned N>
  struct gen_seq : Concat<GenSeq<N / 2>, GenSeq<N - N / 2>> {};

  template <>
  struct gen_seq<0> : seq<> {};
  template <>
  struct gen_seq<1> : seq<0> {};
  //------------------------------------------------------------------------
  //Generates a tuple based on a given function (i.e. lambda expression)
  template <typename F, unsigned... Is>
  auto gen_tuple_impl(F func, seq<Is...>) -> decltype(std::make_tuple(func(Is)...)) {
    return std::make_tuple(func(Is)...);
  }
  template <unsigned N, typename F>
  auto gen_tuple(F func) -> decltype(gen_tuple_impl(func, GenSeq<N>())) {
    return gen_tuple_impl(func, GenSeq<N>());
  }
}  // namespace
#endif